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INFINITE-DIMENSIONAL GRADIENT-BASED DESCENT
FOR ALPHA-DIVERGENCE MINIMISATION

By Kamélia Daudel*, Randal Douc� and François Portier*.

Télécom Paris* and Télécom SudParis�

This paper introduces the (α,Γ)-descent, an iterative algorithm
which operates on measures and performs α-divergence minimisation
in a Bayesian framework. This gradient-based procedure extends the
commonly-used variational approximation by adding a prior on the
variational parameters in the form of a measure. We prove that for
a rich family of functions Γ, this algorithm leads at each step to a
systematic decrease in the α-divergence. Our framework recovers the
Entropic Mirror Descent (MD) algorithm with improved O(1/N) con-
vergence results and provides an alternative to the Entropic MD that
we call the Power descent and for which we prove convergence to an
optimum. Moreover, the (α,Γ)-descent allows to optimise the mix-
ture weights of any given mixture model without any information
on the underlying distribution of the variational parameters. This
renders our method compatible with many choices of parameters up-
dates and applicable to a wide range of Machine Learning tasks. We
demonstrate empirically on both toy and real-world examples the
benefit of using the Power descent and going beyond the Entropic
MD framework, which fails as the dimension grows.

1. Introduction. Bayesian statistics for complex models often induce
intractable and hard-to-compute posterior densities which need to be ap-
proximated. Variational methods such as Variational Inference (VI) [1, 2]
and Expectation Propagation (EP) [3, 4] consider this objective purely as an
optimisation problem (which is often non-convex). These approaches seek to
approximate the posterior density by a simpler variational density kθ, char-
acterized by a set of variational parameters θ ∈ T, where T is the parameter
space. In these methods θ is optimised such that it minimizes a certain ob-
jective function, typically the Kullback-Leibler divergence [5] between the
posterior and the variational density.

Modern Variational methods improved in three major directions [6, 7]
(i) Black-Box inference techniques [8, 9] and Hierarchical Variational Infer-
ence methods [10, 11] have been deployed, expanding the variational family
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and rendering Variational methods applicable to a wide range of models
(ii) Algorithms based on alternative families of divergences such as the α-
divergence [12, 13] and Renyi’s α-divergence [14, 15] have been introduced
[16, 17, 18, 19, 20, 21, 22] to bypass practical issues linked to the Kullback-
Leibler divergence [4, 6, 23] (iii) Scalable methods relying on stochastic opti-
misation techniques [24, 25] have been developed to enable large-scale learn-
ing and have been applied to complex probabilistic models [23, 26, 27, 28].

In the spirit of Hierarchical Variational Inference, we offer in this paper
to enlarge the variational family by adding a prior on the variational density
kθ and consider

q(y) =

∫
T
µ(dθ)kθ(y) .

This is a more general form than the one found in [11] where µ is parametrised
by another parametric model. As for the objective function, we work within
the α-divergence family, which admits the Kullback-Leibler and the re-
verse Kullback-Leibler as limiting cases. These divergences belong to the
f -divergence family [29, 30] and as such, they have convexity properties so
that the minimisation of the α-divergence between the targeted posterior
density and the variational density q with respect to µ can be seen as a
convex optimisation problem. The paper is then organised as follows:

� In Section 2, we briefly review basic concepts around the α-divergence
family before recalling the basics of Variational methods and formulating
formally the optimisation problem we consider.

� In Section 3, we describe the Exact (α,Γ)-descent, an iterative algo-
rithm that performs α-divergence minimisation by updating the measure
µ. We establish in Theorem 1 sufficient conditions on Γ for this algorithm
to lead at each step to a systematic decrease in the α-divergence. We then
investigate the convergence of the algorithm in Theorem 2, 3 and 4. Strik-
ingly, the Infinite-dimensional Entropic Mirror Descent [31, Appendix A] is
included in our framework and we obtain an improved O(1/N) convergence
rate, which illustrates the generality of our approach. We also introduce a
novel algorithm called the Power descent, for which we prove convergence
to an optimum and obtain an O(1/N) convergence rate when α > 1.

� In Section 4, we define the Stochastic version of the Exact (α,Γ)-descent
and apply it to the important case of mixture models [32, 33]. The resulting
general-purpose algorithm is Black-Box and does not require any informa-
tion on the underlying distribution of the variational parameters.

� Finally, Section 5 is devoted to numerical experiments. We demonstrate
the benefit of using the Power descent and thus of going beyond the Entropic
Mirror Descent framework. We also compare our method to a computa-
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tionally equivalent Adaptive Importance Sampling algorithm for Bayesian
Logistic Regression on a large dataset.

2. Formulation of the optimisation problem.

2.1. The α-divergence. Let (Y,Y, ν) be a measured space, where ν is a
σ-finite measure on (Y,Y). Let Q and P be two probability measures on
(Y,Y) that are absolutely continuous with respect to ν i.e. Q � ν, P � ν.
Let us denote by q = dQ

dν and p = dP
dν the Radon-Nikodym derivatives of Q

and P with respect to ν.

Definition 1. Let α ∈ R \ {0, 1}. The α-divergence and the Kullback-
Leibler (KL) divergence between Q and P are respectively defined by :

Dα(Q||P) =

∫
Y

1

α(α− 1)

[(
q(y)

p(y)

)α
− 1

]
p(y)ν(dy) ,

DKL(Q||P) =

∫
Y

log

(
q(y)

p(y)

)
q(y)ν(dy) .

As limα→0Dα(Q||P) = DKL(P||Q) and limα→1Dα(Q||P) = DKL(Q||P)
(see for example [15]), the definition of the α-divergence can be extended to
0 and 1 by continuity and we will use the notation D0(Q||P) = DKL(P||Q)
and D1(Q||P) = DKL(Q||P) throughout the paper. Letting fα be the convex
function on (0,+∞) defined by f0(u) = u−1−log(u), f1(u) = 1−u+u log(u)
and fα(u) = 1

α(α−1) [uα − 1− α(u− 1)] for all α ∈ R \ {0, 1}, we have that
for all α ∈ R,

Dα(Q||P) =

∫
Y
fα

(
q(y)

p(y)

)
p(y)ν(dy) .(1)

Written under that form, the r.h.s of (1) corresponds to the general definition
of the α-divergence, that is q and p do not need to be normalised in (1) in
order to define a divergence. We next remind the reader of a few more results
about the α-divergence and we refer to [15, 34, 35, 36] for more details on
the α-divergence family.

Proposition 2. The α-divergence is always non-negative and it is equal
to zero if and only if Q = P. Furthermore, it is jointly convex in Q and P
and for all α ∈ R, Dα(Q||P) = D1−α(P||Q).

Special cases of the α-divergence family include the Hellinger distance
[37, 38] and the χ2-divergence [20] which correspond respectively to order
α = 0.5 and α = 2.
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2.2. Variational Inference within the α-divergence family. Assume that
we have access to some observed variables D generated from a probabilistic
model p(D |y) parameterised by a hidden random variable y ∈ Y that is
drawn from a certain prior p0(y). Bayesian inference involves being able to
compute or sample from the posterior density of the latent variable y given
the data D :

p(y|D) =
p(y,D)

p(D)
=
p0(y)p(D |y)

p(D)
,

where p(D) =
∫
Y p0(y)p(D |y)ν(dy) is called the marginal likelihood or model

evidence. For many useful models the posterior density is intractable due
to the normalisation constant p(D). One way to bypass this problem is to
introduce a variational density q in some tractable density family Q and to
find q? such that

q? = arginfq∈QDα(Q||P) ,

where P and Q denote the probability measures on (Y,Y) with corresponding
associated density p(·|D) and q. This optimisation problem still involves the
unknown normalisation constant p(D) however it can easily be transformed
into the following equivalent optimisation problem

q? = arginfq∈Q

∫
Y
fα

(
q(y)

p(y,D)

)
p(y,D)ν(dy) ,

which does not involve the unknown marginal likelihood p(D) anymore (see
for example [6] and [19, 20]). The core of Variational Inference methods
then consists in designing approximating families Q which allow efficient
optimisation and which are able to capture complicated structure inside the
posterior density. Typically, q belongs to a parametric family q = kθ where
θ is in a certain parametric space T, that is the minimisation occurs over
the set of densities

{y 7→ kθ(y) : θ ∈ T} .

In this paper, we offer to perform instead a minimization over{
y 7→

∫
T
µ(dθ)kθ(y) : µ ∈ M

}
,

where M is a convenient subset of M1(T), the set of probability measures on
T (and in this case, we equip T with a σ-field denoted by T ). In doing so,
we extend the minimizing set to a larger space since a parameter θ can be
identified with its associated Dirac measure δθ. Similarly, a mixture model
composed of {θ1, ..., θJ} ∈ TJ will correspond to taking µ as a weighted sum
of Dirac measures.
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More formally, let us consider a measurable space (T, T ). Let p be a
measurable positive function on (Y,Y) and K : (θ,A) 7→

∫
A k(θ, y)ν(dy) be

a Markov transition kernel on T×Y with kernel density k defined on T×Y.
Moreover, for all µ ∈ M1(T), for all y ∈ Y, we denote µk(y) =

∫
T µ(dθ)k(θ, y)

and we define

Ψα(µ) =

∫
Y
fα

(
µk(y)

p(y)

)
p(y)ν(dy) .(2)

Note that p, k and ν appear as well in Ψα(µ) i.e Ψα(µ) = Ψα(µ; p, q, ν), but
we drop them for notational ease and when no ambiguity occurs. Notice also
that we replaced kθ(y) by k(θ, y) to comply with usual kernel notation. We
consider in what follows the general optimisation problem

arginfµ∈MΨα(µ) ,(3)

and in practice, we will choose p(y) = p(y,D).
At this stage, a first remark is that the convexity of Ψα is straightforward

from the convexity of fα. Therefore, a simple yet powerful consequence of en-
larging the variational family is that the optimisation problem now involves
the convex mapping

µ 7→ Ψα(µ) =

∫
Y
fα

(
µk(y)

p(y)

)
p(y)ν(dy) ,

whereas the initial optimisation problem was associated to the mapping

θ 7→
∫
Y fα

(
kθ(y)
p(y)

)
p(y)ν(dy), which is not necessarily convex.

We now move on to Section 3, where we describe the (α,Γ)-descent and
state our main theoretical results.

3. The (α,Γ)-descent.

3.1. An iterative algorithm for optimising Ψα. Throughout the paper we
will assume the following conditions on k, p and ν.

(A1) The density kernel k on T × Y, the function p on Y and the σ-finite
measure ν on (Y,Y) satisfy, for all (θ, y) ∈ T× Y, k(θ, y) > 0, p(y) > 0
and

∫
Y p(y)ν(dy) <∞.

Under (A1), we immediately obtain a lower bound on Ψα.

Lemma 3. Suppose that (A1) holds. Then, for all µ ∈ M1(T), we have

Ψα(µ) > f̃α

(∫
Y
p(y)ν(dy)

)
> −∞ ,

where f̃α is defined on (0,∞) by f̃α(u) = ufα(1/u).
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Proof. Since f̃α(u) = ufα(1/u), we have

Ψα(µ) =

∫
Y
f̃α

(
p(y)

µk(y)

)
µk(y)ν(dy) .

Recalling that fα and hence f̃α, is convex on R>0, Jensen’s inequality applied
to f̃α yields Ψα(µ) > f̃α

(∫
Y p(y)ν(dy)

)
> −∞.

