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Abstract

Speckle noise strongly affects Synthetic Aperture Radar (SAR) images, causing strong intensity fluctuations that make
them difficult to analyze. Although many speckle reduction algorithms have been proposed, how to effectively deal with
the spatial correlations of speckle remains an open question, especially in the most recent deep learning approaches. This
paper tries to address this problem. Existing approaches to tackle the speckle correlations are described. Then, a standard
training strategy for deep learning is proposed. Two models are trained and the increased robustness brought by including
a Total Variation (TV) term in the loss function is analyzed on Sentinel-1 images.

1 Introduction

Earth observation, damage assessment, biomass estimation
are a few examples of fields that benefit from the use of
Synthetic Aperture Radar (SAR) images. SAR sensors
have the ability to acquire data at any time and under (al-
most) all weather conditions, allowing for a continuous and
constant coverage of the Earth surface. With the launch of
the sensors of the Sentinel family and their accompanying
open access policy, a huge amount of data are continuing
released, fueling the research in several domains such as
climate change studies.
However, SAR images are difficult to interpret. Indeed,
single-look SAR images display a strong multiplicative
noise, the so-called speckle. One may object to the use of
the term "noise", since techniques such as interferometry
retrieve useful information from the correlations between
those fluctuations in two images acquired at slightly dif-
ferent incident angles. Yet, when considering a single in-
tensity image, speckle fluctuations impede the application
of standard image processing technique and require some
denoising step.
There exist different strategies to tackle this denoising
problem. Bayesian approaches rely on a statistical model
of the reflectivities and of the speckle component. Such
methods have been developed both in the spatial domain
and in some transformed domain and include the regu-
larization techniques. Among non-Bayesian approaches
we can find morphological filters and approaches resorting
to machine learning, in particular methods based on deep
neural networks.
In the literature, a great effort has been devoted to speckle
suppression over the last decades. The simplest operation
is called multilooking and consists in averaging a number
of independent acquisitions to reduce the noise fluctuations
while preserving the mean intensity value. Multilooking

can be applied either (i) in the temporal domain, when sev-
eral images are acquired over an area where no significant
changes have occurred, (ii) in the spatial domain, by aver-
aging pixels (or linearly combining them [1] [2] [3] [4] [5]
[6]) within a fixed window, or (iii) in the spectral domain
(by averaging intensity images obtained from sub-aperture
synthesis). However, temporal stability is rarely reached
(reflectivities vary during time due to changes such as veg-
etation growth or soil moisture evolution), which limits
the direct application of (i), and spatial (ii) or spectral (iii)
multi-looking severely degrade the spatial resolution.
The more sophisticated non-local approaches, that rely on
an adaptive selection of noisy patches to estimate the noise-
free image, have more recently been proposed. Among
them, we can cite the PPB filter [7] and its extensions to in-
terferometry [8] and polarimetry [9], NL-SAR [10], SAR-
BM3D [11], which extends the block-matching 3D algo-
rithm to take into account the specificities of SAR images,
but also [12, 13, 14] and MuLoG [15], which proposed a
general scheme to include any Gaussian denoiser in an it-
erative process to remove speckle from SAR acquisitions.
Most recently, the advancements of deep learning algo-
rithms for image restoration, in particular for additive
white Gaussian noise (AWGN) suppression, has motivated
several extensions to radar imaging [16, 17, 18, 19, 20].
Deep learning algorithms require a lot of training data,
namely pairs of clean-noisy images, in order to general-
ize well. This makes it non-trivial to extend approaches
initially developed for computer vision. In particular, sev-
eral issues need to be addressed: the scarcity of noise-free
images in remote sensing, the high dynamic range of SAR
images, the statistical distributions that strongly differ from
those observed on natural images, or the differences that
occur when considering different sensors.
This paper is devoted to reviewing the strategies that are
applied in the despeckling algorithms in order to handle the



spatial correlations of speckle. Given the numerous recent
works in despeckling methods based on deep-learning, we
focus a part of our discussion on those approaches. In the
first section, we recall the statistical model of speckle noise
that underlies most methods. Then, the problem of the
spatial correlations is made evident by applying on Sen-
tinel 1 images some speckle reduction methods that assume
speckle decorrelation. Strategies to mitigate the impact of
speckle correlations are then described and a more exten-
sive analysis on deep learning is provided.

