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A new parametrization for the Rician distribution
Jean-Marie-Nicolas and Florence Tupin, Senior Member, IEEE

Abstract—The Rician distribution is widely used in SAR
imagery to model the backscattering of a strong target inside a
resolution cell. Nevertheless the computation of the parameters
of the Rice distribution remains a difficult task. In this paper, a
new parametrization to model the Rice distribution is introduced.
Thanks to the introduction of a new variable defined by the

ratio of the target contribution to the speckle, the relationship
between the coefficient of variation and this new parameter
can be derived. An efficient numerical method is proposed to
evaluate it from the coefficient of variation and a discussion
on the variance of this estimator is led. A comparison with
other methods of estimation showed that the proposed approach
is a good compromise between the variance of the estimate
and the computation time. At last, a link between permanent
scatterers and Rice distributed targets is proposed through this
new parametrization.

Index Terms—Statistical modeling, the Rician distribution,
SAR data.

I. INTRODUCTION

SAR imagery has become very popular in the past years

thanks to its all time and all weather capacities. The recent

launch of Sentinel-1 and ESA’s data policy makes very long

time series now freely available. These temporal series open

new ways to understand SAR data distributions. Indeed, the

local stationarity hypothesis, essential to analyse speckle and

texture distributions with a single SAR image, is no longer

necessary when dealing with time series. In some conditions

(no change case), the temporal samples can be considered as

independent and identically distributed samples and can be

used to model the satistical behaviour of the different areas.

This statistical point is of particular interest when dealing

with point-like targets, where no local estimation can be ap-

plied. Indeed, neighboring pixels follow a different probability

density function (pdf) and can not be used to compute any

statistics. In this situation, with a single image, only one

sample is available to evaluate pdf parameters leading to

degenerate estimations. When having long time series, if the

samples are decorrelated and temporally stable (meaning no

change in the imaged physical area), the temporal samples can

be used as samples to evaluate the pdf parameters. During

many decades, the number of samples was relatively small to

allow parameter estimation with a low variance. But recently,

a huge number of images can be used (more than 100 data).

This situation allows new investigations on the pdf followed

in SAR imagery, specially for point-like targets or areas with

a very small extension.

In this paper we are interested in the Rician distribution

widely used in SAR imagery to model strong scatterers
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[1][2][3][4][5]. This pdf is thus of particular interest when

dealing with urban areas with many strong echoes due to man-

made structures with dihedral or trihedral configurations.

The paper is organized as follows. In section II, we recall the

Rician distribution and some common methods for parameter

estimation. In section III, we introduce a new formulation of

the Rician pdf through the definition of a parameter relying

on the ratio between the strong scatterer contribution and the

underlying speckle reflectivity. We then present a new method

for parameter estimation based on this parametrization and

compare different parameter estimates. We then discuss the

link between permanent scatterers and Rician pdf.

II. THE RICIAN DISTRIBUTION

A. The Rician distribution and its moments

In Radar imaging, acoustical imaging and laser analysis,

the speckle effect is a rather well known phenomenon based

on the coherent nature of the illumination which affects the

quality of the images. “Fully developped speckle” [1] assumes

a large distribution of quasi point-like identical backscattering

targets so that the probability density function of the data for a

physically constant area can be modelled by a Rayleigh distri-

bution (in the case of amplitude data) or negative exponential

distribution (in the case of intensity data). These first order

statistical properties can be easily deduced from the study of

random phasor sums [1].

In the radar framework, Rice’s works were devoted to

the distribution of noise on a sine wave [6], yielding an

interesting relationship for the probability density function for

a deterministic target associated with speckle noise (illustrated

in figure 1). If µC is the amplitude of the deterministic signal

and µ is the parameter of the Rayleigh distribution associated

with the speckle noise, the probability associated to a given

value x can be written as [6] (with µ and µC ∈ IR+):

RC [µ, µC ] (x) =
2x

µ2
e
−

x2+µ2
C

µ2 I0

(

2µC x

µ2

)

, (1)

where I0 is the modified Bessel function of the first kind. This

relation is known as the “Rician” density function.

As we have:

I0(y) ≃ 1 +
(y

2

)2

, (2)

we can derive the following property :

lim
µC→0

RC [µ, µC ] (x) =
2x

µ2
e
− x2

µ2 , (3)

i.e. the Rician distribution tends to the Rayleigh distribution.