Remark 4. Assumption (A1) can be extended by discarding the assump-
tion that p(y) is positive for all y ∈ Y. As it complicates the expression of the
constant appearing in the bound without increasing dramatically the degree
of generality of the results, we chose to maintain this assumption for the
sake of simplicity.

Thus, if there exists a sequence of probability measures {µn : n ∈ N?}
on (T, T ) such that Ψα(µ1) < ∞ and Ψα(µn) is non-increasing with n,
Lemma 3 guarantees that this sequence converges to a limit in R. We now
focus on constructing such a sequence {µn : n ∈ N?}.

For this purpose, let µ ∈ M1(T). We introduce the one-step transition
of the (α,Γ)-descent which can be described as an expectation step and an
iteration step:

Algorithm 1: Exact (α,Γ)-descent one-step transition

1. Expectation step : bµ,α(θ) =

∫
Y

k(θ, y)f ′α

(
µk(y)

p(y)

)
ν(dy)

2. Iteration step : Iα(µ)(dθ) =
µ(dθ) · Γ(bµ,α(θ) + κ)

µ(Γ(bµ,α + κ))

Given a certain κ ∈ R, a certain function Γ which takes its values in R>0

and an initial measure µ1 ∈ M1(T) such that Ψα(µ1) < ∞, the iterative
sequence of probability measures (µn)n∈N? is then defined by setting

(4) µn+1 = Iα(µn) , n ∈ N? .

A first remark is that under (A1) and for all α ∈ R \ {1}, bµ,α is well-
defined. As for the case α = 1, we will assume in the rest of the paper that
bµ,1(θ) is finite for all µ ∈ M1(T) and θ ∈ T. The iteration µ 7→ Iα(µ) is
thus well-defined if moreover we have

µ(Γ(bµ,α + κ)) <∞ .(5)
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A second remark is that we recover the Infinite-Dimensional Entropic Mir-
ror Descent algorithm applied to the Kullback-Leibler (and more generally
to the α-divergence) objective function by choosing Γ of the form

Γ(v) = e−ηv .

We refer to [31, Appendix A] for some theoretical background on the Infinite-
Dimensional Entropic Mirror Descent. In this light, bµ,α can be understood
as the gradient of Ψα. Algorithm 1 then consists in applying a transform
function Γ to the gradient bµ,α and projecting back onto the space of mea-
sures.

In the rest of the section, we investigate some core properties of the afore-
mentioned sequence of probability measures (µn)n∈N? . We start by estab-
lishing conditions on (Γ, κ) such that the (α,Γ)-descent diminishes Ψα(µn)
at each iteration for all µ1 ∈ M1(T) satisfying Ψα(µ1) <∞.

3.2. Monotonicity. To establish that the (α,Γ)-descent diminishes Ψα(µn)
at each iteration, we first derive a general lower-bound for the difference
Ψα(µ) − Ψα(ζ). Here, (ζ, µ) is a couple of probability measures where ζ is
dominated by µ which we denote by ζ � µ. This first result involves the
following useful quantity

Aα :=

∫
Y
ν(dy)

∫
T
µ(dθ)k(θ, y)f ′α

(
g(θ)µk(y)

p(y)

)
[1− g(θ)] ,(6)

where g is the density of ζ wrt µ, i.e. ζ(dθ) = µ(dθ)g(θ).

Lemma 5. Assume (A1). Then, for all µ, ζ ∈ M1(T) such that ζ � µ
and Ψα(µ) <∞, we have

(7) Aα 6 Ψα(µ)−Ψα(ζ) ,

Moreover, equality holds in (7) if and only if ζ = µ.

Proof. To prove (7), we introduce the intermediate function

hα(ζ, µ) =

∫
Y
ν(dy)p(y)

∫
T

µ(dθ)k(θ, y)

µk(y)
fα

(
g(θ)µk(y)

p(y)

)
.

Then, the convexity of fα combined with Jensen’s inequality implies that

hα(ζ, µ) >
∫
Y
ν(dy)p(y)fα

(∫
T µ(dθ)k(θ, y)g(θ)

p(y)

)
= Ψα(ζ) .(8)
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Next, set uθ,y = g(θ)µk(y)
p(y) and vy = µk(y)

p(y) . Since the function fα is convex, we

have that for all θ ∈ T, for all y ∈ Y, fα(vy) > fα(uθ,y) + f ′α(uθ,y)(vy−uθ,y),
that is

fα

(
µk(y)

p(y)

)
> fα

(
g(θ)µk(y)

p(y)

)
+ f ′α

(
g(θ)µk(y)

p(y)

)
µk(y)

p(y)
[1− g(θ)] .(9)

Now integrating over T with respect to µ(dθ)k(θ,y)
µk(y) and then integrating over

Y with respect to p(y)ν(dy) in (9) yields

Ψα(µ) > hα(ζ, µ) +Aα .(10)

Combining this result with (8) gives (7). The case of equality is obtained
using the strict convexity of fα in (8) and (9) which shows that g is constant
µ-a.e. so that ζ = µ.

We now plan on setting ζ = Iα(µ) in Lemma 5 and obtain that one
iteration of the (α,Γ)-descent yields Ψα ◦ Iα(µ) 6 Ψα(µ). Based on the
lower-bound obtained in Lemma 5, a sufficient condition is to prove that
taking g ∝ Γ(bµ,α+κ) in (6) implies Aα > 0. For this purpose, let us denote
by ∆α an interval of R such that for all θ ∈ T, for all µ ∈ M1(T), bµ,α(θ) +κ
and µ(bµ,α) + κ ∈ ∆α and let us make an assumption on (Γ, κ).

(A2) The function Γ : ∆α → R>0 is decreasing, continuously differentiable and
satisfies the inequality

[(α− 1)(v − κ) + 1] (log Γ)′(v) + 1 > 0, v ∈ ∆α .

We now state our first main theorem.

Theorem 1. Assume (A1) and (A2). Let µ ∈ M1(T) be such that (5)
holds and Ψα(µ) <∞. Then, the two following assertions hold.

(i) We have Ψα ◦ Iα(µ) 6 Ψα(µ).
(ii) We have Ψα ◦ Iα(µ) = Ψα(µ) if and only if µ = Iα(µ).

Proof. To prove (i), we set g ∝ Γ(bµ,α +κ) in (6) and we will show that
Aα > 0. Then, the proof is concluded by setting ζ = Iα(µ) in Lemma 5 as

(11) Ψα ◦ Iα(µ) 6 Ψα(µ)−Aα 6 Ψα(µ) .

We study the cases α = 1 and α ∈ R \ {1} separately.
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(a) Case α = 1. In this case f ′1(u) = log u and we have

A1 =

∫
Y
ν(dy)

∫
T
µ(dθ)k(θ, y) log

(
g(θ)µk(y)

p(y)

)
[1− g(θ)]

=

∫
Y
ν(dy)

∫
T
µ(dθ)k(θ, y)

[
log g(θ) + f ′1

(
µk(y)

p(y)

)]
[1− g(θ)]

=

∫
T
µ(dθ)

[
log g(θ) +

∫
Y
k(θ, y)f ′1

(
µk(y)

p(y)

)
ν(dy)

]
[1− g(θ)]

=

∫
T
µ(dθ) [log g(θ) + bµ,1(θ) + κ] [1− g(θ)] .

where we used that µ[κ(1 − g)] = 0 in the last equality. Setting Γ̃(v) =
Γ(v)/µ(Γ(bµ,1 + κ)) for all v ∈ ∆1, we have g = Γ̃ ◦ (bµ,1 + κ). Let us thus
consider the probability space (T, T , µ) and let V be the random variable
V (θ) = bµ,1(θ) + κ. Then, E[1− Γ̃(V )] = 0 and we can write

A1 = E[(log Γ̃(V ) + V )(1− Γ̃(V ))] = Cov(log Γ̃(V ) + V, 1− Γ̃(V )) .

Under (A2) with α = 1, v 7→ log Γ̃(v) + v and v 7→ 1 − Γ̃(v) are increasing
on ∆1 which implies A1 > 0.

(b) Case α ∈ R \ {1}. In this case f ′α(u) = 1
α−1 [uα−1 − 1] and we have

Aα =

∫
Y
ν(dy)

∫
T
µ(dθ)k(θ, y)

1

α− 1

[(
g(θ)µk(y)

p(y)

)α−1

− 1

]
[1− g(θ)]

=

∫
Y
ν(dy)

∫
T
µ(dθ)k(θ, y)

1

α− 1

(
µk(y)

p(y)

)α−1

g(θ)α−1 [1− g(θ)]

=

∫
T
µ(dθ)

[
bµ,α(θ) +

1

α− 1

]
g(θ)α−1 [1− g(θ)] .

Again, setting Γ̃(v) = Γ(v)/µ(Γ(bµ,α + κ)) for all v ∈ ∆α, we have g =
Γ̃ ◦ (bµ,α + κ). Let us consider the probability space (T, T , µ) and let V be
the random variable V (θ) = bµ,α(θ) +κ. Then, we have E[1− Γ̃(V )] = 0 and
setting κ′ = κ− 1

α−1 we can write

Aα = E[(V − κ′)Γ̃α−1(V )(1− Γ̃(V ))] = Cov((V − κ′)Γ̃α−1(V ), 1− Γ̃(V )) .

Under (A2) with α ∈ R \ {1}, v 7→ (v − κ′)Γ̃α−1(v) and v 7→ 1 − Γ̃(v) are
increasing on ∆α which implies Aα > 0.

Let us now show (ii). The if part is obvious. As for the only if part,
Ψα ◦ Iα(µ) = Ψα(µ) combined with (11) yields

Ψα ◦ Iα(µ) = Ψα(µ)−Aα ,
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which is the case of equality in Lemma 5. Therefore, Iα(µ) = µ.

Possible choices for (Γ, κ). At this stage, we have established conditions
on (Γ, κ) such that Ψα ◦ Iα(µ) 6 Ψα(µ) and identified the case of equality.
Notice in particular that the inequality in (A2) is free from the parameter
κ when α = 1, which implies that the function Γ(v) = e−ηv satisfies (A2)
for all η ∈ (0, 1]. As a consequence, the case of the Entropic Mirror Descent
with the Kullback-Leibler divergence as objective function is included in this
framework.

One can also readily check that Γ(v) = [(α− 1) v+1]η/(1−α) satisfies (A2)
for all α ∈ R \ {1}, for all κ such that (α − 1)κ > 0 and for all η ∈ (0, 1].
We will refer to this particular choice of Γ as the Power descent thereafter.
These two examples are summarized in Table 1 below.

Table 1
Examples of allowed (Γ, κ) in the (α,Γ)-descent according to Theorem 1.

Divergence considered Possible choices for (Γ, κ)

Forward KL (α = 1) Γ(v) = e−ηv, η ∈ (0, 1] any κ

α-divergence with α ∈ R \ {1} Γ(v) = [(α− 1) v + 1]
η

1−α , η ∈ (0, 1] (α− 1)κ > 0

Improving upon Lemma 5. In the following Lemma, we derive an
explicit lower-bound for Ψα(µ)−Ψα ◦Iα(µ) in terms of the variance of bµ,α.
Let us thus consider the probability space (T, T , µ) and denote by Varµ the
associated variance operator.