2 Speckle model

Inside a resolution cell, several scatterers indistinguish-
able from the system are present, and each one yields a
backscattered echo. The radar does not resolve each in-
dividual contribution but only measures the sum of all
backscattered echoes, i.e., A exp jφ =

∑
iAi exp jφi.

Since the phases are highly varying and can sum in a con-
structive or destructive way, the amplitude of the resulting
signal seem to vary randomly [21].
Under the assumption of a large number of independent
and identically distributed scatterers, Goodman et al. [22]
developed the fully-developed speckle model where the
measured intensity I is related to the underlying reflectivity
R and the speckle S by the multiplicative model

I = RS , (1)

where the speckle component S follows a Gamma distribu-
tion described by:

p(S) =
LL

Γ(L)
SL−1 exp (−LS) , (2)

where L ≥ 1 represents the number of looks and Γ(·) is
the gamma function. It follows that the component S has
unitary mean and a variance that is inversely proportional
to the number of looks: Var[S] = 1/L. The speckle com-
ponent S at each pixel of the SAR image is assumed to be
independent and identically distributed (i.i.d.).
This model is the funding statistical model of the speckle
reduction techniques developed in the last decades. The
i.i.d. assumption is certainly the least representative of real
SAR imaging system [21]. During the synthesis of a SAR
image (i.e., the focusing of the radar image), some over-
sampling and spectral windowing are applied in order to
produce an image with a given pixel size and with limited
sidelobes [23]. As a downside, these operations introduce
spatial correlations in the speckle [24]. Speckle reduction
methods therefore require some adaptation in order to be
robust to these correlations.

3 Speckle reduction in the presence
of spatial correlations

3.1 Illustration of the problem
One-look SAR images are strongly affected by speckle
noise. Most recent speckle reduction techniques are quite

Figure 1 Recent speckle reduction methods such as
MuLoG or SAR-CNN perform very well on simulated
speckle (left column, in blue). Direct filtering of real im-
ages however leads to many artifacts, as illustrated on this
single-look Sentinel 1 image (central column, in green).
Sub-sampling the image by a factor 2 reduces the speckle
correlations and lead to a much better restoration, at the
cost of a resolution loss (right column, in green).

effective at removing most of these fluctuations, when eval-
uated on synthetic speckle, see left column of Fig. 1. Di-
rect application of these methods on a real image leads to
serious artifacts, see the despeckling results obtained on a
Sentinel-1 image shown on the central column of Fig. 1.
Those artifacts are due to the mismatch between the the-
oretical model of speckle considered (i.i.d. speckle com-
ponent) and the actual speckle component (spatially corre-
lated due to oversampling and spectral windowing).
A simple method to reduce the impact of the spatial corre-
lations of speckle is to downsample the SAR image. A
good compromise between reduction of correlation and
preservation of resolution is to apply a downsampling fac-
tor of 2, as shown in Fig. 1, right column. The artifacts are
suppressed, however the resolution is not as good as the
resolution achieved on the numerical simulation where no
downsampling was necessary.
Another example of artifacts due to spatial correlations of
the speckle can be seen in the paper [17], where PPB algo-
rithm and SAR-CNN do not perform as expected because
no downsampling is applied to the real image.
These examples show that it is essential to ensure that the
speckle has no significant spatial correlations prior to ap-
plying some speckle reduction methods from the literature.



In the next section, alternative solutions to downsampling
are analyzed.

