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Abstract
The recent enthusiasm for artificial intelligence (AI) is due principally to

advances in deep learning. Deep learning methods are remarkably accurate,
but also opaque, which limits their potential use in safety-critical applications.
To achieve trust and accountability, designers and operators of machine learn-
ing algorithms must be able to explain the inner workings, the results and the
causes of failures of algorithms to users, regulators, and citizens. The orig-
inality of this paper is to combine technical, legal and economic aspects of
explainability to develop a framework for defining the ”right” level of explain-
ability in a given context. We propose three logical steps: First, define the
main contextual factors, such as who the audience of the explanation is, the
operational context, the level of harm that the system could cause, and the
legal/regulatory framework. This step will help characterize the operational
and legal needs for explanation, and the corresponding social benefits. Second,
examine the technical tools available, including post hoc approaches (input
perturbation, saliency maps...) and hybrid AI approaches. Third, as function
of the first two steps, choose the right levels of global and local explanation
outputs, taking into the account the costs involved. We identify seven kinds
of costs and emphasize that explanations are socially useful only when total
social benefits exceed costs.

1We would like to thank Thomas Bonald, Jean-Louis Dessalles, Juliette Mattioli, Tanya Perel-
muter, Fabian Suchanek, Xavier Vamparys and Tiphaine Viard for insightful discussions during the
preparation of the manuscript. This research has been conducted within the Research Chair ”Dig-
ital Finance” under the aegis of the Risk Foundation, a joint initiative by Le Groupement Cartes
Bancaires CB, la Banque Postale, Cartes Bancaires and Telecom Paris and University of Paris 2
Panthéon-Assas, the Research Chair Explainable Artificial Intelligence for Anti-Money Launder-
ing, and the Research Chair Data Science and Artificial Intelligence for Digitalized Industry and
Services.
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1 Contextual factors drive explainability

The recent enthusiasm for artificial intelligence (AI) is due principally to ad-
vances in deep learning, and particularly the use of (deep) neural networks. One
of the key characteristics of neural networks is that they automatically create and
learn their own internal rules from data, without being explicitly programmed. The
internal parameters are virtually incomprehensible for humans.1

Machine learning is not the only AI technology available. Symbolic AI has been
around for decades and includes several discrete branches. Symbolic AI approaches
incorporate symbols, logical rules, graphs and/or knowledge bases that reflect hu-
man thought. But the various symbolic AI approaches – called GOFAI, “good old
fashioned AI” (Haugeland, 1985) – had difficulty dealing with large amounts of real-
world data. Hybrid AI approaches seek to capture the best of symbolic and machine
learning approaches.

Whether symbolic or based on machine learning, any AI system can become
so complex as to be inscrutable.2 And inscrutable algorithms cannot generally be
deployed in safety-critical applications such as autonomous vehicles, autonomous
weapons, medical devices, or industrial maintenance. The ability to explain the
inner workings of the algorithm – to system designers, users, regulators, and citizens
– is critical to achieve trust and accountability. Explainability of algorithms has
therefore become a major field of multidisciplinary research, involving data science,
statistics, applied mathematics, computer science, sociology, economics and law.

While there is general agreement on the need for explainability (OECD, 2019a),
policy documents lack clarity on what explainability means and how it should be
applied in different contexts. The term ‘explainability’ is vague - it means many
things in many contexts. Part of the complexity is due to the fact that explainabil-
ity comes in many forms, and serves many purposes. Explainability can help users
of Google’s search engine understand the PageRank system, or help investigators

1Neural networks are both highly accurate and opaque. A highly accurate image classifier can
still make mistakes, and the mistakes when they occur will appear shockingly stupid to a human
(Dessalles, 2019). For example, an image classifier that has been taught to distinguish dogs from
wolves may be fooled into thinking that a dog is a wolf simply because the image contains snow
(Selbst and Barocas, 2018).

2Inscrutability means that “the rules that govern decision-making are so complex, numerous,
and interdependent that they defy practical inspection and resist comprehension” (Selbst and
Barocas, 2018).
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understand why an autonomous vehicle crashed; it can help doctors learn to trust
AI-based diagnostic tools and understand their limitations; it can help detect hid-
den discrimination in credit scoring algorithms, or improper use of personal data.
Explainability can help an individual understand why he or she was singled out for
a tax audit or denied admittance to a university; it can reveal statistical bias, such
as when a facial recognition algorithm has been trained mostly on faces with white
skin. Explainability can permit individuals to exercise their constitutional right to
contest government decisions. There are almost as many forms of explainability
as there are AI-related problems that need to be understood and solved. For that
reason, explainability can never be separated from the underlying AI-related harm
or concern (fundamental rights, usability, safety) that explainability is seeking to
address.

The purpose of this paper is to unpack the concept of explainability and place it
in the broader topic of AI ethics and accountability. We argue that to develop a safe
and ethical AI by design, i.e. an AI that respects a set of legal, ethical and safety
rules that can be adapted to context, a multidisciplinary approach to explainability
is required, and that the approach must use context as the starting point.

Existing works on explainable AI focus on the computer science angle (Ribeiro
et al., 2016a), or on the legal and policy angle (Selbst and Barocas, 2018). The
originality of this paper is to integrate technical, legal and economic approaches
into a single methodology for reaching the optimal level of explainability. The
technical dimension helps us understand what explanations are possible and what
the tradeoffs are between explanability and algorithmic performance. As noted by
the European Commission, the ”manner in which the information is to be provided
should be tailored to the particular context” (European Commission, 2020, p. 20).
Explainability is context-dependent, and context depends on law, economics and
sociology. Integrating all these dimensions is necessary to reach flexible and context-
specific explainability.