Lemma 6. Assume (A1) and (A2). Let µ ∈ M1(T) be such that (5) holds
and Ψα(µ) <∞. Then,

Lα,1
2

Varµ (bµ,α) 6 Ψα(µ)−Ψα ◦ Iα(µ) ,(12)

where

Lα,1 := inf
v∈∆α

{
[(α− 1)(v − κ) + 1] (log Γ)′(v) + 1

}
× inf
v∈∆α

−Γ′(v) .(13)

The proof of Lemma 6 is deferred to Appendix A.1.

Lemma 6 can be interpreted in the following way: provided that Lα,1 > 0,
(12) states that the case of equality is reached if and only if the variance of
the gradient bµ,α equals zero. Such a result, which holds for any transform
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function Γ satisfying (A2), quantifies the improvement after one step of the
(α,Γ)-descent.

Interestingly, monotonicity properties akin to Lemma 6 have previously
been derived under stronger smoothness assumptions in the context of Pro-
jected Gradient Descent steps. For example, in the particular case where the
objective function f is assumed to be β-smooth on R, for all u ∈ R it holds
(see for example [39, Equation 3.5]) that

1

β
‖∇f(u)‖2 6 f(u)− f

(
u− 1

β
∇f(u)

)
.

This result is then used to obtain improved convergence rates compared to
regular Projected Gradient Descent. Consequently, we are next interested
in proving a rate of convergence for the Exact (α,Γ)-descent by leveraging
Lemma 6.

3.3. Convergence. Let µ1 ∈ M1(T). We want to study the limiting be-
havior of the Exact (α,Γ)-descent for the iterative sequence of probability
measure (µn)n∈N? defined by (4). To do so, we first introduce the two fol-
lowing useful quantities

L−1
α,2 := inf

v∈∆α

(− log Γ)′(v) ,(14)

L−1
α,3 := inf

v∈∆α

Γ(v) ,(15)

and we define M1,µ1(T) as the set of probability measures dominated by µ1.
Next, we strengthen the assumptions on Γ as follows.

(A3) The function Γ : ∆α → R>0 is L-smooth and the function − log Γ is
concave increasing.

We are now able to derive our second main result.

Theorem 2. Assume (A1), (A2) and (A3). Further assume that Lα,1,
Lα,2 > 0 and that 0 < infv∈∆α Γ(v) 6 supv∈∆α

Γ(v) < ∞. Moreover, let
µ1 ∈ M1(T) be such that Ψα(µ1) <∞. Then, the following assertions hold.

(i) The sequence (µn)n∈N? defined by (4) is well-defined and the sequence
(Ψα(µn))n∈N? is non-increasing.

(ii) For all N ∈ N?, we have

1

N

N∑
n=1

Ψα(µn)−Ψα(µ?) 6
Lα,2
N

[
KL(µ?||µ1) + L

Lα,3
Lα,1

δ1

]
,(16)
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where µ? is such that Ψα(µ?) = infζ∈M1,µ1 (T) Ψα(ζ) and where we have

defined δ1 = Ψα(µ1)−Ψα(µ?) and KL(µ?||µ1) =
∫
T log

(
dµ?

dµ1

)
dµ?.

Proof. We prove the assertions successively.

(i) The proof of (i) simply consists in verifying that we can apply Theo-
rem 1. For all µ ∈ M1(T), (5) holds as we have

µ(Γ(bµ,α + κ)) 6 µ

(
sup
v∈∆α

Γ(v)

)
<∞,

and since at each step n ∈ N?, Theorem 1 combined with Ψα(µn) <∞ im-
plies that Ψα(µn+1) 6 Ψα(µn) <∞, we obtain by induction that (Ψα(µn))n∈N?

is non-increasing.
(ii) For the sake of readability, we only treat the case κ = 0 in the proof of

(ii). Note that the case κ 6= 0 unfolds similarly by replacing bµ,α by bµ,α + κ
everywhere in the proof below. Let n ∈ N? and set δn = Ψα(µn) − Ψα(µ?).
We first show that

δn 6 Lα,2

[∫
T

log

(
dµn+1

dµn

)
dµ? +

L

2
Varµn(bµn,α)Lα,3

]
.(17)

The convexity of fα implies that

δn 6
∫
T
bµn,α(dµn − dµ?) =

∫
T

(µn(bµn,α)− bµn,α)dµ? .(18)

In addition, the concavity of − log Γ implies that for all u, v ∈ ∆α,

− log Γ(u) 6 − log Γ(v) + (− log Γ)′(v)(u− v) ,

i.e
(− log Γ)′(v)(v − u) 6 log Γ(u)− log Γ(v) .

Since by assumption − log Γ is increasing, (− log Γ)′(v) > 0 and we deduce

v − u 6
log Γ(u)− log Γ(v)

(− log Γ)′(v)
.(19)

We can apply (19) with u = bµn,α(θ) and v = µn(bµn,α) which yields

µn(bµn,α)− bµn,α(θ) 6
log Γ(bµn,α(θ))− log Γ(µn(bµn,α))

(− log Γ)′(µn(bµn,α))
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Now integrating with respect to dµ?, we obtain

δn 6
1

(− log Γ)′(µn(bµn,α))

∫
T

[log Γ(bµn,α)− log Γ(µn(bµn,α))] dµ? .

By definition of µ?, we have that δn > 0 and combining with the fact that
(− log Γ)′(µn(bµn,α)) > 0, we can deduce∫

T
[log Γ(bµn,α)− log Γ(µn(bµn,α))] dµ? > 0 .

Consequently, we obtain

δn 6 Lα,2

∫
T

[log Γ(bµn,α)− log Γ(µn(bµn,α))] dµ?

(20)

= Lα,2

∫
T

[
log

(
dµn+1

dµn

)
+ log µn(Γ(bµn,α))− log Γ(µn(bµn,α))

]
dµ?

= Lα,2

[∫
T

log

(
dµn+1

dµn

)
dµ? + logµn(Γ(bµn,α))− log Γ(µn(bµn,α))

]
.

Next, we show that

logµn(Γ(bµn,α))− log Γ(µn(bµn,α)) 6
L

2
Varµn(bµn,α)Lα,3 .

By assumption Γ is L-smooth on ∆α, thus for all θ ∈ T and for all n ∈ N?,

Γ(bµn,α(θ)) 6 Γ(µn(bµn,α)) + Γ′(µn(bµn,α))(bµn,α(θ)− µn(bµn,α))

+
L

2
(bµn,α(θ)− µn(bµn,α))2

which in turn implies

µn(Γ(bµn,α)) 6 Γ(µn(bµn,α)) +
L

2
Varµn (bµn,α) .

Finally, we obtain

logµn(Γ(bµn,α)) 6 log Γ(µn(bµn,α)) + log

(
1 +

L

2

Varµn(bµn,α)

Γ(µn(bµn,α))

)
.

Using that log(1 +u) 6 u when u > 0 and that 1/Γ is increasing, we deduce

logµn(Γ(bµn,α)) 6 log Γ(µn(bµn,α)) +
L

2
Varµn (bµn,α)Lα,3 .
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which combined with (20) implies (17). To conclude, we apply Lemma 6 to

g = dµn+1

dµn
and combining with (17), we obtain

δn 6 Lα,2

[∫
T

log

(
dµn+1

dµn

)
dµ? +

LLα,3
Lα,1

(δn − δn+1)

]
,

where by assumption Lα,1, Lα,2 and Lα,3 > 0. As the r.h.s involves two
telescopic sums, we deduce

1

N

N∑
n=1

Ψα(µn)−Ψα(µ?) 6
Lα,2
N

[
KL(µ?||µ1)−KL(µ?||µN+1)

+L
Lα,3
Lα,1

(δ1 − δN+1)

]
and we recover (16) using that KL(µ?||µN+1) > 0 and that δN+1 > 0.

Remark 7. Let us comment on (16). For all N ∈ N?, define µ̄N =
1
N

∑N
n=1 µn. Then, the convexity of the mapping µ 7→ Ψα(µ) yields

Ψα (µ̄N )−Ψα(µ?) 6
Lα,2
N

[
KL(µ?||µ1) + L

Lα,3
Lα,1

δ1

]
.

However, since (Ψα(µn))n∈N? is non-increasing under the assumptions of
Theorem 2 we also have

Ψα(µN )−Ψα(µ?) 6
Lα,2
N

[
KL(µ?||µ1) + L

Lα,3
Lα,1

δ1

]
,

which illustrates the fact that µn is improved at each step and that we shall
use µN directly instead of µ̄N .

In the next Theorem, we state several practical examples of couples (Γ, κ)
which satisfy the assumptions from Theorem 2.

Theorem 3. Assume (A1). Define |b|∞,α := supθ∈T,µ∈M1(T) |bµ,α(θ)|
and assume that |b|∞,α <∞. Let (Γ, κ) belong to any of the following cases.

(i) Kullback-Leibler divergence (α = 1): Γ(v) = e−ηv, η ∈ (0, 1) and κ is
any real number (Entropic Mirror Descent);

(ii) Reverse Kullback-Leibler (α = 0) and α-Divergence with α ∈ R\{0, 1}:
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(a) Γ(v) = e−ηv, η ∈ (0, 1
|α−1||b|∞,α+1) and κ is any real number (En-

tropic Mirror Descent);

(b) Γ(v) = [(α− 1) v + 1]
η

1−α , η ∈ (0, 1], α > 1 and κ > 0 (Power
Descent);

Let µ1 ∈ M1(T) be such that Ψα(µ1) <∞. Then, the sequence (µn)n∈N? de-
fined by (4) is well-defined and the sequence (Ψα(µn))n∈N? is non-increasing
with a convergence rate characterized by (16).

The proof of Theorem 3 can be found in Appendix A.2.

Remark 8. The assumption |b|∞,α <∞ can be discarded in Theorem 3
as |b|α := supn∈N?,θ∈T |bµn,α(θ)| < ∞. Indeed, using that for all α ∈ R and
for all u ∈ R>0, uf ′α(u) = αfα(u)+(u−1), we can write that for all n ∈ N?,

µn(|bµn,α|) 6 |α|
∫
Y

∣∣∣∣fα(µnk(y)

p(y)

)∣∣∣∣ p(y)ν(dy) +

∫
Y
p(y)ν(dy) + 1 .

Under (A1), we have
∫
Y p(y)ν(dy) <∞, which settles the case α = 0. As for

the case α ∈ R \ {0}, we obtain from Lemma 3 that the r.h.s is finite if and
only if Ψα(µn) is finite, which is implied by the assumption Ψα(µ1) <∞ in
Theorem 3.

As a consequence, we can redefine ∆α as an interval of R which contains

{bµn,α(θ) + κ, µn(bµn,α) + κ : n ∈ N?, θ ∈ T} ,

that is, we can take

∆α =


[−|b|1 + κ, |b|1 + κ] if α = 1,

[ 1
1−α + κ, |b|α + κ], if α > 1,

[−|b|α + κ, 1
1−α + κ], otherwise.

The case of the Power descent for α < 1 is trickier. We introduce the
following additive set of assumptions

(A4) (i) T is a compact metric space and T is the associated Borel σ-field;

(ii) for all y ∈ Y, θ 7→ k(θ, y) is continuous;

(iii) we have

∫
Y

sup
θ∈T

k(θ, y)× sup
θ′∈T

(
k(θ′, y)

p(y)

)α−1

ν(dy) <∞.

Here, condition (A4)-(iii) implies that Ψα(µ) and bµ,α(θ) are uniformly
bounded with respect to µ and θ, which is rather weak condition under
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(A4)-(i) since we consider a supremum taken over a compact set (and T will
always be chosen as such in practice). We then have the following theorem,
which states that the possible weak limits of (µn)n∈N? correspond to the
global infimum of Ψα.