As µC

µ
grows, the Rician distribution takes on a more

symmetrical form and is asymptotically Gaussian [1] (Fig.2).
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Fig. 1. Example of the coherent sum of a strong deterministic backscatterer
with amplitude µC and speckle of small amplitude µ compared to µC , leading
to observations lying in the represented circle.

The moments of the Rician distribution are easily seen to

be [1]:


























m1 = µ
√
π

2
e
−

µ2
C

µ2
1F1

(

3

2
; 1;

µ2
C

µ2

)

,

m2 = µ2 e
−

µ2
C

µ2
1F1

(

2; 1;
µ2
C

µ2

)

,

mr = µr Γ
(

1 + r
2

)

e
−

µ2
C

µ2
1F1

(

1 + r
2
; 1;

µ2
C

µ2

)

,

(4)

where 1F1 is the confluent hypergeometric function, also

called Kummer function. By this way, it is possible to derive

the coefficient of variation γ, widely used for SAR imagery

due to the multiplicative noise modeling [7] [8] [9]:

γ =

√

m2

m2
1

− 1 =

√

√

√

√

√

√

4 e
µ2
C

µ2
1F1

(

2; 1;
µ2
C

µ2

)

π
(

1F1

(

3

2
; 1;

µ2
C

µ2

))2
− 1 . (5)

Unfortunately, the coefficient of variation depends on both

parameters µ and µC .

B. Estimation of the Rician distribution parameters

In order to estimate the parameters of the Rician distribu-

tion, several methods can be investigated :

• The method of moments using the two first moments (see

equation 4). In this case, no explicit expressions involving

these moments m1 and m2 can provide µ and µC . Only

a numerical scheme allows this inversion.

• The method of moments using the second moment and

the fourth one. Knowing the following properties for the

Kummer function 1F1 [10] :

1F1 (2; 1;x) = (1 + x) ex ,

1F1 (3; 1;x) =
1

2

(

2 + 4x+ x2
)

ex ,

the equation (4) provides simple expressions of the sec-

ond moment and the fourth one :
{

m2 = µ2 + µ2
C ,

m4 = 2µ4 + 4µ2
Cµ

2 + µ4
C .

(6)
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Fig. 2. Rician distribution for a given speckle (µ = 100) and for various
values of µC . For µC → 0, the Rician distribution tends to a Rayleigh
distribution.

Knowing the second and fourth moments : m2 and m4,

we obtain the estimates of the two parameters µC and µ

by the following explicit equations:

µC =
(

2m2
2 − m4

)
1
4 , (7)

µ =
(

m2 −
(

2m2
2 − m4

)
1
2

)

1
2

. (8)

• The Maximum Likehood estimation method, which can

only be used with an iterative scheme (see [11]).

All these methods can provide correct estimation of µ and

µC . Meanwhile these two parameters are strongly linked in

this parametrization so that all classical statistical values

(moments, cumulants, the coefficient of variation, . . . ) depend

on both the two parameters µ and µC .

III. A NEW PARAMETRIZATION FOR THE RICIAN

DISTRIBUTION

A. Theory

If the Rician distribution is traditionnaly described with µ

(the speckle noise) and µC (the target), the key idea of this

new parametrization is to introduce the ratio between these

two parameters. By this way, we consider two parameters : µ

(the speckle noise) and a new parameter λ so that

λ =
µC

µ
⇔ µC = λ µ . (9)

λ can be viewed as a kind of tuning parameter concerning the

deterministic target: the higher the parameter, the stronger the

effects of the target. It thus has an intuitive physical meaning,

measuring the relative strength of the target compared to the

speckle contribution. Taking into account the link with random

walks with drift to describe the speckle and the deterministic

target, the parameter λ will be called relative drift in the

following.

The Rician distribution from equation (1) can be rewritten

as:

RC2 [µ, λ] (x) =
2x

µ2
e
−
(

x2

µ2
+λ2

)

I0

(

2λ
x

µ

)

. (10)
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Knowing the relation given by equation (2), we can derive

the following property:

lim
λ→0

RC2 [µ, λ] (x) =
2x

µ2
e
− x2

µ2 , (11)

i.e. the Rician distribution tends to the Rayleigh distribution

if the target vanishes.