Our approach is illustrated in Figure 1 and can be summarized in three steps:
First, define the main contextual factors, such as who is the audience/recipient of the
explanation, the operational context, the level of harm that the system could cause,
and the legal/regulatory framework. Second, examine the technical tools available,
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including post hoc approaches (input perturbation, saliency maps) and hybrid AI
approaches. Third, as function of the first two steps, choose the right level and form
of global and local explanation outputs, taking into the account the costs involved,
including the costs of creating and storing decision logs. The form of output will
depend in part on a cost-benefit analysis.

Figure 1: Presentation of the three kinds of criteria relevant to algorithmic expla-
nations

The remainder of the paper is organized in six sections. In Section 2, we provide
a brief history of explainability and provide definitions of explainability and related
terms such as interpretability, transparency, traceability, auditability and account-
ability. In Section 3, we review the technical solutions used to provide explanations
in different machine learning models and also investigate how to incorporate explain-
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ability by design into the model via hybrid approaches. In Section 4 we examine the
regulatory environment for explainability, and in particular when the law does, and
does not, impose explanations. The law will often impose the principle of explain-
ability without defining the details. The exact form and level of explanation will
depend in part on the costs and benefits of providing explanations in the relevant
context. Section 5 examines the economics of explanations, proposing a taxonomy of
explainability costs. Sections 4 and 5 will lead to a better understanding of the con-
text, which in turn dictates what kind of explanation is needed and when. Section
6 links explainability to quality control of AI systems, and proposes a governance
framework, including an AI impact assessment and review by an independent body.
Finally Section 7 concludes by arguing that flexible and context-specific explain-
ability, including our three step methodology (context factors, technical tools and
explainability output choices) will need to be part of the AI impact assessments that
are likely to become mandatory for high-risk AI systems.

2 Explainability: History, definitions and related
concepts

Explainability of algorithms is a relatively old concept. We propose in this
section a brief overview of the history of the concept, but also a discussion on how
the concept of explainability relates to transparency and accountability.

2.1 A short history of explainability

The current interest in AI explainability leads us to forget that the subject is
at least three decades old (Selbst and Barocas, 2018). The explainability of artifi-
cial intelligence was a vibrant field of research as early as the 1970s (Shortliffe and
Buchanan, 1975). Many of the AI systems at the time were called ”expert sys-
tems,” bringing together a series of rules and knowledge bases created by humans.
The human-created rules became so complex that they defied easy comprehension
by users. This led computer scientists to study methods to make systems more
comprehensible for users (Clancey, 1983). In 1991 Swartout et al. developed an
”Explainable Expert Systems” (EES) framework in the context of a DARPA pro-
gram (Swartout et al., 1991). The emphasis was then on symbolic AI.
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Multi-layered neural networks have been widely deployed in recent years thanks
to the availability of massive data and processing power. Nevertheless neural net-
works have been studied for several decades. In 1993 Gerald Peterson wrote that
neural networks will not be used in critical applications unless people are convinced
they can be trusted to perform reliably, a statement that still holds true today.
Peterson added that achieving trust requires an understanding of the ”inner work-
ings” of the model (Peterson, 1993). Consequently even the explainability of neural
networks has been recognized as an issue for almost thirty years. The difficulties
associated with explaining the functioning of neural networks contributed to the
decline in machine-learning research during the so-called AI winters.

Research on explainability re-emerged in 2016 for three main reasons: First, the
deep learning community needed tools to explain the results of multi-layer neural
networks. Second, the 2016 European General Data Protection Regulation3 (GDPR)
sparked a new focus on explainability as a legal and human rights requirement.
Third, industrial users of AI recognized the need for explainability in building safety-
critical systems, including the incorporation of explainability in hybrid AI models
that combine machine learning and symbolic AI (see Section 3 below).

Much of the work on explainability in the 1990s, as well as the new industrial
interest in explainability today, focus on explanations needed to satisfy users’ op-
erational requirements. For example, the customer may require explanations as
part of the safety validation and certification process for an AI system, or may ask
that the system provide additional information to help the end user (for example, a
radiologist) put the system’s decision into a clinical context.

These operational requirements for explainability may be required to obtain cer-
tifications for safety-critical applications, since the system could not go to market
without those certifications. Customers may also insist on explanations in order to
make the system more user-friendly and trusted by users. Knowing which factors
cause certain outcomes increases the system’s utility because the decisions are ac-
companied by actionable insights, which can be much more valuable than simply
having highly-accurate but unexplained predictions (Welling, 2015). Understand-

3Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on
the protection of natural persons with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/46/EC.
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ing causality can also enhance quality by making models more robust to shifting
input domains. Customers increasingly consider explainability as a quality feature
for the AI system. These operational requirements illustrated in Figure 2 are dis-
tinct from regulatory demands for explainability, which we examine in Section 4,
but may nevertheless lead to a convergence in the tools used to meet the various
requirements.

Figure 2: Differences between operational and legal/regulatory needs for explana-
tions

2.2 A taxonomy of definitions: from explainability to ac-
countability

One of our first challenges is to clarify terminology. The term “explainability”
is widely used in academic and policy literature, but does not yet appear in major
dictionaries.

Purists of the English language will regret the proliferation of terms including the
suffix ”-ability”: explainability, interpretability, traceability, auditability, account-
ability. Adding ”-ability” to the end of a word transforms its meaning to “the ability,
inclination, or suitability for a specified action or condition.”4 Explainability thereby
becomes the ability, inclination, or suitability to explain, or provide an explanation.