Theorem 4. Assume (A1) and (A4). Let α < 1, κ 6 0 and set Γ(v) =
[(α− 1) v + 1]η/(1−α) for all v ∈ ∆α. Then, for all ζ ∈ M1(T), any η > 0
satisfies (5) and Ψα(ζ) <∞.

Let η ∈ (0, 1]. Further assume that there exists µ1, µ
? ∈ M1(T) such that

the (well-defined) sequence (µn)n∈N? defined by (4) weakly converges to µ?

as n→∞. Then the following assertions hold

(i) (Ψα(µn))n∈N? is non-increasing,
(ii) µ? is a fixed point of Iα,

(iii) Ψα(µ?) = infζ∈M1,µ1 (T) Ψα(ζ).

The proof of Theorem 4 is deferred to Appendix A.3. Intuitively, we ex-
pect µ? to be a fixed point of Iα based on Theorem 1. The core difficulty of
the proof is then to prove Assertion (iii) and to do so, we proceed by con-
tradiction: we assume there exists µ̄ ∈ M1,µ1(T) such that Ψα(µ?) > Ψα(µ̄)
and we contradict the fact that (µn)n∈N? converges to a fixed point.

The impact of Theorem 3 and Theorem 4 is twofold:

1. We proved an O(1/N) convergence rate for the Entropic Mirror De-
scent under minimal assumptions. This is an improvement compared to stan-
dard Mirror Descent results, which under similar assumptions only provide
an O(1/

√
N) convergence rate and assume a decaying learning rate (see

[39, Theorem 4.2.]). Furthermore, while accelerated versions of the Mirror
Descent (e.g Mirror Prox, [39, Theorem 4.4.]) also yield an O(1/N) con-
vergence rate, they require the objective function to be sufficiently smooth,
an assumption that does not hold for many standard kernel families (e.g.
Gaussian) for the α-divergence family.

2. We showed that we are able to go beyond the typical Entropic Mirror
Descent framework by introducing the Power Descent for which Γ(v) =

[(α− 1) v + 1]
η

1−α . In particular, we obtain that (Ψα(µn))n∈N? decreases for
any η ∈ (0, 1]. When α < 1, we have the convergence towards the optimal
value Ψα(µ?) and when α > 1, we obtain an O(1/N) convergence rate.

The results we obtained are summarized in Table 2 below.
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Table 2
Examples of allowed (Γ, κ) in the (α,Γ)-descent according to Theorem 3 and Theorem 4.

Divergence considered Possible choice of (Γ, κ)

Forward KL (α = 1) Γ(v) = e−ηv, η ∈ (0, 1) any κ

α-divergence with α ∈ R \ {1} Γ(v) = e−ηv, η ∈ (0, 1
|α−1||b|∞,α+1

) any κ

α > 1, Γ(v) = [(α− 1) v + 1]
η

1−α , η ∈ (0, 1] κ > 0

α < 1, Γ(v) = [(α− 1) v + 1]
η

1−α , η ∈ (0, 1] κ 6 0

4. Stochastic (α,Γ)-descent. As Algorithm 1 typically involves an
intractable integral in the Expectation step, we now turn to a stochastic
version of this algorithm. Let M ∈ N? and let µ ∈ M1(T).

Algorithm 2: Stochastic (α,Γ)-descent one-step transition

1. Sampling step : Draw independently Y1, ..., YM ∼ µk

2. Expectation step : b̂µ,α,M (θ) =
1

M

M∑
m=1

k(θ, Ym)

µk(Ym)
f ′α

(
µk(Ym)

p(Ym)

)
3. Iteration step : Îα,M (µ)(dθ) =

µ(dθ) · Γ(b̂µ,α,M (θ) + κ)

µ(Γ(b̂µ,α,M + κ))

Algorithm 2 uses µk as a sampler instead of k(θ, ·). Indeed, as our al-
gorithm optimises over µ, sampling with respect to µk gives preference to
the interesting regions of the parameter space. Furthermore, picking a sam-
pler that is independent from θ is less costly from a computational point of
view. Given µ1 ∈ M1(T), the stochastic version of the ideal iterative scheme
defined by (4) is then given by

(21) µn+1 = Îα,M (µn) , n ∈ N? .

Let us now focus on the particular case of the Power Descent and the En-
tropic Mirror Descent.

Power Descent. Consider i.i.d random variables Y1, Y2, ... with common
density µk w.r.t ν, defined on the same probability space (Ω,F ,P) and de-
note by E the associated expectation operator. We are then able to establish
the following result.

Proposition 9. Assume (A1). Let α ∈ R \ {1}, η > 0, κ be such that
(α − 1)κ > 0 and set Γ(v) = [(α− 1) v + 1]η/(1−α) for all v ∈ ∆α. Let
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µ ∈ M1(T) be such that Ψα(µ) <∞, (5) holds and

(22)

∫
T
µ(dθ)E

{k(θ, Y1)

µk(Y1)

(
µk(Y1)

p(Y1)

)α−1

+ (α− 1)κ

} η
1−α
 <∞ .

Then,

lim
M→∞

∥∥∥Îα,M (µ)− Iα(µ)
∥∥∥
TV

= 0 , P− a.s.

The proof is deferred to Appendix B.4. The crux of the proof consists
in applying a Dominated Convergence Theorem to non-negative real-valued
(T ⊗ F ,B(R>0))-measurable functions, which requires to consider a Gener-
alized version of the Dominated Convergence Theorem (Lemma 17) and an
Integrated Law of Large Numbers (Lemma 18).

Entropic Mirror Descent. In the particular case of the Entropic Mirror
descent, we obtain a stronger result. Indeed, it can be established that Al-
gorithm 2 converges at an O(1/

√
N) rate in expectation. Denote by (Ω,F ,P)

the underlying probability space.

Proposition 10. Assume (A1). Let η > 0 and set Γ(v) = e−ηv for all
v ∈ ∆α. Assume that for any N ∈ N?, θ ∈ T,

b̂µN ,α,M (θ) 6 L̃N such that E[L̃2
N ] 6 σ2.(23)

Then, for any N ∈ N?, taking η := 1
σ

√
2KL(µ?||µ1)

N yields

E

[
Ψα

(
1

N

N∑
n=1

µn

)
−Ψα(µ?)

]
6 σ

√
2KL(µ?||µ1)

N
.

This result can be proven by adapting [39, Theorem 6.1.] to the Infinite-
Dimensional case in the particular case of the negative entropy mirror map.

Mixture Models. We now address the case where µ1 corresponds to a
weighted sum of Dirac measures. This case is of particular interest to us since
as we shall see, for any kernel K of our choice, the (α,Γ)-descent procedure
simplifies and provides an update formula for the mixture weights of the
corresponding mixture model µ1K.

Let J ∈ N? and let θ1, ..., θJ ∈ T be fixed. We start by introducing the
simplex of RJ

SJ =

λ = (λ1, ..., λJ) ∈ RJ : ∀j ∈ {1, ..., J} , λj > 0 and

J∑
j=1

λj = 1

 ,
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and for all λ ∈ SJ , we define µλ ∈ M1(T) by µλ =
∑J

j=1 λjδθj . Then,

µλk(y) =
∑J

j=1 λjk(θj , y) corresponds to a mixture model and if we let
(µn)n∈N? be defined by{

µ1 = µλ ,

µn+1 = Îα,M (µn) , n ∈ N? ,

an immediate induction yields that for every n ∈ N?, µn can be expressed
as µn =

∑J
j=1 λj,nδθj where λn = (λ1,n, . . . , λJ,n) ∈ SJ satisfies the initiali-

sation λ1 = λ and the update formula: for all n ∈ N? and all j ∈ {1, . . . , J},

λj,n+1 =
λj,nΓ(b̂µn,α,M (θj) + κ)∑J
i=1 λi,nΓ(b̂µn,α,M (θi) + κ)

,(24)

with Y1,n, ..., YM,n drawn independently from µnk and

b̂µn,α,M (θj) =
1

M

M∑
m=1

k(θj , Ym,n)

µnk(Ym,n)
f ′α

(
µnk(Ym,n)

p(Ym,n)

)
.

In this particular framework, most of the computing effort at each step
lies within the computation of the vector (b̂µn,α,M (θj))16j6J . As it turns out,
these computations can also be used to obtain an estimate of the Evidence
Lower Bound (resp. the Renyi-Bound [19]) when p(y) = p(y,D). Indeed,
these two quantities, which assess the convergence of the algorithm and
provide a bound on the log-likelihood (see [19, Theorem 1]) are defined the
following way : for any variational density q, we have

L1(q; D) :=

∫
Y

log

(
p(y,D)

q(y)

)
q(y)ν(dy)

Lα(q; D) :=
1

1− α
log

(∫
Y

(
p(y,D)

q(y)

)1−α
q(y)ν(dy)

)
,

and we see that in our case, we can write

L1(µnk,D) = −
J∑
j=1

λj,nbµn,α(θj)(25)

Lα(µnk,D) =
1

1− α
log

(α− 1)

J∑
j=1

λj,nbµn,α(θj) + 1

 .
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In addition, if there is a need for very large J , one can approximate the sum-
mation appearing in µλk using subsampling. Finally, we obtain Algorithm
3 below.

Algorithm 3: Mixture Stochastic (α,Γ)-descent

Input: p: measurable positive function, K: Markov transition kernel,
M : number of samples, ΘJ = {θ1, ..., θJ} ⊂ T: parameter set.

Output: Optimised weights λ.

Set λ = [λ1,1, ..., λJ,1].
while the bound has not converged do

Sampling step : Draw independently M samples Y1, ..., YM from µλk.
Expectation step : Compute Bλ = (bj)16j6J where

bj =
1

M

M∑
m=1

k(θj , Ym)

µλk(Ym)
f ′α

(
µλk(Ym)

p(Ym)

)
(26)

and deduce W λ = (λjΓ(bj + κ))16j6J and wλ =
∑J

j=1 λjΓ(bj + κ).
Iteration step : Set

λ ← 1

wλ
W λ

end

Remark 11. Note that we recover the mixture weights update rules from
the Population Monte Carlo algorithm applied to reverse Kullback-Leibler
minimisation [40] by considering the Power descent with α = 0 and η = 1.
We have thus embedded this special case into a more general framework.

To summarise, we have several levels of generality in our algorithm: we
are free to choose the kernel K, the α-divergence being optimised and we
have identified couples (Γ, κ) which ensure the convergence of our algorithm.

An important remark is that Algorithm 3 does not require any informa-
tion on how the {θ1, ..., θJ} have been obtained in order to infer the optimal
weights as it draws information from samples that are generated from µλk.
Since the algorithm leaves {θ1, ..., θJ} unchanged throughout the optimisa-
tion of the mixture weights (we call it an Exploitation Step), a natural idea
is to combine Algorithm 3 with an Exploration step that modifies the pa-
rameter set, which gives Algorithm 4 below.
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Algorithm 4: Complete Exploitation-Exploration Algorithm

Input: p: measurable positive function, α: α-divergence parameter,
(Γ, κ): chosen as per Table 1, q0: initial sampler, K: Markov
transition kernel, (Mt)t: number of samples, (Jt)t: dimension of
parameter set.

