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Abstract
Exploratory data analysis is an open-ended iterative pro-
cess, where the goal is to discover new insights. Much of
the work to characterise this exploration stems from qualita-
tive research resulting in rich findings, task taxonomies, and
conceptual models. In this work, we propose a machine-
learning approach where the structure of an exploratory
analysis session is automatically learned. Our method,
based on Hidden-Markov Models, automatically builds
a storyline of past exploration from log data events, that
shows key analysis scenarios and the transitions between
analysts’ hypotheses and research questions. Compared to
a clustering method, this approach yields higher accuracy
for detecting transitions between analysis scenarios. We ar-
gue for incorporating provenance views in exploratory data
analysis systems that show, at minimum, the structure and
intermediate results of past exploration. Besides helping
the reproducibility of the different analyses and their results,
this can encourage analysts to reflect upon and ultimately
adapt their exploration strategies.

Author Keywords
Exploratory data analysis; log analysis; sensemaking; prove-
nance; storytelling; machine learning; visualization.



Introduction
Exploratory Data Analysis (EDA) is an iterative process of
knowledge discovery where the goal is to find interesting,
non-trivial patterns in the data, or insights [23, 15]. This ex-
ploration can be complex, involving multiple hypotheses,
multiple users and even distributed setups. Current EDA
tools provide a myriad of statistical and visual methods to
analyse data and to inspect it from different perspectives,
as well as some support for viewing the history of explo-
ration, such as past analysis steps or data queries [17].
However, little support is usually provided to show high-level
information to entice users to reflect upon and make sense
of their past exploration. This could provide opportunities to
review and share insights, but importantly, it can potentially
improve user exploration practices and strategies [10].

Figure 1: Previous study SPLOM
tool (top) and study setup.

In previous work [5] we conducted an observational study
with domain experts from agronomy, who explored com-
plex model simulation datasets using an existing visual-
ization tool [13, 9]. Their main exploration task was open
ended, but the goal was to explore alternative model trade-
offs (e.g., between the amount of fertilisers supplied and
the quantity of wheat crop yield). Through qualitative anal-
ysis of video recordings of multiple exploration sessions,
we found that domain experts appear to structure their in-
vestigation into mini-analysis scenarios, during which they
explore different hypotheses and research questions.

The exploration tool that we used had basic history visual-
ization widgets showing the views experts visited over time,
and the data queries they made. The exploration sessions
were helpful and our domain experts found interesting in-
sights in the form of correlations and temporal trajectories.
However, despite the history widgets provided, experts ap-
pear to loose track of their analysis steps and the many
alternative trade-off scenarios they were trying to com-

pare: “What was the basis of the reflection here? In fact, we
seem to go faster than we have time to note down” (a par-
ticipant from study [5]). Moreover, our domain experts were
not able to build a clear mental model of past exploration,
nor did they have any means to evaluate whether they had
a robust or exhaustive exploration strategy [26]. Indeed, the
lack of support tools for sensemaking of past exploration is
common in many EDA systems [19, 10, 16].

In this work, our goal is to model the exploration history of
the aforementioned exploration sessions, and to present
them to the analysts as high-level views of their past ex-
ploration. We aim to establish a methodology to automat-
ically detect key analysis stages of the exploration (sce-
narios), which correspond to the change of focus in the
search space. To detect such changes, we use unsuper-
vised learning and time series modelling (Hidden Markov
Models HMM), which better suite our exploratory context.

Our contributions are: (1) an algorithmic approach based
on HMM to characterise exploration history and predict
analysis scenarios; (2) three brainstorming sessions to
gather design requirements for history log visualization;
and (3) a preliminary implementation of a history visualiza-
tion in the form of a storyline that integrates the results of
the HMM model into our exploratory visualization tool.

Related Work
Qualitative Studies to Characterise EDA
The general sensemaking literature such as the works of
Klein et al. [18] and Pirolli et al. [24] provides key insights
about the nature of sensemaking activities and the cognitive
processes involved. This body of work has inspired later
studies that looked at different aspects of sensemaking.
In the context of EDA, recent work looked at how analysts
manage uncertainty [7]; how they explore various types of



alternatives [19]; and how groups deal with trade-offs [5]
and build common ground [14].

Figure 2: Scenario sequences and
types for four exploration sessions,
as identified from manual video
analysis and coding.