4Unless otherwise indicated, all definitions in this section come from the American Heritage
Dictionary of the English Language, Fifth Edition, 2020.
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Interpretability becomes the ability, inclination or suitability to interpret or provide
an interpretation.

To understand the terms explainability and interpretability, we therefore need
to focus on the respective meanings of ”explain” and ”interpret.” To explain means
”to make plain or comprehensible;” to interpret means ”to explain the meaning of,”
or “to translate from one language to another.” In English,5 explain and interpret
are synonyms. To interpret means to explain, and to explain means to make some-
thing comprehensible. Data scientists prefer the word “interpretability,” whereas
most policy documents, including the 2019 OECD recommendation on AI (OECD,
2019b), now refer to AI “explainability.” But both terms mean the ability, inclina-
tion or suitability to make plain or comprehensible, or explain the meaning of, an
algorithm.6 Implicit in this definition is that the algorithm is made comprehensible
to a human (Guidotti et al., 2018). For purposes of this paper, we will continue to
use the term ”explainability” and ”interpretability” as synonyms.

A critical distinction exists between global explainability (or global interpretabil-
ity), and local explainability (or local interpretability). Global explainability means
the ability to explain the functioning of the algorithm in its entirety, whereas local ex-
plainability means the ability to explain a particular algorithmic decision (Guidotti
et al., 2018). Local explainability is also known as “post hoc” explainability. The
distinction between global and local explainability will be examined in more detail
below.

Explainability is often associated with transparency, which means “the quality or
state of being transparent;” transparent means “open to public scrutiny; not hidden
or proprietary.” In artificial intelligence, transparency generally refers to making in-
formation about the inner workings of the algorithm available for scrutiny, including
how an AI system is developed, trained and deployed (OECD, 2019a). Transparency
does not necessarily mean that the underlying information is easily comprehensible
to humans. Transparency can simply mean that the information is made available

5In French, the term ”interpretable” means ”that to which one can give a meaning” (Dictionary
of the Academie française, 9th edition), which suggests that in French ”interpretabilité” would be
linked to the understanding of a particular decision, i.e. ”local explainability”.

6Some machine learning practitioners refer to interpretability as the ability to explain the global
functioning of the algorithm to an expert, and ”explainability” as the ability to explain a particular
decision to an end-user.
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as-is. Additional work may be required to transform the raw information delivered
via transparency into something easily comprehensible. Consequently explainability
often implies transformation of raw information into something intelligible.

Transparency and explainability are part of a bigger package of measures de-
signed to achieve accountability. “Accountable” means “expected or required to
account for one’s actions; answerable.” “Accountability” therefore means the ability,
inclination or suitability to make someone answerable for his or her actions. Ac-
cording to the OECD, accountability means the ability to place the onus on the
appropriate organizations or individuals for the proper functioning of AI systems
(OECD, 2019a).

Explainability is an input to accountability, as are traceability and auditability.
Traceability means the ability to “ascertain the origin or location of something,” for
example the factors that contributed to an algorithmic decision. Traceability will
contribute to auditability, because auditors will need to be able to locate information
in order to audit (audit means “evaluate thoroughly”) the functioning of the system.
Traceability and auditability will generally require the generation of logs, i.e. “a
record, as of the performance of a machine or the progress of an undertaking.” The
practice of logging consists in the recording of certain program actions in a file either
immediately before or immediately after they have taken place (Kroll et al., 2016).

In summary, explainability and interpretability are part of transparency, and
transparency in turn contributes to traceability, auditability, and ultimately ac-
countability, as illustrated in Figure 3.

9



Figure 3: Illustration of how explainability relates to transparency and accountabil-
ity

In our taxonomy, accountability is at the top of the hierarchy, representing the
ethical AI objective to which all other elements contribute. Accountability requires a
number of desirable AI features to be present, such as respect for principles of human
values and fairness, transparency, robustness and safety (OECD, 2019a). Human
values and fairness require flexible, context-specific explanations, which we believe
can only be developed using the three-step methodology presented in this paper:
a look at contextual factors, technical tools, and explainability output parameters
chosen in part based on a cost-benefit analysis.

Not all authors would agree with our way of presenting these definitions. For
example Waltl and Vogl (2018) present transparency and interpretability as subcat-
egories of a bigger concept called explainability, whereas we place explainability as
a subset of transparency. Also, some AI practitioners consider interpretability as
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meaning a global understanding of the system (what we call global explainability)
and explainability as meaning explanation of a particular decision to a user (what
we call local explainability). The European Commission (European Commission,
2019) presents transparency as a category that includes explainability, traceabil-
ity and communication to stakeholders. Our approach places transparency further
down the value chain than the Commission’s approach. These divergences are not
important, however, except insofar as they illustrate the lack of consensus on exactly
what transparency and explainability mean.

To help sort through the terminology, we have included a glossary in Appendix A
showing how different terms are defined in various papers dealing with explainability.

2.3 Choosing a language

It is important for systems to provide descriptions in a language suited to the type
of explanation needed for the given user. Explanations oriented around traceability
and auditing will likely be more detailed and precise, whereas that same explanation
in a decision-support role could overwhelm the user and be counter-productive.

Consider, for example, a semi-autonomous vehicle. A “black box” suitable for
diagnosing catastrophic failures would require detailed explanations of all aspects of
the vehicle’s decision-making processes, such as to identify why the vehicle did not
slow for a passing cyclist. For the driver supervising such a system, the pertinent
explanation might simply be that the vehicle does not recognize the presence of the
cyclist and that she thus needs to intervene accordingly. It would be unreasonable
to expect such a driver to understand the operational details of the various techno-
logical subsystems involved in explaining why the vehicle acted in such a way, just
as it would be unreasonable to expect system’s engineers to debug the system from
a mere indication of the presence of an obstacle.