Output: Optimised weights λ and parameter set Θ.
Draw θ1,0, ..., θJ0,0 from q0. Set t = 0.
while not converged do

Exploitation step : Set Θ = {θ1,t, ..., θJt,t}. Perform Mixture
Stochastic (α,Γ)-descent and obtain λ.
Exploration step : Perform any exploration step of our choice and
obtain θ1,t+1, ..., θJt+1,t+1. Set t = t+ 1.

end

Note that this algorithm is very general, as any Exploration Step can be
envisioned. We now move on to numerical experiments in the next section.

5. Numerical experiments. In this part, we want to assess how Al-
gorithm 4 performs on both toy and real-world examples. To do so, we first
need to specify the kernel K and an algorithm for the Exploration Step.

Kernel. Let Kh be a Gaussian transition kernel with bandwidth h and
denote by kh its associated kernel density. Given J ∈ N? and θ1, ..., θJ ∈ T,
we then work within the approximating familyy 7→ µλkh(y) =

J∑
j=1

λjkh(y − θj) : λ ∈ SJ

 .

Exploration Step. At time t, we resample among {θ1,t, ..., θJt,t} according to
the optimised mixture weights λ. The obtained sample

{
θ1,t+1, ..., θJt+1,t+1

}
is then perturbed stochastically using the Gaussian transition kernel Kht ,
which gives us our new parameter set. The hyperparameter ht is adjusted

according to the number of particles so that ht ∝ J
−1/(4+d)
t , where d is the

dimension of the latent space (the optimal rate in nonparametric estimation
when the function is at least 2-times continuously differentiable and the ker-
nel has order 2 [41]).

Next, we are interested in the choice of α. The hyperparameter α allows
us to choose between mass-covering divergences which tend to cover all the
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modes (α� 0) and mode-seeking divergences that are attracted to the mode
with the largest probability mass (α� 1), the case α ∈ (0, 1) corresponding
to a mix of the two worlds (see Appendix C.1 for additional details on how
these properties are expressed in the (α,Γ)-descent).

Depending on the learning task, the optimal α may differ and understand-
ing how to select the value of α is still an area of ongoing research. However,
the case α < 1 presents the advantage that b̂µ,α,M is always finite. Indeed,
for all α ∈ R \ {1}, we have

bµ,α(θ) =
1

α− 1

∫
Y

k(θ, y)

µk(y)

(
p(y,D)

µk(y)

)1−α
µk(y)ν(dy)− 1

α− 1
,

and as the dimension grows, the conditions of support are often not met
in practice, meaning that there exists A ∈ Y such that p(A,D) = 0 and
µk(A) > 0. This implies that whenever α > 1 we might have that b̂µ,α,M (θ) =
∞ and that the α-divergence (or equivalently the Renyi-bound as defined in
(25)) is infinite, which is the sort of behavior we would like to avoid. Thus, we
restrict ourselves to the case α 6 1 in the following numerical experiments.
Note that the limiting case α = 1, corresponding to the commonly-used
Forward Kullback-Leibler objective function, also suffers from this poor be-
havior, but is still considered in the experiments as a reference.

We now move on to our first example where we investigate the impact of
different choices of Γ.

5.1. Toy Example. The target p is a mixture of two d-dimensional Gaus-
sian densities multiplied by a positive constant Z such that

p(y) = Z × [0.5N (y;−sud, Id) + 0.5N (y; sud, Id)] ,

where ud is the d-dimensional vector whose coordinates are all equal to 1,
s = 2 and Z = 2. (Jt)t and (Mt) are kept constant equal to J = M = 100,
κ = 0 and the initial weights are set to be [1/J, ..., 1/J ]. The number of inner
iterations in the (α,Γ)-descent is set to N = 10 and for all n = 1...N , we
use the adaptive learning rate ηn = η0/

√
n with η0 = 0.5. We set the initial

sampler to be a centered normal distribution with covariance matrix 5Id,
where Id is the identity matrix. We compare three versions of the (α,Γ)-
algorithm:

� 0.5-Mirror descent : Γ(v) = e−ηv with α = 0.5,
� 0.5-Power descent : Γ(v) = [(α− 1) v + 1]η/(1−α) with α = 0.5,
� 1-Mirror descent : Γ(v) = e−ηv with α = 1.
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For each of them, we run T = 20 iterations of Algorithm 4 and we replicate
the experiment 100 times for d = {8, 16, 32}.

The results for the 0.5-Mirror and 0.5-Power descent are displayed on
Figure 1. A first remark is that we are able to observe the monotonicity
property from Theorem 2 (the Renyi-Bound varies like Ψα(µn)α−1) for the
0.5-Power descent, the jumps in the Renyi-Bound corresponding to an up-
date of the parameter set. Furthermore, we see that the 0.5-Mirror descent
(which would have been the default choice based on the existing optimisation
literature) converges more slowly than the 0.5-Power descent in dimension
8. An even more striking aspect however is that, as the dimension grows,
the 0.5-Mirror descent is unable to learn and the algorithm diverges.

Figure 1: Plotted is the average Renyi-Bound for the 0.5-Power and 0.5-
Mirror descent in dimension d = {8, 16, 32} computed over 100 replicates
with η0 = 0.5.

These two different behaviors for the Power and Mirror descent can be
explained by rewriting the update formulas for any α < 1 under the form

Mirror : λj,n ∝ exp

(
η

1− α
(
(α− 1)bµλn ,α(θj) + (α− 1)κ

))
Power : λj,n ∝ exp

(
η

1− α
log
(
(α− 1)bµλn ,α(θj) + (α− 1)κ

))
.

In the Power case, an extra log transformation has been added, which allows
to discriminate between small values of bµλn ,α. Since the values of bµλn ,α
tend to get smaller as the dimension grows, the impact of adding an ex-
tra log transformation becomes increasingly visible: the Mirror descent be-
comes more and more unable to differentiate between the different particles
{θ1, ..., θJ} and is thus unable to learn.

Finally, we compare how the 0.5-Power and 1-Mirror descent perform at
approximating the log-likelihood in dimension d = {8, 16, 32}. The results
are plotted on Figure 2. Again, the 0.5-Power descent comes across as faster
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and more stable compared to the 1-Mirror descent as the dimension grows.
Furthermore, it also does not fail in dimension 32, unlike the 1-Mirror de-
scent.

Figure 2: Plotted is the average Log-likelihood for 0.5-Power and 1-Mirror
descent in dimension d = {8, 16, 32} computed over 100 replicates with
η0 = 0.5.

Consequently, we see on this simple yet illustrative example that the
Power descent is a suitable alternative to the Mirror descent as the dimen-
sion grows.

We are next interested in seeing how the (α,Γ)-descent performs on a
real-data example. Based on the numerical results obtained so far, we rule
out the Mirror descent for α 6 1 and we focus on the Power descent in our
second example.

5.2. Bayesian Logistic Regression. We consider Bayesian Logistic Re-
gression for binary classification using the same setting as [42], which as-
signs the regression weights w with a Gaussian prior p0(w|β) = N (w, β−1)
and p0(β) = Gamma(β, 1, 0.01). The inference is applied on the posterior
density p(y|D) with y = [w, log β].

We test our algorithm for the Covertype1 dataset (581, 012 data points
and 54 features). Computing p(y,D) constitutes the major computation
bottleneck here, since p(y,D) = p0(y)

∏
i p(xi|y) with a very large number

of data points. We can conveniently address this problem by approximating
p(y,D) with subsampled mini-batches. We adopt this strategy here and
consider mini-batches of size 100.

We set α = 0.5, N = 1, T = 500, κ = 0, J0 = M0 = 20 and Jt+1 =
Mt+1 = Jt+ 1 for t = 1...T in Algorithm 4. The initial weights in the (α,Γ)-
descent are set to λinit,t = [1/Jt, ..., 1/Jt] and the learning rate is set to
η0 = 0.05.

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html
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One thing that is very specific to the Exploration step that we used to
run our experiments (and sampling-based Exploration steps algorithms in
general) is that the particles {θ1,t, ..., θJt,t} are sampled from a known dis-
tribution at each Exploration step. This means that we are able to infer
information on {θ1,t, ..., θJt,t} using Importance Sampling (IS) weights. We
thus compare the Power (α,Γ)-descent with a state-of-the-art Adaptive Im-
portance Sampling-based (AIS) algorithm (see for example [43, 44, 45, 46]).

We initialise {θ1,0, ..., θJ0,0} by sampling J0 points from the prior p0(y) =
p0(β)p0(w|β) and set q0 = p0. Given qt at time t, we draw Jt i.i.d samples
(θj,t)16j6Jt

from qt and we define qt+1(y) =
∑Jt

j=1 λj,tkht(y − θj,t) where

(27) λj,t ∝

{
p(θj,t,D)
qt(θj,t)

(AIS) ,

Γ(b̂µλinit,t ,α,M (θj,t) + κ) (Power) .

Note that these two algorithms are computationally equivalent. Indeed, we
choose Jt = Mt and N = 1, that is we use an average of one sample from
each k(θj,t, ·) to infer information on the relevance of the {θ1,t, ..., θJt,t} with
respect to one another. Comparatively, the AIS algorithm uses information
directly available by computing the IS weights for {θ1,t, ..., θJ,t}.

We replicate the experiments 100 times. The Accuracy and Log-likelihood
averaged over the 100 trials for both algorithms are displayed on Figure 3
and we see that the 0.5-Power descent outperforms the AIS algorithm.

Figure 3: Plotted are the average Accuracy and Log-likelihood computed
over 100 replicates for Bayesian Logistic Regression on the Covertype dataset
for the 0.5-Power descent and the AIS algorithm.

6. Conclusion and perspectives. The (α,Γ)-descent is a novel gradient-
based algorithm which operates on measures and leads at each step to a
systematic decrease in the α-divergence for a rich family of values of Γ.
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Our framework allows us to recover the Entropic MD with improved con-
vergence rates and to introduce an alternative to the Entropic MD called
the Power descent, which converges to an optimum with known convergence
rates when α > 1. Furthermore, our procedure provides a simple method
to optimise the mixture weights of any given mixture model and can be
applied without any information on the underlying distribution of the varia-
tional parameters. This renders our algorithm compatible with many choices
of parameters updates and applicable to a wide range of Machine Learning
tasks. We demonstrate empirically in the mixture case the benefit of going
beyond the Entropic MD framework by using the Power descent algorithm
instead, which is a more scalable alternative.

To conclude, we state several directions to extend our work on both a
theoretical and a practical level.

Convergence rate. An interesting area of research consists in proving a
convergence rate for a general Γ function satisfying (A2) in both the Exact
and Stochastic cases as well as investigating the optimal rate policy for η.

Exploration Step. The (α,Γ)-descent allows us to extend the parameter
set and to work with a population of particles {θ1, ..., θJ} instead of just
one particle θ. In this regard, many methods could be envisioned as an
Exploration step and combined with the (α,Γ)-descent.

Variance Reduction. One may want to resort to more advanced Monte
Carlo methods in the estimation of bµn,α for variance reduction purposes,
such as reusing the past samples in the approximation of bµn,α.

In an earlier version of this work, we were also able to establish condi-
tions to obtain a systematic decrease in the α-divergence [48]. Note however
that the proof of the monotonicity in [48, Theorem 1] is different from the
one presented in this paper. As a result, the monotonicity and convergence
results obtained in both papers do not strictly overlap (see in particular
Theorem 1, 2 and 3 as well as Proposition 10), which also lead to different
numerical experiments.
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[15] Tim van Erven and Peter Harremoes. Rényi divergence and kullback-leibler diver-
gence. IEEE Transactions on Information Theory, 60(7):3797–3820, Jul 2014.