3.2 Strategies to denoise SAR images with
correlated speckle

One possibility to successfully apply algorithms based on
Goodman’s fully developed model and the i.i.d. assump-
tion is to revert the steps performed by the data providers.
In [24] and [25], Abergel et al., provide a method that pre-
serves the spatial resolution by correctly resampling SAR
images and extracting bright targets. A so-called pseudo-
raw image is then recovered, which is the image that would
have been acquired if the data was sampled at the Shannon-
Nyquist sampling frequency and no spectral weighting was
applied (i.e., no apodization). Based on the knowledge
of the parameters of the sensor contained in the metadata
of the images, deramping, demodulation and deapodiza-
tion can be carefully computed to obtain an image where,
in homogeneous regions, speckle presents almost no spa-
tial correlation [25]. The pseudo-raw image can then be
filtered using standard speckle reduction methods. The
over-sampling factor and the spectral apodization can be
re-applied to the resulting image in order to obtain an im-
age comparable to the original image.
This approach applies pre- and post-processing steps that
require the knowledge of sensor’s parameters and are
sensor-specific. However, this is not always the case. In
[26], Lapini et al. propose a blind speckle decorrelation al-
gorithm. After having detected and removed the point tar-
gets according to a threshold empirically set, least square
(LS) optimization is performed to estimate and invert the
point spread function (PSF) of a SAR acquisition system.
At this step, the reflectivity can be estimated by filtering
the image with a despeckling algorithm developed under
the uncorrelated speckle hypothesis. As the PSF is applied
independently on each polarimetric channel, Arienzo et al.
[27] have extended this method to PolSAR data.
These methods, however, come at a computational cost. If
one wants to process an image in a more automatic and
straightforward way, the despeckling algorithm has to in-
clude some robustness to spatial correlations. In NL-SAR
[10], robustness to noise correlation is granted by an adap-
tive kernel that is learned by analyzing a homogeneous area
in order to map patch similarities to weight and account
for the improved similarities observed when speckle gets
spatially correlated. NL-SAR generalizes non-local ap-
proaches which combine similar patches to reduce speckle
fluctuations. Beyond the adaptation of the kernel that maps
similarities to weights, when the speckle is correlated,
larger patches and extended search areas are considered to
maintain a satisfying noise suppression, see [10].
NL-SAR gives its best in polarimetric and interferomet-
ric configurations. In the case of single-channel SAR (in-
tensity) images, deep learning approaches represent the
current state-of-the-art. Various attempts to obtain an al-
gorithm robust to correlations have been made. Chier-
chia et al. [16] propose to create an ad-hoc dataset to
train their model, named SAR-CNN, by exploiting a large
stack of multitemporal data. By selecting regions where no

changes have occurred, an almost speckle-free reference
is produced by multitemporal multilooking. The network
is then trained to reproduce the speckle-free reference im-
ages starting from the actual observations. This approach
requires the availability of a large number of acquisitions
on the same area and the definition of "no changes" is not
well-defined.
Multitemporal stacks without changes are also exploited in
the work of Boulch et al. [19], where a general denoising
framework requiring no groundtruth data is proposed. It is
based on the intuition that, if a network is trained to repro-
duce a speckled image from another speckled image repre-
senting the same scene, it will end up producing a speckle-
free data. The use of real acquisitions allows the network
to also learn the spatial correlation structure of the speckle
component.
Other training strategies have also been proposed [17, 18,
20]. No standard exist yet in deep learning for SAR im-
age despeckling, which also makes it difficult to compare
different architectures and reproduce the published results.
In the next section, we propose a standard training strategy
and analyze the impact of including in the training loss the
Total Variation (TV), defined in equation (4), to attenuate
the effect of the correlation.