The results of this body of work are often conceptual mod-
els, task taxonomies and design recommendations. In par-
ticular, work that looked at stages of exploration and the link
to shifts in research direction includes Pirolli et al. [24] who
characterised the exploration as a non-linear interleaving of
new and refined hypotheses and research questions [24].
In the data-frame model [18], re-framing occurs specifically
when participants shift their research questions and hy-
potheses. These works inspired our own approach to detect
structures in the exploration (we call “scenarios”) where an-
alysts, at different stages in the exploration, shift their focus
into different areas of the search space. We identified sce-
narios where analysts examine new and refined research
questions and hypotheses, and other scenarios where they
learn to appropriate the exploration tool and setup, and at-
tempt to recap and establish common ground [5].

Like many studies, our approach to characterise EDA stems
from qualitative research and relies on methods such as
observational studies, walkthroughs, and interviews. These
are time and resource intensive processes requiring man-
ual annotations carried out by different coders in multiple
iterations. The results are often deep insights but they are
hard to generalise or operationalise to specific contexts.
Our goal is to establish an automatic procedure to detect
key stages in the exploration, and to assist analysts by pro-
viding them with a reflective view of their exploration history.

Log Analysis methods and History Visualization
Carrasco et al. [10] argue that log analysis and visualization
are not only useful for tracking purposes, but also an oppor-
tunity for self-reflection. They show that a visualization of a
web browsing history can help users infer areas of improve-
ment in their browsing habits. Carrasco et al. contend that

these visualizations should urge self-reflection by providing
high-level semantic information. Guo et al. [16] demonstrate
that the visualization of interaction logs improves analysts
performance in finding insights. In their work, and similar
to our previous study, an exploration session is built of var-
ious chunks, each composed of generic analysis patterns
that lead to insights. Although Guo et al. propose a method
to extract those analysis patterns from interaction log data
based on action frequency, they do not provide means to
detect the chunks (equivalent to our scenarios).

Research in analytic provenance [22, 3, 20] is related to
our work, and seeks to understand users’ reasoning pro-
cesses through the study of their interactions with a visu-
alisation system. The goal of analytic provenance can be
general such as collaborative communication and replica-
tion [25], or more focused such as predicting users per-
sonality traits [8] or detecting cognitive biases [27]. Most of
these systems show the different, possibly branching, anal-
ysis paths (e.g., [20, 21, 12]). Our work focuses on building
an algorithmic approach to automatically retrieve higher-
level analysis scenarios (or chunks) from interaction logs
of EDA sessions (rather than detailed analysis paths). We
hope this high-level grouping will help analysts get a quick
summary of their analysis.

Our main method is similar to that of Aboufoul et al. [1] and
Dung et al. [11] who used Hidden Markov Models (HMM) to
model user’s search behaviour. HMM are powerful to gen-
erate sequence of observations and also to learn about the
hidden states that produce those observations. In our study,
we show that scenarios of experiments can be retrieved
when considered as hidden states of a Markov chain. We
also show that results from the HMM can be provided in
pseudo real time, and therefore continuously provide high-
level semantic information to the analyst.



Two Use Cases From Agronomy
Our interaction log data comes from an observational study
with two real-world use cases [5], one pertaining to wheat
fertilisation and the other to wine fermentation. For each
use case, multiple types of experts explored model simu-
lation data in two separate exploration sessions, using a
scatterplot matrix (SPLOM)-based tool [9] projected on a
large shared tactile display (84” screen, see Figure 1). The
videos of those exploration sessions where coded, and dif-
ferent types of analysis scenarios were identified (Figure 2).

The SPLOM-tool allows multiple query selections to help
experts narrow down their search space to important pa-
rameters. The system also provides a bookmark history
of past query selections and a means to store “favourite”
views and queries. Finally, experts can enter new combined
dimensions manually through a mathematical formula field,
or to evolve them automatically. Log data events that are
used in the clustering and machine learning methods in
the following section concern user selections of cells in the
SPLOM, the favourites store and the bookmark history.

Figure 3: The first eight analysis
scenarios of the wine use case
S1–8 as identified from video
coding. Each grid corresponds to
one scenario, rows and columns
are data dimensions D1–n. Circles
indicate scatterplot visits, and their
size the frequency of visits.
Analysis scenarios are usually
focused on one area of the search
space.