[16] Tom Minka. Divergence measures and message passing. Technical Report MSR-TR-
2005-173, January 2005.

[17] Tom Minka. Power ep. Technical Report MSR-TR-2004-149, January 2004.
[18] Jose Hernandez-Lobato, Yingzhen Li, Mark Rowland, Thang Bui, Daniel Hernandez-

Lobato, and Richard Turner. Black-box alpha divergence minimization. In Maria Flo-
rina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 1511–1520, New York, New York, USA, 20–22 Jun 2016. PMLR.
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SUPPLEMENTARY MATERIAL

APPENDIX A

A.1. Proof of Lemma 6.

Proof of Lemma 6. On the probability space (T, T , µ), consider the
random variable U(θ) = bµ,α(θ) +κ and let V be an independent copy of U .
For all u ∈ ∆α, define Γ̃(u) = Γ(u)/E[Γ]. Let us now prove that

Aα >
Lα,1

2
Varµ(bµ,α) .

We study the cases α = 1 and α ∈ R \ {1} separately.

(a) Case α = 1. In this case,

A1 = Cov(log Γ̃(U) + U, 1− Γ̃(U)) .

Using that E[1− Γ̃] = 0, we can rewrite A1 under the form

A1 =
1

2
E
[
(log Γ̃(U) + U − log Γ̃(V ) + V )(−Γ̃(U) + Γ̃(V ))

]
=

1

2
E

[
log Γ̃(U) + U − (log Γ̃(V ) + V )

U − V
−Γ̃(U) + Γ̃(V )

U − V
(U − V )2

]

>
L1,1

2
Varµ(bµ,1) .

(b) Case α ∈ R \ {1}. Set κ′ = κ− 1
α−1 . In this case,

Aα = Cov((U − κ′)Γ̃α−1(U), 1− Γ̃(U)) ,

which, using once again that E[1− Γ̃] = 0, can be rewritten as

Aα =
1

2
E
[
((U − κ′)Γα−1(U)− (V − κ′)Γα−1(V ))(−Γ(U) + Γ(V ))

]
=

1

2
E
[

(U − κ′)Γα−1(U)− (V − κ′)Γα−1(V )

U − V
−Γ(U) + Γ(V )

U − V
(U − V )2

]
>
Lα,1

2
Varµ(bµ,α) .

Combining with (7) yields (12).
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A.2. Proof of Theorem 3. We start with a side note on ∆α. A typical
choice for ∆α is

(28) ∆α = [−|b|∞,α + κ, |b|∞,α + κ] .

However, when α ∈ R \ {1}, we might consider instead

(29) ∆α =

{
[ 1
1−α + κ, |b|∞,α + κ], if α > 1

[−|b|∞,α + κ, 1
1−α + κ], if α < 1

to underline the fact that for all v ∈ ∆α, (α − 1)v + 1 > (α − 1)κ. Unless
specified otherwise, we let ∆α be as in (29) whenever α ∈ R \ {1}.

Proof of Theorem 3. The proof consists in verifying that we can ap-
ply Theorem 2 in each of the cases mentioned in Theorem 3. Let us recall
the different conditions that must be met:

1. 0 < infv∈∆α Γ(v) and supv∈∆α
Γ(v) <∞.

2. The function Γ : ∆α → R>0 is decreasing, continuously differentiable and
satisfies the inequality

[(α− 1)(v − κ) + 1] (log Γ)′(v) + 1 > 0 .

3. Lα,1 = infv∈∆α {[(α− 1)(v − κ) + 1] (log Γ)′(v) + 1} infv∈∆α −Γ′(v) > 0.
4. The function Γ : ∆α → R>0 is L-smooth and the function − log Γ is
concave increasing.
5. Lα,2 = (infv∈∆α(− log Γ)′(v))−1 > 0.

(i) Kullback-Leibler divergence (α = 1): Γ(v) = e−ηv, η ∈ (0, 1), any
real κ. Since the update formula does not depend on κ, there is no
constraint on κ and we assume that κ = 0 for simplicity.
- Condition 1 is satisfied since |b|∞,1 is finite.
- Condition 2 is satisfied with Γ′(v) = −ηe−η and (log Γ)′(v) = −η.
- Condition 3 is satisfied with L1,1 > (1− η)ηe−η|b|∞,1 .
- Condition 4 is satisfied.
- Condition 5 is satisfied with L1,2 = 1

η .
(ii) Reverse Kullback-Leibler (α = 0) and α-Divergence with α ∈ R {0, 1}:

(a) Γ(v) = e−ηv, η ∈ (0, 1
|α−1||b|∞,α+1), any real κ. The only differ-

ence with the previous case lies in the inequality (i.e Condition 2),
which can be rewritten for all v ∈ ∆α as

1 > η [(α− 1)(v − κ) + 1] ,

Since 0 6 (α− 1)(v−κ) + 1 6 |α− 1||b|∞,α + 1, this inequality is then
satisfied for η ∈ (0, 1

|α−1||b|∞,α+1).
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(b) Case α > 1. Γ(v) = ((α− 1)v + 1)
η

1−α , η ∈ (0, 1] and κ satisfies
(α − 1)κ > 0. Then, the condition (α − 1)κ > 0 ensures that Γ is
well-defined on ∆α. From there, we deduce:

- Condition 1 is satisfied since |b|∞,α is finite.

- Condition 2 is satisfied: Γ′(v) = −η((α−1)v+ 1)
η

1−α−1, (log Γ)′(v) =
−η

(α−1)v+1 and the inequality can be rewritten for all v ∈ ∆α as

1 > η

[
1− (α− 1)κ

(α− 1)v + 1

]
,

which is satisfied for η ∈ (0, 1].

- Condition 3 is satisfied (the condition (α − 1)κ > 0 is of crucial
importance here).

- Condition 4 is satisfied with (− log Γ)′′(v) = η(1−α)
((α−1)v+1)2

(note that

we need α > 1 here).

- Condition 5 is satisfied and here again we use that (α− 1)κ > 0.

A.3. Proof of Theorem 4. In the following, we use the notation µn ⇒
µ? for the weak convergence of measures in M1(T). For all ζ ∈ M1(T), for
all θ ∈ T, define

gζ(θ) = (α− 1)(bζ,α(θ) + κ) + 1 .

We first derive four useful lemmas.

Lemma 12. Assume (A1) and (A4). Suppose that µn ⇒ µ?. Then the
following assertions hold.

(i) For all y ∈ Y, µnk(y) tends to µ?k(y) as n→∞.
(ii) For all ζ ∈ M1(T), the function θ 7→ gζ(θ) is continuous. Furthermore

for all θ ∈ T, gµn(θ) tends to gµ?(θ) as n→∞.
(iii) There exist 0 < m− < m+ < ∞ such that, for all ζ ∈ M1(T) and

θ ∈ T, gζ(θ) ∈ [m−,m+].
(iv) For all continuous, positive and bounded function h,

lim
n→∞

∫
T
µn(dθ)Γ(bµn,α(θ) + κ)h(θ) =

∫
T
µ?(dθ)Γ(bµ?,α(θ) + κ)h(θ) .

Proof. We prove the assertions successively.
Proof of (i). For all y ∈ Y, the function θ 7→ k(θ, y) is continuous on a
compact set, hence bounded. The weak convergence µn ⇒ µ? thus implies
the pointwise convergence of µnk to µ?k.



THE ALPHA-GAMMA DESCENT 33

Proof of (ii). For all θ ∈ T and ζ ∈ M1(T), we write

gζ(θ) =

∫
Y
aζ(θ, y)ν(dy) ,

where we set for all (θ, y) ∈ T× Y, aζ(θ, y) = k(θ, y)
(
ζk(y)
p(y)

)α−1
. The conti-

nuity of gζ(θ) follows from the Dominated Convergence Theorem, since for
all y ∈ Y, the function θ 7→ aζ(θ, y) is continuous on T by (A4)-(ii) and for
all (θ, y) ∈ T× Y, we have

|aζ(θ, y)| 6 sup
θ′∈T

k(θ′, y)× sup
θ′′∈T

(
k(θ′′, y)

p(y)

)α−1

,(30)

which is integrable w.r.t ν(dy) by (A4)-(iii). The second part of (ii) is ob-
tained similarly. Using (i) and that u 7→ uα−1 is C1, we get that, for all
(θ, y) ∈ T× Y,

lim
n→∞

k(θ, y)

(
µnk(y)

p(y)

)α−1

= k(θ, y)

(
µ?k(y)

p(y)

)α−1

,

i.e lim
n→∞

aµn(θ, y) = aµ?(θ, y). The bound (30) and (A4)-(iii) provide a dom-

ination criterion and we get that gµn(θ) tends to gµ?(θ) as n → ∞, which
concludes the proof of (ii).
Proof of (iii). For all (θ, ζ) ∈ T×M1(T), we have gζ(θ) ∈ [m−,m+] where

m− :=

∫
Y

inf
θ′∈T

k(θ′, y)× inf
θ′′∈T

(
k(θ′′, y)

p(y)

)α−1

ν(dy) ,(31)

m+ :=

∫
Y

sup
θ′∈T

k(θ′, y)× sup
θ′′∈T

(
k(θ′′, y)

p(y)

)α−1

ν(dy) .

We have that m+ is finite by (A4)-(iii). Furthermore, u 7→ uα−1 does not
vanish on (0,∞). Together with (A1), we thus have that for any y ∈ Y, the
functions θ 7→ k(θ, y) and θ 7→ (k(θ, y)/p(y))α−1 are continuous and positive
on the compact set T, from which we deduce that m− > 0.
Proof of (iv). Using (ii), the function θ 7→ Γ(bµ?,α(θ)+κ)h(θ) is continuous,
and, since T is compact, µn ⇒ µ? gives that

lim
n→∞

∫
T
µn(dθ)Γ(bµ?,α(θ) + κ)h(θ) =

∫
T
µ?(dθ)Γ(bµ?,α(θ) + κ)h(θ) .(32)

Next we show that

lim
n→∞

∫
T
µn(dθ) |Γ(bµn,α(θ) + κ)− Γ(bµ?,α(θ) + κ)|h(θ) = 0(33)
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ie

lim
n→∞

∫
T
µn(dθ)

∣∣∣gµn(θ)
η

1−α − gµ?(θ)
η

1−α

∣∣∣h(θ) = 0

Using (iii), since u 7→ u
η

1−α is Lipschitz on [m−,m+], there exists a constant
C such that

µn

[∣∣∣gµn(θ)
η

1−α − gµ?(θ)
η

1−α

∣∣∣h] 6 C sup
θ∈T

h(θ)

∫
T
µn(dθ) |gµn(θ)− gµ?(θ)|

= C sup
θ∈T

h(θ)

∫
Y
|an(y)|ν(dy)

where an(y) := µnk(y)

{(
µnk(y)
p(y)

)α−1
−
(
µ?k(y)
p(y)

)α−1
}

. Now, for all y ∈ Y,

|an(y)| 6 2 sup
θ∈T

k(θ, y)× sup
θ′∈T

(
k(θ′, y)

p(y)

)α−1

,

which is integrable w.r.t ν by (A4)-(iii). Moreover, by (i) and by continuity
of u 7→ uα−1, we have limn→∞ an(y) = 0, and (33) follows by dominated
convergence. Finally, combining (32), (33) and

µn [Γ(bµn,α(θ) + κ)h] = µn [Γ(bµn,α(θ) + κ)h− Γ(bµ?,α(θ) + κ)h]

+ µn [Γ(bµ?,α(θ) + κ)h] ,

we obtain (iv), and the proof is concluded.