In this new framework, the moments can be written as:






















m1 = µ e−λ2

Γ
(

1 + 1

2

)

1F1

(

1 + 1

2
; 1;λ2

)

,

m2 = µ2 e−λ2

1F1

(

2; 1;λ2
)

= µ2
(

1 + λ2
)

,

mr = µr e−λ2

Γ
(

1 + r
2

)

1F1

(

1 + r
2
; 1;λ2

)

.
(12)

Moreover, the coefficient of variation γ depends only on λ:

γ =

√

eλ2

1F1 (2; 1;λ2)
(

Γ
(

1 + 1

2

)

1F1

(

1 + 1

2
; 1;λ2

))2
− 1 , (13)

and, with the help of another property of Kummer functions

[10]:

1F1

(

3

2
; 1;x

)

= e
x
2

(

(1 + x) I0

(x

2

)

+ x I1

(x

2

))

,

(where I0 and I1 are modified Bessel functions of the first

kind), the following expression can be easily derived:

γ =

√

√

√

√

4 eλ2 (1 + λ2)

π
(

(1 + λ2) I0
(

λ2

2

)

+ λ2 I1
(

λ2

2

))2
− 1 , (14)

so that, for λ ∈ [0,∞[, we have γ ∈ [0,
√

4−π
π

].

Fig. 3. Variation coefficient γ of the Rician distribution RC2 [µ, λ] for various
values of λ as given by the equation (14). The asymptotic behavior (red curve)
when λ → ∞ is 1

√

2λ
.

B. A new method to estimate the Rician distribution parame-

ters (Mγ method)

The main point of this new approach is the fact that the

coefficient of variation depends only on one unique parameter:

λ. Meanwhile the mathematical expression (14) is an implicit

expression and no analytical relation can provide λ as a

function of γ.

Nevertheless, if we plot γ as a function of the relative drift

λ (figure 3), it seems to be possible to invert numerically this

relation. By using a RPM (Rational Polynomial Model) [12],

we propose the following approximation λ̃ given by equation

(15).

By this approach, it is possible to deduce the Rician

distribution parameters knowing the two first moments :

• we obtain λ̃, an approximation of the relative drift λ with

the help of the equation (15)

• then, an approximation of µ, µ̃, can be derived from

equation (12) :

µ̃ =

√

m2

1 + λ̃2
. (16)

Let us remark that, knowing some properties of modified

Bessel functions, it is easy to derive the following asymptotic

properties from the equation (14) :






γ|λ→∞ ≃ 1√
2λ

,

γ|λ→0+
≃ 0.52272 − 0.15224 λ4 .

(17)

Moreover, as the variance of the coefficient of variation

is given by the equation (derived from the definition of the

coefficient of variation and Kendall&Stuart method [13]) :

var(γ) =
1

N

1

4

4m3
2 − m2

2 m
2
1 + m2

1 m4 − 4m1 m2 m3

m4
1 (m2 − m2

1)
.

(18)

with N the number of samples used for the estimation, this

variance depends only on the λ parameter in the case of a

Rician distribution modelled with µ and λ.

Figure 4 shows examples of Rice histograms and the fitting

pdf obtained with λ estimation. As it can be observed, the Rice

distribution looks like a Rayleigh distribution when the relative

drift λ is small and tends towards a Gaussian distribution when

λ increases.

C. Comparison of parameter estimation methods

To demonstrate the computational interest of using equa-

tion (15) for λ estimation, we compare different estimation

methods:

• method of moments (MM)

• maximum likelihood (ML) method

• estimation based on the coefficient of variation (Mγ)

We assume that we have N samples xi, yielding sample

moments m̂r : m̂r = < {xr} > = 1

N

∑N
i=1

xr
i . For these

three methods we aim to obtain λ̂ and µ̂, the estimates of λ

and µ.

For the method of moments, it can be shown (using the

properties of Kummer functions [10] [14]) that we have the

following equations :

{

m2 = µ2
(

1 + λ2
)

,

m4 = µ4
(

2 + 4λ2 + λ4
)

,
(19)

leading to the moment estimates:






















λ̂ =

(

2 m̂2
2 − m̂4

)
1
4

(

m̂2 − (2 m̂2
2 − m̂4)

1
2

)
1
2

,

µ̂ =
(

m̂2 −
(

2 m̂2
2 − m̂4

)
1
2

)
1
2

.

(20)
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λ̃ ≃ 1.− 2.864928 γ − 3.193363 γ2 + 15.715797 γ3 − 11.713746 γ4

−0.017883+ 1.815109 γ − 7.318177 γ2 + 8.717601 γ3 − 2.362803 γ4
(15)
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Fig. 4. Two simulations of Rician pdf for two λ parameters (λ = 1 and 10
from left to right), with µ = 100 and N = 65536 samples). For small λ
values, the behaviour is close to a Rayleigh-Nakagami law (and tends towards
it for λ → 0). For high λ values, the pdf is close to a Gaussian pdf.