The language of the explanation thus depends on the role and expertise of the
relevant audience targeted by the explanation, as well as whether “global” or “local”
explanations are required in a particular context. The following sections explore
these latter concepts more fully.
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2.4 Global explanations provide information about the over-
all functioning of the algorithm

Global explanations are meant to give an understanding of the overall function-
ing of the algorithm. Global explanations can take many forms, going from the
communication of source code and training data, to simple overviews of the func-
tioning of the algorithm, such as Google’s explanation of how its search algorithms
work.7 The communication of source code, training and testing data would be war-
ranted (and likely required) in a high-stakes lawsuit or investigation relating to an
accident. However, in other situations, disclosure of source code may offer little
value to global explainability (Selbst and Barocas, 2018; IEEE, 2019).

For most run-of-the-mill explainability situations, global explainability might be
achieved by a descriptive overview of how the algorithm functions (see Figure 4),
somewhat like a user’s manual would explain the functioning and use limitations of
a car. The IEEE proposes a list of minimum information that might be included in
such a user’s manual (IEEE, 2019, p. 245):

• nontechnical procedural information regarding the employment and develop-
ment of a given application of autonomous and intelligence systems;

• information regarding data involved in the development, training, and opera-
tion of the system;

• information concerning a system’s effectiveness/performance;

• information about the formal models that the system relies on; and

• information that serves to explain a system’s general logic or specific outputs.
7Google’s explanations are available here.
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Figure 4: Overview of global explanations

For the European Commission, the user’s manual approach would include ”clear
information...as to the AI system’s capabilities and limitations, in particular the
purpose for which the systems are intended, the conditions under which they can
be expected to function as intended and the expected level of accuracy in achieving
the specified purpose”(European Commission, 2020, p. 20). The level of detail of
the user’s manual will depend on the level of potential risk of the system. Where
information might reveal trade secrets, or be misused to manipulate the system, the
level of detail would be reduced so as to avoid potential attacks, gaming or misuse.
By contrast, to be meaningful explanations about the formal models relied on and
general logic involved would need to go beyond the simple affirmation that the model
relies on a ”neural network that approximates a complicated function.” It may be
appropriate, for example, to explain the goals that the model seeks to achieve via
the loss function.

2.5 Local explanations provide information about a partic-
ular decision

Local explanations tell a user why a particular decision was made (see Figure
5). The form of local explanation will vary greatly depending on the audience
and the context of the explanation. Doshi-Velez et al. (2017) posit that a useful
local explanation should answer at least one of the following questions: What were
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the main factors in the decision? Would changing a certain factor have changed
the decision? Why did two similar-looking cases get different decisions, or vice
versa? The time available to the user is critical. If the user needs to make a quick
decision, a simple and fast explanation is required. If time is not a constraint, more
detailed explanations would be warranted (Guidotti et al., 2018, p. 6). The level of
expertise of the person receiving the explanation will also be a factor (ICO, 2019).
An explanation to a data scientist would not contain the same information as an
explanation to a radiologist or to a loan applicant.

Figure 5: Overview of local explanations

Counterfactual explanations are one of the best ways to provide useful informa-
tion to users affected by a decision (Wachter et al., 2017). Counterfactual expla-
nations focus on “the smallest change to the world that can be made to obtain a
desirable outcome” (Wachter et al., 2017, p. 845). Allowing users to experiment
with different input features to assess their impact on outputs can help users de-
velop trust and an understanding both of a particular decision (local explainability)
but also of the algorithm as a whole (global explainability). Local counterfactual
explanations are particularly helpful when they relate to features that a user can
control, as opposed to features outside of the user’s control (Selbst and Barocas,
2018; ICO, 2019). For example, a counterfactual explanation demonstrating how
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different income levels might impact a loan application would be more helpful to
the user than a counterfactual explanation showing what would happen if the loan
applicant lived in a different country. The ICO refers to individuals’ ability to “learn
and change” based on counterfactual explanations (ICO, 2019). Nevertheless, some
counterfactual explanations relating to elements that a user cannot control (for ex-
ample ”What would happen if I were male?”) will be helpful to reveal potential
discrimination.

3 Technical solutions: towards explainability by
design

We review in this part several technical solutions described in the literature
which provide explanations in different machine learning models, and also explore
approaches to incorporate explainability by design into AI models.

3.1 Distinguishing the learning algorithm from the trained
algorithm

Two aspects of machine learning models may require explanation: (i) the learning
phase, including the learning algorithm and training data that were used to build the
model, and (ii) the operation (or inference) phase in which the trained model makes
predictions using real-world data (see Figure 6). Increasingly, models continue to
learn after they are put into operation, which means that the learning phase may be
repeated numerous times to update the trained model so that its predictions become
more and more accurate.
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Figure 6: Explanations relating to the learning algorithm and to the trained algo-
rithm

It is important to consider the learning and operation phases separately. An
explanation relating to the operation phase will answer questions like: “What were
the main factors that led you to identify this as a suspicious transaction?” An
explanation relating to the learning phase will answer questions like: “How did the
model learn to attribute weights to these seemingly unimportant features?”