Lemma 13. Assume (A1). Let µ?, µ ∈ M1(T) and assume that there
exists µ̄ ∈ M1,µ(T) such that Ψα(µ̄) < Ψα(µ?). Then, there exists δ > 1 such
that

µ̄(gµ? > δµ?(gµ?)) > 0 .(34)

Proof. Let ζ, ζ ′ ∈ M1(T). Then, by convexity of fα we have,∫
T

[ζ − ζ ′](dθ)bζ′,α(θ) 6 Ψα(ζ)−Ψα(ζ ′) .

that is ∫
T

[ζ − ζ ′](dθ)gζ′(θ) > (α− 1)
(
Ψα(ζ)−Ψα(ζ ′)

)
.(35)
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Furthermore, for all δ > 1, (δ− 1)µ?(gµ?) > 0. Let us define Aδ = {gµ? >
δµ?(gµ?)} and show that µ̄(Aδ) > 0 for some δ > 1. To do so, we proceed
by contradiction. Suppose that µ̄(Aδ) = 0 for all δ > 1, so that

µ̄[gµ? − µ?(gµ?)] = µ̄[(gµ? − µ?(gµ?)) 1Acδ ] 6 (δ − 1)µ?(gµ?) .

Using (35), we get that, for all δ > 1,

0 < (α− 1) (Ψα(µ̄)−Ψα(µ?)) 6 µ̄[(gµ? − µ?(gµ?))] 6 (δ − 1)µ?(gµ?) .

Letting δ ↓ 1, we obtain a contradiction, which finishes the proof.

Lemma 14. Assume (A1). Let µ? ∈ M1(T) be a fixed point of Iα and let
η > 0. Let µ ∈ M1(T) and assume that there exists µ̄ ∈ M1,µ(T) such that
Ψα(µ?) > Ψα(µ̄). Then, there exists δ > 1 such that

µ̄ {Γ(bµ?,α + κ) > δµ?(Γ(bµ?,α + κ))} > 0 .

Proof. Note that (5) holds for any η > 0 and ζ (in particular ζ = µ?)
by Lemma 12-(iii). As µ? is a fixed point of Iα, gµ? is µ?-almost all constant.

Consequently, µ?(gµ?)
η/1−α = µ?(g

η/1−α
µ? ) = µ?(Γ(bµ?,α + κ)). For all δ > 1,

δ′ := δ(1−α)/η > 1 and

µ̄ {Γ(bµ?,α + κ) > δµ?(Γ(bµ?,α + κ))} = µ̄
{
gµ? > δ(1−α)/η[µ?(g

η/(1−α)
µ? )](1−α)/η

}
= µ̄(gµ? > δ′µ?(gµ?)) .

We conclude by applying Lemma 13.

Lemma 15. Assume (A1) and (A4). Let η > 0, let µ1 ∈ M1(T) and define
the sequence (µn)n∈N? according to (4). Suppose that µn ⇒ µ? for some fixed
point µ? ∈ M1(T) of Iα. Further assume there exists µ̄ ∈ M1,µ1(T) such that
Ψα(µ?) > Ψα(µ̄). Then, there exist δ > 1 and n ∈ N∗ such that

µ̄

( ⋂
m>n

{Γ(bµm,α + κ) > δµm(Γ(bµm,α + κ))}

)
> 0 .

Proof. First note that the sequence (µn)n∈N? is well-defined for any
η > 0 by Lemma 12-(iii), which implies µn(Γ(bµn,α + κ)) > 0 for all n ∈ N?.
For all ζ ∈ M1(T), set hζ(θ) = Γ(bζ,α(θ) + κ). We further have that

lim
n→∞

µ̄

( ⋂
m>n

{hµm > δµm(hµm)}

)
= µ̄

(⋃
n>1

⋂
m>n

{hµm > δµm(hµm)}

)

= µ̄

({
θ ∈ T : lim inf

n→∞

hµn(θ)

µn(hµn)
> δ

})
.
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Furthermore, applying (ii) and (iv) in Lemma 12, we have, for all θ ∈ T,
limn→∞ hµn(θ) = hµ?(θ) and limn→∞ µn(hµn) = µ?(hµ?). Hence, for all
θ ∈ T,

lim inf
n→∞

hµn(θ)

µn(hµn)
=

hµ?(θ)

µ?(hµ?)
.

The proof is concluded by applying Lemma 14.

Proof of Theorem 4. Assume (A1) and (A4).
Lemma 12-(iii) is exactly the first result we want to obtain, that is: for

all ζ ∈ M1(T), any η > 0 satisfies (5) for ζ. Furthermore, |Ψα(ζ)| < ∞ by
(A4)-(iii).

Assume that (µn)n∈N? weakly converges to µ? ∈ M1(T). First note that
Lemma 12-(iii) implies that for any η > 0 the sequence (µn)n∈N? is well-
defined and µ? satisfies (5). Using Theorem 1, we obtain that the sequence
(µn)n∈N? is decreasing for all η ∈ (0, 1], which gives Assertion (i).

We now prove Assertions (ii) and (iii) successively.

Proof of (ii). For all ζ ∈ M1(T) and all y ∈ Y, set aζ(y) = fα

(
ζk(y)
p(y)

)
p(y),

leading to

(36) Ψα(ζ) =

∫
Y
aζ(y)ν(dy) .

Then, for all y ∈ Y,

|aζ(y)| 6
(

sup
θ∈T

∣∣∣∣fα(k(θ, y)

p(y)

)∣∣∣∣) p(y) ,(37)

which is integrable w.r.t ν(dy) by (A4)-(iii). Furthermore, recall that for all
y ∈ Y,

[Iα(µn)k](y) =

∫
T µn(dθ)Γ(bµn,α(θ) + κ)k(θ, y)∫

T µn(dθ)Γ(bµn,α(θ) + κ)
.

By applying twice Lemma 12-(iv) with h(θ) = 1 and h(θ) = k(θ, y), we have
that for all y ∈ Y,

lim
n→∞

[Iα(µn)k](y) = [Iα(µ?)k](y) .(38)

Now, since fα is C1, we obtain from Lemma 12-(i) and (38) respec-
tively that for all y ∈ Y, limn→∞ aµn(y) = aµ?(y) and limn→∞ aIα(µn)(y) =
aIα(µ?)(y). Combining with (37) and (36) we can thus apply the Dominated
Convergence Theorem to obtain

lim
n→∞

Ψα(µn) = Ψα(µ?)(39)
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and

lim
n→∞

Ψα(µn+1) = lim
n→∞

Ψα(Iα(µn)) = Ψα(Iα(µ?)) .(40)

Finally, (39) and (40) together yield Ψα(µ?) = Ψα ◦Iα(µ?), which in turn
implies that µ? is a fixed point of Iα according to Theorem 1-(ii).
Proof of (iii). We prove (iii) by contradiction. Suppose that µn ⇒ µ?,
where µ? is a fixed point of Iα that satisfies

Ψα(µ?) > inf
ζ∈M1,µ1 (T)

Ψα(ζ) .

Then, there exists µ̄ ∈ M1,µ1(T) such that Ψα(µ?) > Ψα(µ̄). Now for all
n ∈ N?, set

Bn =

{
θ ∈ T :

⋂
m>n

{hµm(θ) > δµm(hµm)}

}
,

where for all ζ ∈ M1(T), for all θ ∈ T, hζ(θ) := Γ(bζ,α(θ) + κ). There exists,
according to Lemma 15, for a well chosen δ > 1 and a sufficiently large n0

such that µ̄(Bn0) > 0.
Furthermore µ̄ ≈ µ1 by definition, where ζ ≈ µ1 if and only if for all

A ∈ T : ζ(A) > 0 is equivalent to µ1(A) > 0. Since 0 < Γ(bµ1,α(θ) + κ) <∞
for µ1-almost all θ ∈ T and dµ2

dµ1
∝ Γ(bµ1,α + κ), we also have µ2 ≈ µ1. Then

by induction, µn ≈ µ1 for all n ∈ N?. Finally, µn0(Bn0) > 0. Moreover, for

all θ ∈ Bn0 and all m > n0,
hµm (θ)
µm(hµm ) > δ and consequently

µm(Bn0) =

∫
Bn0

µm−1(dθ)
hµm−1(θ)

µm−1(hµm−1)
> δµm−1(Bn0) .

By induction on m we get that, for all m > n, µm(Bn0) > δm−n0µn0(Bn0).
This contradicts the previously obtain facts that δ > 1 and µn0(Bn0) > 0.
Therefore we get a contradiction and the proof is concluded.

APPENDIX B

B.1. Lemma 16 : statement and proof. Recall that Y1, Y2, ... are
i.i.d random variables with common density µk w.r.t ν, defined on the same
probability space (Ω,F ,P) and we denote by E the associated expectation
operator.
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Lemma 16. Assume (A1). Let α ∈ R \ {1}, η > 0 and κ be such that
(α− 1)κ > 0. Let µ ∈ M1(T) be such that µ(|bµ,α|) <∞ and

(41)

∫
T
µ(dθ)E

{k(θ, Y1)

µk(Y1)

(
µk(Y1)

p(Y1)

)α−1

+ (α− 1)κ

} η
1−α
 <∞ .

Then,

(42) lim
M→∞

µ(Γ(b̂µ,α,M + κ)) = µ(Γ(bµ,α + κ)) , P− a.s.

Proof. Set g(θ, y) = k(θ,y)
µk(y) (µk(y)

p(y) )α−1 + (α − 1)κ, φ = η
1−α and h(u) =

(α− 1)u+ (α− 1)κ+ 1. Note that E[g(θ, Y1)] = h(bµ,α(θ)) and hφ = Γ.

(i) We start with the case φ /∈ [0, 1]. Our goal is to apply Lemma 17, which
is a generalized version of the Dominated Convergence Theorem. To do so,
first note that h(b̂µ,α,M (θ))φ is positive and combining with the convexity of
the mapping u 7→ uφ, we have for all M ∈ N? and for all θ ∈ T,

0 6 h(b̂µ,α,M (θ))φ 6M−1
M∑
m=1

[g(θ, Ym)]φ .(43)

Since µ(|bµ,α|) <∞, the LLN for µ-almost all θ ∈ T yields

lim
M→∞

b̂µ,α,M (θ) = bµ,α(θ) .(44)

Now applying successively (a) the LLN for µ-almost all θ ∈ T (as stated in
Lemma 18), which is valid under (41), (b) Fubini’s Theorem and (c) again
the LLN

(45)

∫
T
µ(dθ) lim

M→∞
M−1

M∑
m=1

{g(θ, Ym)}φ (a)
=

∫
T
µ(dθ)E

[
{g(θ, Y1)}φ

]
(b)
= E

[∫
T
µ(dθ)[g(θ, Y1)]φ

]
(c)
= lim

M→∞

∫
T
µ(dθ)M−1

M∑
m=1

[g(θ, Ym)]φ

That is

µ

(
lim
M→∞

M−1
M∑
m=1

{g(·, Ym)}φ
)

= lim
M→∞

µ

(
M−1

M∑
m=1

[g(·, Ym)]φ

)
<∞
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Combining with (43) and (44), we apply Lemma 17 and obtain

µ
(
h(bµ,α)φ

)
= µ

(
lim
M→∞

h(b̂µ,α,M )φ
)

= lim
M→∞

µ(h(b̂µ,α,M )φ) ,

that is
µ (Γ(bµ,α + κ)) = lim

M→∞
µ(Γ(b̂µ,α,M + κ)) .