For the maximum likelihood estimates, it can be shown that

the following equations hold :


















λ̂ = 1

N

N
∑

i=1

xi

µ̂

I1

(

2λ̂ xi

µ̂

)

I0

(

2λ̂ xi

µ̂

) ,

m̂2 = µ̂2

(

1 + λ̂2

)

.

(21)

An iterative scheme can be defined from these two equations

to derive the ML estimates.

In the case of high λ values, it is possible to consider an ap-

proximation of the Rice distribution by a Normal distribution.

In this case, we have the following estimates:

µ̂C = m̂1 , (22)

giving :
{

λ̂ = m̂1
√

2(m̂2−m̂2
1)

,

µ̂ =
√

2 (m̂2 − m̂2
1) .

(23)

This method based on the Gaussian approximation of the pdf

will be denoted by MN. We give in the following tables (table

I for lower values of λ and table II for highest values of λ)

a comparison of these estimation methods. The number of

temporal samples to compute an estimation is indicated by

N , and R = 128 repeats are done to compute statistics on the

estimators. Indeed, the R estimated values of λ̂ and µ̂ are used

to compute the averaged values (λ̂ and µ̂), the Mean Square

Errors (referred to as σ2
λ and σ2

µ and measuring precision)

and the Mean Absolute Errors (referred to as Eλ and Eµ and

measuring accuracy).

By varying the number of temporal samples N (from N =
100 to N = 104), it is also possible to verify that σλ ∝ 1√

N

and σµ ∝ 1√
N

. For example, we obtain for the Mγ method

for λ = 4. and µ = 100. :

σλ ∼ 2.81√
N

, and σµ ∼ 66.√
N

. (24)

The following conclusions can be given. First, it can be

computed from the tables that there are no significant bias in

Speckle µ = 100.0 N=100

λ=1.0 λ=3.0

ML λ̂ = 1.038 µ̂ = 98.491 λ̂ = 3.049 µ̂ = 98.988
σλ = 0.243 σµ = 12.056 σλ = 0.249 σµ = 7.068
Eλ = 0.204 Eµ = 9.564 Eλ = 0.206 Eµ = 6.012

MM λ̂ = 1.050 µ̂ = 97.711 λ̂ = 3.056 µ̂ = 98.853
σλ = 0.302 σµ = 13.674 σλ = 0.264 σµ = 7.356
Eλ = 0.237 Eµ = 10.745 Eλ = 0.221 Eµ = 6.360

Mγ λ̂ = 1.019 µ̂ = 99.088 λ̂ = 3.065 µ̂ = 98.505
σλ = 0.271 σµ = 12.167 σλ = 0.248 σµ = 6.993
Eλ = 0.210 Eµ = 9.440 Eλ = 0.208 Eµ = 6.006

TABLE I
COMPARISON OF THE ESTIMATES OF RICIAN PARAMETERS FOR SMALL λ

VALUES WITH THE METHODS: ML, MM, Mγ (128 REPEATS). THE

PARAMETERS ARE µ = 100. AND λ = 1 AND 3. THE NUMBER OF

SAMPLES IS 100. FOR THE ML METHOD, TO REACH CONVERGENCE 44
ITERATIONS ARE NECESSARY FOR λ = 1, AND 14 FOR λ = 3.

the estimations (with 95% confidence). Concerning precision,

the ML estimates usually provide the minimum variance as

expected. Nevertheless, for λ lower than 6., the proposed

method based on the coefficient of variation gives quite close

results for the precision, whereas the MM method gives the

worst results due to the computation of higher order moments.

For high λ values, it is recommended to use the Normal

approximation of the Rice pdf and equation (23) for parameter

estimation.

Concerning the computation time, the computational burden

of the iterative process necessary for ML estimates is high.