A visualization of which scatterplots domain experts con-
sulted over time (Figure 3) reveals that very often the anal-
ysis scenarios correspond to localised areas of the search
space. For example, scenario 1 focused on changes in the
amount of nitrogen (N0) at the five different stages of the
wine fermentation process (T0, T25, T50, T75 and T100);
and in scenario 2 experts examined the relationship be-
tween N0 and a target aromatic combination that they en-
tered manually. As such, information about the scatterplots
visited by experts over time can be used to cluster user in-
teractions into different analysis scenarios. In the next sec-
tion, we try to use clustering and machine learning methods
to detect those scenarios automatically.

A Machine-Learned Exploration Storyline
We implemented two unsupervised methods to detect
a change of scenario during data exploration. The first
method relies on a spatio-temporal similarity measure to
cluster interaction log events into different analysis scenar-
ios; and the second method detects scenario transitions
using a commonly used statistical approach for time-series
and sequential data (Hidden Markov Models). In each case,
our ground truth is the labelled video dataset. To evaluate
our methods, we build on the existing notions for Type I and
type II classification errors. Multi-class classification error
metrics could have been used but we would have missed
the fact that scenarios are chronologically structured. This
structure of the output essentially means that we care much
for the change in scenarios rather than knowing that the
number of the class is for instance "1" instead of "3".

Spatio-Temporal Distances to Cluster Events
Our clustering approach consists of the following three
steps: (1) Data preparation: we group data dimensions into
three generic types pertinent to trade-off analysis and the
dynamic nature of the processes that our domain experts
were exploring: objectives (quantities experts would like
to optimise), parameters (model parameters experts can
control or modify) and trajectories (a subset of parameters
whose values change over time). At this stage we set the
time scale iteratively; (2) Distance Calculation: our clus-
tering approach is based on the distance between area
clicks on the SPLOM (cells) calculated using the Jaccard
distance. This step yields a distance matrix; (3) Cluster-
ing: we apply DBSCAN algorithm to the resulting distance
matrix. This method allows us to group user interactions
with the SPLOM that are close both spatially and temporally
(based on time elapsed between two events).



Figure 4 shows a timeline visualization of the clustering
results (points on the timeline correspond to scatterplot se-
lections, colour refers to scenarios). The clustering method
detects more scenarios than in the labelled dataset. If we
look at scenario transitions only, this method detects cor-
rectly only 55% of transitions for the wheat use case, and
61% for the wine use case (e.g., change between scenario
5 and 6 in Figure 4). The clustering method does not per-
form well in scenarios where experts were exploring quickly
different areas of the search space, more likely to confirm
previous knowledge. A major limitation of this method lies
in the data preparation and the grouping of data dimen-
sions. Our clustering method relies on the three types of di-
mensions that we identified as important for our use cases.
More importantly, it is highly dependent on the order of rows
and columns in the SPLOM, and the time scale we adopted
is arbitrary while having a big impact on performance.

Figure 4: Results of clustering
(right timeline), left timeline is the
ground truth. Dots are scatterplot
selections, and color corresponds
to scenarios S1–14.

Hidden Markov Models to Detect Transitions
Hidden Markov Models (HMMs) are a statistical approach
that tries to model a sequence of events in which the prob-
ability of each event depends only on the state attained in
the previous event [2]. They rely on the assumption that
observations are spawn by “hidden states” whose succes-
sions depend on transition probabilities. In unsupervised
use cases such as ours, studying the observations helps
find the hidden states or patterns in the data. More specifi-
cally, when using HMMs, we make the assumption that the
hidden states we are looking for somewhat correspond to
the analysis scenarios, and that the observations we see
(or log events) fall into a Markov system. The hyper pa-
rameter we have to test for is the number of hidden states.
We set this parameter to two as it yields best results, and
conceptually it corresponds to whether or not there is a
“change” in the exploration strategy or direction of search.

To build the HMM, we only rely on two types of information:
the time-delta between observations, and the combination
of the row and the column of each scatterplot that was vis-
ited during the exploration. Figure 5 shows the confusion
matrix of the HMM we built. As we are interested in detect-
ing transitions between scenarios rather than the scenarios
themselves, the shape of the path is more important than
the number of the inferred labels (the closer to a diagonal
the better). Figure 5 shows for instance that change of sce-
narios are well detected for (true) labels ranging from 5 to 9.
For the wheat use case, our HMM detects scenario transi-
tions in 75% of cases, and in 91% for the wine use case.