To achieve an overall understanding of how a model functions (global explain-
ability), it may be necessary to understand the main characteristics of the learning
algorithm, particularly the goal (the objective function) that the algorithm is seek-
ing to achieve. An explanation of the learning phase would answer the question:
“What is the objective function that the learning algorithm seeks to maximize or
minimize?” The actual method used by the learning algorithm itself may not be
important to explain, whereas the goal and system of rewards helping the learning
algorithm reach the goal may be extremely important. A well-known video8 showing

8The video is available here.
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how Deep Mind learned to play a simple Atari video game shows that the learning
process is usually based on trial and error, with little resemblance to the typical
learning processes used by humans. Because computers can make millions of itera-
tions – many more than humans can – the trial and error method works well, and
exactly how the algorithm learns from its errors (e.g. stochastic gradient descent)
may not be important for a user or regulator to understand, whereas understanding
the mathematical function that the algorithm is seeking to maximize (or minimize)
will be of key importance. Another question relating to the learning phase may
relate to the origin and quality of the training data, because poor training data will
affect the quality of the trained algorithm.

Explanations about the trained algorithm will help achieve local explainability,
i.e. how a particular decision was arrived at.

3.2 Different AI models and their explainability
3.2.1 Kinds of models

The world of artificial intelligence can roughly be divided into machine learning
(of which deep learning is a part), and symbolic AI.

Machine learning can be roughly split into three main task formulations:

• supervised learning, where the output is given for each observation of the
training sample;

• unsupervised learning, where no output is given, the structure of the data is
(entirely or to a certain extent) unknown and should be explored, by catego-
rizing data into meaningful groups;

• reinforcement learning, where the environment is explored by actions and
awards for the actions, the aim being to develop an optimal (in the sense
of the award) strategy.

There exist many variations of the foregoing three categories, e.g. weakly su-
pervised learning. Supervised learning is currently more developed than the other
two groups of methods, and most of the work on explainability focuses on super-
vised learning, including deep learning (machine learning through multi-layer neural
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networks). Even though neural networks are today seen as a most promising clas-
sifier, they all share such drawbacks as instability of the classification rule, lack of
interpretability, but also an automated methodology for choosing the design, which
makes the inner design particularly difficult to understand for a human observer. A
more complete description of machine learning methods appears in Appendix B.

Symbolic AI consists of various approaches to artificial intelligence known as
GOFAI - “good old fashioned AI.” Many forms of symbolic AI exist, such as various
forms of knowledge representation and reasoning, often based on logics, to solve
typical AI problems such as satisfiability, revision, merging, abductive reasoning,
and various forms of symbolic learning, including decision trees, association rules,
and formal concept analysis. The best known incarnations of symbolic AI rely
on decision trees, rule lists, or rule sets although many other forms of symbolic
AI exist. Given enough time, a human can understand the logical steps involved
in an algorithmic decision based on a decision tree or rule list. However, if the
decision tree has hundreds or thousands of branches, explaining a decision to a
user will require shortcuts and explanation methods adapted to the particular user.
Explaining expert system decisions was the field of research in the 1970s and 80s
(Shortliffe and Buchanan, 1975; Clancey, 1983).

Most of the literature on explainable AI focuses on supervised learning. There-
fore the sections below focus principally on this technical angle to explainability.

3.3 Post hoc approaches for local explainability

Most current approaches to explain reasons for local predictions of complex mod-
els such as deep neural networks and random forests opt for a post hoc analysis and
perform attribution over input features. Post hoc approaches provide local explain-
ability for a particular decision. Post hoc approaches can be primarily classified into
two groups: (i) approaches that perturb the input to create multiple input output
pairs and then fit a simple model to explain the predictions locally, or (ii) approaches
based on saliency maps which assign importance scores/attribution to each input
feature. We discuss each class of methods and their representative works in more
detail below, and also discuss some approaches that tackle the problem differently.
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3.3.1 Perturbation based methods

This group of methods treat the underlying predictor function as a black box
and attempt to explain its prediction by fitting a simple explanor model to multiple
perturbed versions of input-output samples. The explaining model does not open the
black box, but simply attempts to imitate its behavior by observing how the black
box responds to different input perturbations, including occlusion of certain features.
The approach proposed by Ribeiro et al. (2016a) is one of the earliest proposed
systems, representative of this class. For a given sample and a prediction model
f , LIME (which stands for Local Interpretable Machine-Agnostic Explanations)
optimizes a loss function over the class of simple models such as sparse linear models
or decision trees to explain predictions for the particular sample. The loss function
consists of a term that promotes the model to utilize as few features as possible and a
second term promoting fidelity of the explaining model g to f in the neighborhood of
the given sample. The explaining model g utilizes a simplified data representation
for all the samples, to produce explanations that are understandable to humans.
This representation consists of relatively higher level of features compared to the
original input processed by f .

The Kernel-SHAP approach (Lundberg and Lee, 2017) is an improvement over
LIME. It also operates in the same framework. However it imposes certain desirable
properties on the explaining function which leads to a unique optimal in the class
of linear additive functions that is strongly linked to estimation of classic shapley
values.

Although the primary focus of methods from this class is on explaining classifi-
cation and regression problems there is also an interest in the community to explain
predictions of sequence to sequence models. This problem is much harder to fit in the
above framework as it is a lot more complicated to perturb a sample and to generate
human-understandable explanations. Work by Alvarez-Melis and Jaakkola (2017)
is the first attempt in this direction. They propose a novel automatic perturbation
algorithm for structured input-output data based on variational autoencoders and
produce explanations as bipartite subgraphs consisting of input and output tokens
that are causally related.
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3.3.2 Saliency map based methods

Methods from this class attempt to identify the set of input features that appear
salient to the predictor function by performing sensitivity analysis. In other words
they perform attribution with regard to input features by evaluating the sensitivity
of output due to each feature. Most of the work in this group has focused on
processing of images and explaining predictions of neural networks.