Indeed, it generally requires more than one hundred iterations

and involves two Bessel functions computations at each itera-

tion and for each sample; at the same time, the Mγ methods

Speckle µ = 100.0 N=100

Cas λ=4.0 Cas λ=7.5

ML λ̂ = 4.052 µ̂ = 99.335 λ̂ = 7.512 µ̂ = 100.271
σλ = 0.305 σµ = 6.834 σλ = 0.517 σµ = 6.737
Eλ = 0.253 Eµ = 5.864 Eλ = 0.463 Eµ = 5.915

MM λ̂ = 4.061 µ̂ = 99.195 λ̂ = 7.543 µ̂ = 99.896
σλ = 0.323 σµ = 7.255 σλ = 0.539 σµ = 6.947
Eλ = 0.262 Eµ = 6.001 Eλ = 0.479 Eµ = 6.044

Mγ λ̂ = 4.058 µ̂ = 99.176 λ̂ = 7.599 µ̂ = 99.188
σλ = 0.302 σµ = 6.729 σλ = 0.554 σµ = 7.042
Eλ = 0.251 Eµ = 5.806 Eλ = 0.504 Eµ = 6.309

MN λ̂ = 4.148 µ̂ = 98.343 λ̂ = 7.603 µ̂ = 99.529
σλ = 0.310 σµ = 7.023 σλ = 0.542 σµ = 6.888

TABLE II
COMPARISON OF THE ESTIMATES OF RICIAN PARAMETERS FOR HIGHER λ

VALUES WITH THE METHODS: ML, MM, Mγ AND MN (GAUSSIAN

APPROXIMATION) (128 REPEATS). THE PARAMETERS ARE µ = 100. AND

λ = 4 AND 7.5. THE NUMBER OF SAMPLES IS 100. FOR THE ML
METHOD, TO REACH CONVERGENCE 13 ITERATIONS ARE NECESSARY FOR

BOTH λ VALUES.
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requires a unique estimation of the first two moments and less

than twenty arithmetical operations. Finally, the Mγ method

is 370 times faster than the ML approach in the case of low

λ values, and 7000 times faster in the case of high λ values.

D. A link between Rician distribution and Ferreti criterion

In their famous paper about permanent scatterers, Ferreti et

al. [15] deal with the Dispersion index DA :

DA =
σA
mA

, (25)

where mA and σA are the mean and the standard deviation

of the amplitude values corresponding to a given point of a

temporal stack. Actually, this Dispersion index can be seen as

the coefficient of variation of the Rician distribution associated

to the target. Targets can be seen as permanent scatterers if they

exhibit DA values under a given threshold (typically DA <

0.25). With the help of equation (15), we have the following

relation :

DA < 0.25 ⇔ λ > 2.679 , (26)

so that a Rician distribution corresponding to a target defined

by its value λ can be viewed as a Permanent Scatterer if

λ > 2.679, meaning that the target is 2.7 higher than the

surrounding speckle.

E. Preliminary experiments

To illustrate the interest of the temporal Rice distribution,

we present the temporal histogram of a permanent scatterer

point (figure 5). The λ value is 2.81 (DA = 0.241) and the

number of used dates is 134 (Fos oil terminal SLC Sentinel-1

images, France).

0 50 100 150 200 250

0

50

100

150

200

250

0
50

100
150
200

0 50 100 150 200

Pixel position : (112,202) 
 λ= 2.81   = 0.241

Fig. 5. Temporal histogram for a permanent point. On the left the average
stack of the images with the permanent scatterer located in (112,202). On the
right, the temporal evolution of the point and its histogram showing a Rice
behaviour (134 temporal samples are used).

The following points have to be addressed in the future.

First, the number of samples remains limited even with very

long time series of 134 images. Nevertheless it is not possible

to use spatial samples to increase the number of samples, since

the surrounding pixels will probably not contain the same

dominant phasor. Besides, the temporal correlation between

the samples should be taken into account. The last point to

be investigated is the phase information after the correction of

the interferometric phase contribution.

IV. CONCLUSION

In this paper we have proposed a new parametrization

for the Rician distribution and introduced a new parameter

the relative drift (ratio of target backscattering to speckle)

to characterize the pdf. We also proposed an efficient nu-

meric estimation of this parameter through the coefficient

of variation. Different estimation methods for Rician pdf

parameters have been presented and compared, showing the

RPM approximation based on the coefficient of variation is a

good compromise between the variance of the estimate and the

computation time. Furthermore, the link between permanent

scatterer criterion and this new parameter has been established.

The proposed parametrization and associated parameter

estimation method can be useful for many applications relying

on the Rician distribution. In particular, further work will be

dedicated to the exploitation of this parametrization to detect

and characterize strong targets in long temporal SAR series.

Since for long-time series the µ contribution is rarely constant,

further work will be dedicated to define strategies allowing to

select samples with similar µ values.
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