User Requirements for Provenance Visualization
Our goal is to visualise the results of the exploration history
to analysts. In particular, we envisage a visualization that
incorporates the results of the HMM method discussed ear-
lier. To gather user requirements for such visualizations, we
organised three brainstorming sessions with nine partici-
pants (in addition to the authors of this paper), each ses-
sion lasted around two hours. Participants of two sessions
had design, HCI or visualization background (five partici-
pants); and for the remaining session we recruited domain
experts from an agronomy research centre (four partici-
pants). Participants were researchers or PhD students.

Sessions were organised in two parts: (i) a training part to
teach participants how to use our tool, similar to the train-
ing task we used in previous studies [4]; (ii) an ideation part
where participants brainstormed about the functionalities
our SPLOM-tool should have to better support sensemak-
ing of exploration history. We used affinity diagramming and
thematic analysis to organise those ideas into the follow-
ing high-level user requirements, ordered by how frequently
they were mentioned by our participants: (1) story-tell & au-
thor; (2) highlight; (3) show trends; (4) preview & replay; (5)



filter views; (6) compare views; (7) group views; (8) show
overview & summary; (9) annotate; (10) save & reuse; (11)
steer; (12) initialise; and (13) learn & update.

Figure 5: Confusion matrix for
HMM, for the wine use case.

In terms of support for storytelling and authoring, partici-
pants mentioned creating automatically a storyboard of past
exploration and annotating it, for example, by allowing users
to tag places where the exploration branched out. Another
participant suggested a git-like visualization that gives both
an overview of visited cells and possible branching explo-
ration paths. Inspired by those requirements and findings
from our previous study [5], we decided to implement a sto-
ryline of past exploration, where nodes are events linked
through time. Analysis scenarios are automatically identi-
fied using the HMM method and are visualised using colour
(a preliminary implementation is shown in Figure 6). This
visualization is integrated into our SPLOM-tool as a widget.

Figure 6: Log visualization widget,
nodes indicate scatterplot
selections and colour indicates
scenarios.
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Visualizing a Machine-Learned Storyline
To implement our storyline visualization, we use a client-
server architecture using the Python web framework Flask.
On the server side, user interactions with the SPLOM and
scatterplots are stored in a text file. Based on the method-
ology devised above, a HMM is applied to detect the hidden
states (i.e., the scenarios). As it is an unsupervised ap-
proach, the model is applied each time new data points are
recorded. We currently update the timeline widget every
five minutes or upon user request (via the update button).

On the client side, the storyline widget is implemented in
D3.js and is integrated into a web-version of our SPLOM
tool. Each node is a user action, and its colour corresponds
to a scenario. Clicking on the node renders the correspond-
ing scatterplot in the zoomed in area of the user interface,
and highlights that cell in the SPLOM through brushing and
linking. The storyline visualization widget is placed at the

bottom of the user interface, to avoid interfering with the
main exploration tasks.

Discussion and Future Work
We presented early work and a prototype implementation
for an algorithmic approach to characterise past exploratory
data analysis. Our method uses Hidden Markov Models to
detect transitions between consecutive scenarios and yields
promising results for the two use cases we tested for. We
gathered user requirements for history log visualization and
provided a preliminary implementation for a storyline visual-
ization showing events and transitions between scenarios.

Our approach could be of interest more generally, to auto-
mate portions of the qualitative analysis of interaction logs.
But it also has a number of limitations, which will be the
subject of future work and improvements, including: (a) our
log data comes from a limited set of use cases, focused
on trade-off analysis. We plan to incorporate log data from
other use cases; (b) our tool is SPLOM-based. How our do-
main experts structured their exploration may depend on
how the tool’s user interface is organised. However, our ma-
chine learning method is generalisable and can be applied
to other visualization types, as it only requires information
about the data dimensions consulted during the exploration
and the time of viewing; (c) currently our method cannot
detect branching scenarios and does not scale to longer
sessions (e.g., through real-time aggregation [6]).

Furthermore, we plan to enrich our storyline visualization,
by detecting different types of scenarios and allowing users
to annotate and correct inaccuracies in predictions. We also
plan to validate our work with domain experts. In particular,
it would be interesting to investigate whether such history
visualizations encourage reflection, and whether they result
in a change in exploration strategies.
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