Simonyan et al. (2013) first proposed the use of saliency maps for explaining
convolutional neural network (CNN) decisions on image classification. Their saliency
map computation primarily relied on computing the gradient of output with regard
to input image pixels. Springenberg et al. (2014) proposed a modified algorithm
for performing gradient backpropagation in CNN’s called guided backpropagation.
Selvaraju et al. (2017) further improved upon the output of guided backpropagation.
They proposed to combine activation maps of the last convolutional layer of the
CNN according to their average gradient with regard to output, referred to as class
activation maps. These maps are further integrated with guided backpropagation to
yield improved results. SmoothGrad (Smilkov et al., 2017) generates multiple noisy
versions of input and averages each of their attribution maps to obtain a sharper and
more robust saliency map. Sundararajan et al. (2017) propose axioms for attribution
methods and propose their own attribution algorithm for neural networks based on
integrating gradients along a path. Some researchers have questioned the reliability
of saliency maps (Kindermans et al., 2017).

3.3.3 Other approaches

Some of the more recent works on explaining black-box models have attempted
to tackle the problem differently. Bang et al. (2019) propose to solve explainability
using information-theoretic principles. More specifically, they formulate an opti-
mization problem guided by the information bottleneck principle (Tishby et al.,
2000) to perform attribution over the input features and select a subset of them
as their explanation. Work by Kuhn and Kacker (2019) adopts a combinatorial ap-
proach and presents the general classification problem as a fault localization problem
to determine explicit rules for explaining a decision. Kim et al. (2017) propose a
method to quantify sensitivity of a neural networks prediction to high-level concepts,
thus quantifying interpretability in terms of human-friendly concepts. They intro-
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duce the idea of a concept activation vector which represents the concept in terms
of activations of different layers of the network. The sensitivity to a concept is com-
puted by measuring the sensitivity of prediction to perturbations in the direction of
the concept activation vector.

3.3.4 Comparing the two classes

Perturbation-based methods and saliency map based methods each offer their
own sets of benefits and drawbacks. The choice between the two often depends on
the context of the problem and its requirements.

Perturbation models, the first class, are more flexible. They treat the predict-
ing function as a black box and thus can be applied in a wider variety of settings.
Moreover they also generally yield higher level explanations compared to saliency
map based approaches and can even provide explanations in terms of some predeter-
mined features. However these advantages also carry drawbacks. Use of simplified
data representation also makes these models highly reliant on the quality of these
features. They also are much more likely to fail to capture what the original model
learned, because they process the simplified representation as opposed to the orig-
inal input. They also cannot access any internal elements of the predicting model.
These approaches to explanation make an educated guess at what is really hap-
pening inside the black box model, but there is no guarantee that the explanation
actually matches the reality of the model.

3.4 Explainability by design and hybrid AI: towards incor-
porating explainability in the predictor model

As noted before, an important set of methods infer explanations via a post hoc
analysis locally. This is not ideal, as the explaining models often do not process
the input like the predictor function itself, which can lead them to miss the repre-
sentations and concepts the predictor function learned. The explanation is only an
approximation of the underlying model itself.
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Figure 7: Overview of technical approaches to explainability

Currently, methods are gradually moving towards alleviating these problems by
modifying the structure of predictor function or changing its training objective. This
attempt to reach “explainability by design” is not new, and is part of a more general
trend toward ”hybrid” AI. Figure 7 summarizes the main differences between post
hoc approaches and explainability by design. We discuss below recent works for both
types of explainability by design approaches (modifying the objective and modifying
the predictor function) and connect them to earlier works developed for networks
with one hidden layer.

3.4.1 Modifying the objective

Lee et al. (2019b) propose a game-theoretic approach wherein the predictor and
local explanor, corresponding to each sample, are part of a game. During training,
each local explanor is supposed to minimize its deviation from the predictor in
a neighborhood of data around its sample, whereas the predictor is supposed to
maximize its accuracy while simultaneously minimizing its aggregated deviation
with all the local explanors. Zhang et al. (2018) proposed a modification in the loss
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function of training convolutional neural networks where the loss function for the
last convolutional layers apart from maximizing accuracy also promotes each filter
to activate only in a single spatial location and for a single class. Lee et al. (2019a)
propose changes in loss function that stabilizes the gradients in the input space for a
particular class of convolutional neural networks and makes them more robust and
reliable. These approaches reward the model for adopting internal methods that are
explainable.

3.4.2 Modifying predictor function

Contextual Explanation Networks (Al-Shedivat et al., 2017) incorporate the sim-
plified data representation and generation of explanations in the predictor function
itself. To avoid losing richness of information in the original input they propose to
process the original input through a neural network to produce a weight vector but
force the model to make the final predictions by combining the weight vector with a
simplified representation. For classification problems they combine the weight vec-
tor with a linear model, and for structured prediction tasks they combine the weight
vector with a simple graphical model (e.g. Markov chain).

Self Explanatory Neural Networks (Melis and Jaakkola, 2018) generalize the
linear model formulation to model weights and features as a function of the given
instance. The instance-wise weights are computed using neural networks. They also
compute the features via a neural network but impose many conditions on it such
as sparsity and input reconstruction so as to promote the encoding of high level
concepts in the features. The individual features are also represented by samples
from the data set, to provide insights into the concepts encoded by those features.