4 Deep Learning for SAR image de-
speckling: training methodology
and robustification with TV

In [17] and [18], natural images corrupted with synthetic
speckle noise are used to generate noisy SAR-like data.
In [20], natural images are used to pre-train the network,
which is then fine-tuned using SAR images: stacks of data
are averaged to produce a clean reference and synthetic
noise is added to them. To obtain the results that illustrate
this paper, we implemented, instead, the following train-
ing strategy: a speckle-free reference is created by aver-
aging a multitemporal stack of images acquired over the
same scene and the remaining speckle fluctuations are sup-
pressed using MuLoG+BM3D with the appropriate equiv-
alent number of looks. No downsampling is performed, as
this denoising step is applied on already multilooked data
to suppress small fluctuations of speckle, limiting the influ-
ence of correlation. Synthetically generated speckled im-
ages are then created by following Goodman’s model and
the i.i.d. assumption and using the speckle-free reference
images as images of the reflectivities R.
To study the role of a TV term in terms of improved robust-
ness to speckle correlations, we have trained two models:
the SAR-CNN introduced in [16] and the U-Net proposed
in [28], with an addition of a residual skip connection. The
logarithm of amplitude images are used as inputs to the
networks. The networks are trained to extract the speckle
component (this corresponds to a residual learning strat-
egy). The estimated reflectivities can then be obtained from
the speckled image and the speckle component. While im-
ages with simulated speckle are used during training, real
single-look images (acquired over areas not belonging to



the training set) are used in the testing set. The networks
are trained using two different loss functions in order to an-
alyze their differences. In the first case, an `1 loss is used:

C`1 =
N∑
i=1

‖fCNN(ỹi)− x̃i + (ψ(L)− log(L)) · 1‖1 (3)

where ỹi and x̃i are a pair of log-transformed noisy and
clean amplitude images. Bias is corrected at the network’s
output. We define the Total Variation term on the denoised
image fCNN(ỹi) by:

C ε
TV =

∑
p,q

[
(fCNN(ỹi)p+1,q − fCNN(ỹi)p,q)

2
+

(fCNN(ỹi)p,q+1 − fCNN(ỹi)p,q)
2

+ ε2
]1/2

, (4)

where ε is a parameter that is small compared to the typical
contrast between log-transformed values. A joint loss that
combines the two previous losses is defined by:

C`1+TV = C`1 + λC ε
TV (5)

The use of the Total Variation term is justified by its ef-
fectiveness in reducing spurious details, characterized by
a high total variation, that strongly affect the estimations
of the speckled image when speckle is correlated. Penal-
izing reconstructions with a large Total Variation improves
the robustness while preserving sharp edges (which have a
low total variation).
The two loss functions C`1 and C`1+TV are tested on im-
ages with synthetic noise (Fig. 2) and real images (Fig. 3).

Adding the total variation terms has the effect of smooth-
ing the results. In the simulations with synthetic speckle,
this leads to the loss of some small details. However, when
real images with correlated speckle are considered, the net-
works trained with the combined loss C`1+TV lead to re-
sults with far fewer artifacts. In order to obtain this ro-
bustness, a large value of λ has been chosen (λ = 1.2).
Compared to the sub-sampling strategy, the results seem
slightly worse. In particular the bright targets in Fig. 3 are
well-preserved by SAR-CNN applied to a down-sampled
image while they disappear when the TV term is employed.

5 Conclusions

In this paper we investigate different strategies that one can
adopt when dealing with correlated SAR images. Down-
sampling the image may seem to be a crude method, as it
leads to an image with a poorer resolution, yet at the end it
provides the best results when single-look images are con-
sidered.
When training a neural network with the Total Variation
term in the loss function, the robustness to speckle correla-
tions is improved, but this requires choosing a high value
for the regularization parameter to avoid spurious struc-
tures in single look images. As a consequence, small de-
tails are not well preserved. This strategy seems more suit-
able when the number of looks is larger (see results pro-
posed in [17]): this is the case of Ground Range Detected

Figure 2 Results of MuLoG+BM3D and the two deep
learning methods, SAR-CNN and U-Net, on an image
with synthetic 1-look uncorrelated speckle

images, whose Equivalent Number of Looks is around 4.
A much lower regularization parameter is then required to
obtain results that are immune to the spatial correlations of
speckle, and hence much fewer small details are lost in the
restoration process.
In the future, it would be interesting to train a deep learn-
ing model specifically to denoise correlated data. The strat-
egy proposed to create an ad-hoc training set of SAR im-
ages can be extended to include the resampling method
discussed in section 3.2, allowing the learning from im-
ages generated with a synthetic correlated speckle noise.
An alternative approach would be to exploit multitempo-
ral series of SAR images to learn to reduce speckle noise
directly from the real SAR images.
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