(ii) We now turn to the case φ ∈ (0, 1]. Let M ′ > 0. Since

∫
T
µ(dθ)

(
M−1

M∑
m=1

g(θ, Ym)1{g(θ,Ym)6M ′}

)φ
6 µ(h(b̂µ,α,M )φ) ,

the LLN for µ-almost all θ ∈ T (Lemma 18) and the Dominated Convergence
Theorem yields

(46)

∫
T
µ(dθ)

(
E[g(θ, Y1)1{g(θ,Y1)6M ′}]

)φ
6 lim inf

M→∞
µ(h(b̂µ,α,M )φ) .

Using now (u+ v)φ 6 uφ + vφ and then Jensen’s inequality for the concave
mapping u 7→ uφ,

µ(h(b̂µ,α,M )φ) 6
∫
T
µ(dθ)

(
M−1

M∑
m=1

g(θ, Ym)1{g(θ,Ym)6M ′}

)φ

+

(∫
T
µ(dθ)M−1

M∑
m=1

g(θ, Ym)1{g(θ,Ym)>M ′}

)φ

By invoking the LLN for µ-almost all θ ∈ T (Lemma 18) and the Dominated
Convergence Theorem for the first term of the rhs and the LLN combined
with Fubini for the second term, we get

lim sup
M→∞

µ(h(b̂µ,α,M )φ) 6
∫
T
µ(dθ)

(
E[g(θ, Y1)1{g(θ,Y1)6M ′}]

)φ
+

(∫
T
µ(dθ)E[g(θ, Y1)1{g(θ,Y1)>M ′}]

)φ
Letting M ′ go to infinity both in this inequality and in (46) completes the
proof of (42).
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B.2. General Dominated Convergence Theorem. We state and
prove a generalized version of the Dominated Convergence Theorem, adapted
from [47, Theorem 19]. We provide here a full proof for the sake of complete-
ness.

Lemma 17 (General Dominated Convergence Theorem). Let ζ ∈ M1(T).
Assume there exist (aM ), (bM ), (cM ) three sequences of (T ,B(R))-measurable
functions such that the limits limM→∞ aM (θ), limM→∞ bM (θ), limM→∞ cM (θ)
exist for ζ-almost all θ ∈ T and

ζ| lim
M→∞

aM |+ ζ| lim
M→∞

cM | <∞ .

Assume moreover that for all M ∈ N? and for ζ-almost all θ ∈ T

aM (θ) 6 bM (θ) 6 cM (θ)

and

ζ( lim
M→∞

aM ) = lim
M→∞

ζ(aM )(47)

ζ( lim
M→∞

cM ) = lim
M→∞

ζ(cM ) .(48)

Then,

ζ( lim
M→∞

bM ) = lim
M→∞

ζ(bM ) .

Proof. We apply Fatou’s Lemma combined with (47) and (48) to the
two non-negative, (T ,B(R))-measurable functions θ 7→ bM (θ) − aM (θ) and
θ 7→ cM (θ)− bM (θ) and we obtain

ζ(lim inf
M→∞

bM ) 6 lim inf
M→∞

ζ(bM )

ζ(lim inf
M→∞

−bM ) 6 lim inf
M→∞

ζ(−bM )

which proves the lemma, as lim infM→∞ bM (θ) = lim supM→∞ bM (θ) for ζ-
almost all θ ∈ T.

B.3. Integrated Law of Large Numbers. Let Y1, Y2, . . . be i.i.d.
random variables on the same probability space (Ω,F ,P) and let f be a non-
negative real-valued (T ⊗F ,B(R>0))-measurable function. We are interested
in showing∫

T
ζ(dθ) lim

M→∞
M−1

M∑
m=1

f(θ, Ym) =

∫
T
ζ(dθ)E[f(θ, Y1)](49)
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for ζ ∈ M1(T) satisfying
∫
T ζ(dθ)E[f(θ, Y1)] < ∞. While this result follows

easily if we can show that

(50) P

(
∀θ ∈ T, lim

M→∞
M−1

M∑
m=1

f(θ, Ym) = E[f(θ, Y1)]

)
= 1

unfortunately the LLN only yields

P

(
lim
M→∞

M−1
M∑
m=1

f(θ, Ym) = E[f(θ, Y1)]

)
= 1

for ζ-almost all θ ∈ T. The following lemma allows to show (49) without
resorting to the much stronger identity (50).

Lemma 18. Let ζ ∈ M1(T) and assume that
∫
T ζ(dθ)E[f(θ, Y1)] < ∞.

Then, P− a.s.∫
T
ζ(dθ) lim

M→∞
M−1

M∑
m=1

f(θ, Ym) =

∫
T
ζ(dθ)E[f(θ, Y1)] .

Proof. Set

B =

{
(θ, ω) ∈ T× Ω : lim

M→∞
M−1

M∑
m=1

f(θ, Ym(ω)) = E[f(θ, Y1)]

}
,

Let γ0 : (θ, ω) 7→ 1Bc(θ, ω) and γ1 = 1−γ0. According to the Fubini Theorem
and the LLN for M−1

∑M
m=1 f(θ, Ym) where θ is such that E[f(θ, Y1)] <∞

(which is satisfied for ζ-almost all θ ∈ T by assumption),

E
[∫

T
ζ(dθ)γ0(θ, ·)

]
=

∫
T
ζ(dθ)E [γ0(θ, ·)] = 0 .

Therefore,
∫
T ζ(dθ)γ0(θ, ·) is P − a.s. null that is, there exists Ω1 such that

P(Ω1) = 1 and for all ω ∈ Ω1, A 7→
∫
A ζ(dθ)γ0(θ, ω) is the null-measure on

(T, T ), which in turn implies that the measures ζ and A 7→
∫
A ζ(dθ)γ1(θ, ω)

coincide. The latter property implies for all ω ∈ Ω1,∫
T
ζ(dθ)E[f(θ, Y1)] =

∫
T
ζ(dθ)E[f(θ, Y1)]γ1(θ, ω)

=

∫
T
ζ(dθ)

[
lim
M→∞

M−1
M∑
m=1

f(θ, Ym(ω))

]
γ1(θ, ω)

=

∫
T
ζ(dθ) lim

M→∞
M−1

M∑
m=1

f(θ, Ym(ω)) .
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B.4. Proof of Proposition 9.

Proof of Proposition 9. For the sake of readability, we only treat the
case κ = 0 in the proof of Proposition 9. Note that the case κ 6= 0 unfolds
similarly by replacing bµ,α by bµ,α+κ everywhere in the proof below. Recall
that Ψα(µ) < ∞ implies µ(|bµ,α|) < ∞ (see Remark 8). By the triangular
inequality, for all M ∈ N?, for all θ ∈ T,∣∣∣∣∣Γ(b̂µ,α,M (θ))

µ(Γ(b̂µ,α,M ))
− Γ(bµ,α(θ))

µ(Γ(bµ,α))

∣∣∣∣∣ 6 Γ(b̂µ,α,M (θ))

µ(Γ(b̂µ,α,M ))

∣∣∣∣∣1− µ(Γ(b̂µ,α,M ))

µ(Γ(bµ,α))

∣∣∣∣∣
+
|Γ(b̂µ,α,M (θ))− Γ(bµ,α(θ))|

µ(Γ(bµ,α))

Thus,∥∥∥Îα,M (µ)− Iα(µ)
∥∥∥
TV

= µ

(∣∣∣∣∣ Γ(b̂µ,α,M )

µ(Γ(b̂µ,α,M ))
− Γ(bµ,α)

µ(Γ(bµ,α))

∣∣∣∣∣
)

6

∣∣∣∣∣1− µ(Γ(b̂µ,α,M ))

µ(Γ(bµ,α))

∣∣∣∣∣+
µ(|Γ(b̂µ,α,M )− Γ(bµ,α)|)

µ(Γ(bµ,α))

For the first term of the rhs, Lemma 16 yields

lim
M→∞

∣∣∣∣∣1− µ(Γ(b̂µ,α,M ))

µ(Γ(bµ,α))

∣∣∣∣∣ = 0(51)

As for the second term of the rhs, first note that for all M ∈ N?, for all
θ ∈ T

0 6 |Γ(b̂µ,α,M (θ))− Γ(bµ,α(θ))| 6 Γ(b̂µ,α,M (θ)) + Γ(bµ,α(θ)) ,(52)

and since µ(Γ(bµ,α)) <∞ the LLN for µ-almost all θ ∈ T yields

lim
M→∞

Γ(b̂µ,α,M (θ)) = Γ(bµ,α(θ)) .(53)

Furthermore, since µ(Γ(bµ,α)) <∞, Lemma 16 and (53) imply

lim
M→∞

µ
[
Γ(b̂µ,α,M ) + Γ(bµ,α)

]
= µ

[
lim
M→∞

(
Γ(b̂µ,α,M ) + Γ(bµ,α)

)]
<∞

Combining with (52) and (53), we apply Lemma 17 and obtain

lim
M→∞

µ(|Γ(b̂µ,α,M )− Γ(bµ,α)|)
µ(Γ(bµ,α))

= 0

which, along with (51), finishes the proof.
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APPENDIX C

C.1. Mass-covering/Mode-seeking behavior in the Mixture Ap-
proximate (α,Γ)-descent. Let us first recall the update formula (24)
used in the Mixture Stochastic (α,Γ)-descent. We have

λj,n+1 =
λj,nΓ(b̂µn,α,M (θj) + κ)∑J
i=1 λi,nΓ(b̂µn,α,M (θi) + κ)

,

with Y1,n, ..., YM,n drawn independently from µnk and

b̂µn,α,M (θj) =
1

M

M∑
m=1

k(θj , Ym,n)

µnk(Ym,n)
f ′α

(
µnk(Ym,n)

p(Ym,n)

)
.

We illustrate the mode-seeking and mass-covering properties in the par-
ticular case of the Mirror descent (α = 1) and the Power descent.

� Mirror descent : Γ(v) = e−ηv with α = 1. Then,

b̂µn,α,M (θj) =
1

M

M∑
m=1

k(θj , Ym,n)

µnk(Ym,n)
log

(
µnk(Ym,n)

p(Ym,n)

)
and

λj,n+1 ∝
M∏
m=1

(
p(Ym,n)

µnk(Ym,n)

) η
M

k(θj ,Ym,n)

µnk(Ym,n)

.

Observe that if p(Ym,n) = 0 with k(θj , Ym,n) > 0 for at least one m = 1...M ,
then the weight is set to 0, which is the mode-seeking behavior. Note that
this behavior might prevent learning in practice.
� Power descent: Γ(v) = ((α− 1)v + 1)η/(1−α). Then,

b̂µn,α,M (θj) =
1

M(α− 1)

M∑
m=1

k(θj , Ym,n)

µnk(Ym,n)

(
µnk(Ym,n)

p(Ym,n)

)α−1

− 1

α− 1

and

λj,n+1 ∝

(
1

M

M∑
m=1

k(θj , Ym,n)

µnk(Ym,n)

(
p(Ym,n)

µnk(Ym,n)

)1−α
+ κ(α− 1)

) η
1−α

.

Here again we observe the mode-seeking behavior when α > 1 and the mass-
covering behavior when α < 1 by considering the case where p(Ym,n) = 0
with k(θj , Ym,n) > 0 for at least one m = 1...M .
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