3.4.3 Hybrid AI

Hybrid AI consists in combining several AI techniques in order to get the best
from each method. Hybrid approaches can help enhance reliability, explainability
and/or safety. Focusing solely on neural network related approaches, a number of
hybrid approaches exist. One approach uses knowledge to pre-process the inputs
to the machine learning model, making the inputs more meaningful and/or better
structured for the machine learning model. Another approach focuses instead on
the outputs. For example, models flowing from symbolic AI, including rules devel-
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oped by subject matter domain experts, can constrain outputs from the ML model,
acting as a form of output filter (Thomas et al., 2019). A model might also provide
a confidence or reliability score simultaneously with the decision, the confidence or
reliability score being generated using traditional statistical methods. Two decades
ago the explainability of neural networks was addressed by focusing on one-hidden-
layered neural architectures equivalent to fuzzy logic rule bases. Interested by the
explainability of Radial Basis Function networks, d’Alché Buc et al. (1994) intro-
duced a learning algorithm that minimizes a modified objective function that reflects
the desirable properties of a logic rule base: correctness, consistency and complete-
ness. Mascarilla (1997) proposed a neural network able to simultaneously produce
fuzzy rules, with their linguistic approximation in the language of the user (hence
with direct interpretability capabilities), and a final classification.

In another approach, a hybrid neural network would first be structured to reflect
a set of rules created by domain experts, using a “rules to network” algorithm. The
network structure at that point represents the symbolic knowledge of the domain.
Then the network would be trained on training data, with the objective of refining
or supplementing the initial rules based on observed correlations in the training set.
The last step is to extract the rules from the network (Kurd and Kelly, 2003).

Neural networks can be used to help solve symbolic AI problems, for example
so-called satisfiability problems involving many formulas whose compatibility must
be tested (Selsam et al., 2018). Another example consists in integrating logical
reasoning with deep learning, for example TensorLog which considers probabilistic
first order logic (Cohen et al., 2017).

Hybrid AI approaches can also consist in inserting constraints into the neural
network, for example structural information on the location of objects in an image:
a chair generally sits on the floor; the spleen is located below the heart in a human
body; drivers are located inside cars. Figure 8 illustrates how a neural network can
be coached, via medical knowledge, on the location of the most important part of a
medical image.
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Figure 8: Example of showing a neural network which part of the image is important

Similar to the approach illustrated in Figure 8, Chen et al. (2019) propose a deep
network architecture called “prototypical part network” that focuses on parts of the
image that are the most important compared to identified prototypes, and provide
the most relevant explanations. The classifications provide explanations based on
comparison with learned prototype images.

A hybrid method called “genetic fuzzy logic” consists in embedding in the net-
work a large collection of rules – a form of dictionary of all permitted actions the
system can take – and then use training data to teach the algorithm how to select
the optimal set of permitted rules in a given situation. This approach has been
proposed for air combat contexts (Ernest et al., 2016), but can be adapted to other
contexts such as surgery. It facilitates explainability because in any given situation,
the only possible outcomes are those appearing in a pre-approved rule dictionary.
Knowledge-based constraints may also be integrated into a neural network to assist
in transfer learning, for example when a neural network is trained on medical images
of adults, and must be retrained using images of children.
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Another interesting example of hybrid AI consists in using machine learning
methods to learn parameters of rules or other types of knowledge/information mod-
els. For example, a rule may state that a robot should not get “too close” to a
human; interpreting what “too close” means in a given context is then learned from
examples. Because many legal and ethical concepts are context-dependent, this form
of parameter learning can be valuable for creating ethical AI “by design.”

The range of potential hybrid approaches is almost unlimited. The examples
above represent only a small selection. Most of the approaches, whether focused on
inputs, outputs, or constraints within the model, can contribute to explainability,
albeit in different ways. Figure 9 illustrates in extremely simplified form the three
conceptual approaches discussed above.

Figure 9: Overview of hybrid approaches to explainability
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4 Explainability as an ethical and regulatory re-
quirement

Having looked at the technical approaches to explainability, we focus in this
section on the regulatory environment, and in particular when the law does, and
does not, impose explanations. As we will see, the law often imposes the principle
of explainability without defining the form and level of detail of the explanation. To
fill the gap and define the “right” level of explanation, contextual factors, including
a cost-benefit analysis, must be taken into account. We develop in Section 5 a
taxonomy of the relevant costs and a framework for transforming contextual factors
into a cost-benefit analysis.

4.1 Regulatory requirements are needed to produce a socially-
optimal level of explanation

Explainability has recently emerged as an ethical and regulatory requirement
for AI systems, linked to concerns over hidden discrimination, potential harms to
privacy, democracy, and other societal values. The costs of these harms are often
not taken into account by the customers and suppliers of AI systems. A regulatory
constraint is therefore needed to address these externalities and produce a socially
optimal level of explanation for AI systems. These regulatory requirements are re-
flected in the 2019 recommendation of the OECD (OECD, 2019b) and the European
Commission’s white paper on AI (European Commission, 2020), and will likely form
the basis of new AI regulations worldwide.

The regulatory requirements for explainability are designed to protect several
individual and collective interests, including an individual’s right not to be subject
to an unfair decision, either by government or by private enterprises, an individual’s
right to understand decisions in order to challenge them and/or adapt his or her
own behaviour, and an individual’s right to personal autonomy and to protection of
his or her personal data (ICO, 2019). Citizens also have a collective right to know
about the existence of algorithms, whether deployed by government or by private
enterprises. This requirement is part of the original Fair Information Practices
(FIPs)9 and forms the basis of privacy regulation in many parts of the world: “there

9Fair Information Practices are a set of five principles that first appeared in the United States
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must be no personal-data record-keeping systems whose very existence is secret”
(Selbst and Barocas, 2018).

The legal approaches to explanation are different for government decisions and
for private sector decisions. Most democratic societies have freedom of information
acts or similar government transparency rules that require government decisions,
algorithmic or otherwise, to be supported by explanations. The obligation for gov-
ernments to give explanations has constitutional underpinnings. For private sector
decisions, the obligation to give explanations depends on the entity’s market power,
or the trust relationship that may exist between the private entity and the individ-
ual. We examine below the regulatory environment for public sector decisions, and
then for private sector decisions.

4.2 Algorithms used by governments are subject to higher
explainability requirements

For government decisions, the law generally requires that decisions be explained
so that people can challenge the decisions if they disagree. Reasoned decisions are
part of the constitutional right of procedural due process in the United States, also
reflected in the right to an effective remedy and the right to good administration in
the EU Charter of Fundamental Rights.

4.2.1 Government use of algorithms triggers a constitutional right to
explanation.

In an important case in the United States10, the court found that an algorithmic
scoring system used to rank teachers had to be open to scrutiny in order to permit
the affected teachers to verify the accuracy of their score and challenge the decision
if they disagree. The court found that without access to ”value-added equations,
computer source codes, decision rules, and assumptions,” teachers could not exercise
their constitutionally-protected rights to due process.11 The court said that teachers
needed to be able to replicate the algorithmic decision to verify whether there was
an error in the score. Without this ability, the teachers’ scores remain ”a mysterious

Privacy Act of 1974, and later expanded upon in the OECD’s 1980 guidelines on privacy, the Coun-
cil of Europe’s 1981 Convention 108 on personal data, and the European Union’s 1995 Directive
95/46 on data protection, now replaced by the GDPR.

10Local 2415 v. Houston Independent School District, 251 F. Supp. 3d 1168 (S.D. Tex. 2017).
11Id., p. 17.
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‘black box’, impervious to challenge.”12 A court in the Hague, Netherlands, reached a
similar conclusion with regard to an algorithm used by the Netherlands government
to predict the likelihood of social security fraud.13 The court analyzed the algorithm
under the EU test of proportionality, and found that the lack of explanation for
the computer-generated risk reports prevented individuals from being in a position
to challenge the reports, and prevented the court from verifying the absence of
discrimination.

Another important case in the United States involved a judge’s use of the COM-
PAS criminal justice algorithm, which calculates a probability that a particular
person will commit another crime if released. The purpose of the system is to
help prison and rehabilitation officials determine whether certain prisoners can be
put into alternative sentencing programs. However, the system was also used by a
judge as a source of information to fix the sentence itself. The affected individual,
Mr. Loomis, challenged the decision in court, arguing that the COMPAS system is
opaque, that the source code is unavailable, and that the system is racially biased.
The Supreme Court of Wisconsin found that the judge’s use of the algorithm did
not affect Mr. Loomis’s constitutional rights because the algorithmic score was an
insignificant element in the judge’s decision, the judge relying almost exclusively on
other factual elements. The United States Supreme Court decided not to hear the
case. Although the Wisconsin Supreme Court decided not to overturn the sentenc-
ing judge’s decision, and did not require disclosure of COMPAS source code, the
court said that algorithmic tools like COMPAS must be accompanied by a warn-
ing statement on the algorithm’s limitation, including information regarding on the
population sample used to train the scoring system, and the fact that the population
sample may not correspond to the relevant local population. The documentation
should disclose that the owners of the algorithm refuse to give access to source code,
that studies have shown the system to disproportionately classify minority offenders
as having a higher risk of recidivism, and that the system needs to be ”renormed
for accuracy due to changing populations and subpopulations.”14 The court imposed

12Id., p. 17.
13NJCM v. the Netherlands, District Court of The Hague, Case n° C-09-550982-HA ZA 18-388,

February 5, 2020.
14State of Wisconsin v. Loomis, Supreme Court of Wisconsin, n° 2015AP157-CR, July 13, 2016,

paragraph 66.
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an obligation of global explainability to help users – in this case judges – apply ap-
propriate skepticism when using algorithmic tools. The court emphasized that an
algorithm may in no case be used to determine the sentence itself, but only as an
additional source of information on how the sentence should be served.

For government decision-making, explanations seek to provide information on
why the government agency reached a particular outcome (Coglianese and Lehr,
2019, p. 16). However, explanation may also serve to reveal how governments use
particular algorithms. In government decision-making, there are two interests at
stake: individual due process - an individuals’ ability to understand and challenge a
decision – and the interests of citizens collectively to be informed about governmental
use of algorithms.

4.2.2 For government algorithms, French law requires disclosure of “pa-
rameters and their weights”

The French law relating to the transparency of government algorithms15 requires
disclosure of fairly detailed algorithmic information to users who request it: the
degree and manner in which the algorithmic processing contributed to the relevant
decision; the data used for the processing and their source; the parameters used
and their weights in the individual processing; and the operations effected by the
processing. The law requires both global and local explainability, and users must
be informed at the outset that the processing involves an algorithm, otherwise the
administration’s decision is null and void. By requiring disclosure of the parameters
used and their weights, the French law makes it difficult for the government to
rely on convolutional neural networks for any individual decision, unless one of the
technical explainability tools referred to in Section 3 is deployed.

France’s Data Protection Act16 imposes additional requirements: any algorithm
used by the government as the sole basis for individual decisions creating legal or
other significant effects may not use sensitive data, and the government must ensure
that it “masters” the algorithm. According to the French Constitutional Court,
“mastering” the algorithm means that the government must be able to ”explain, in
detail and in an intelligible form, to the affected individual, the manner in which

15 French Code of Relations between the Public and the Administration, articles L. 311-3-1 et
seq.

16French Data Protection Act 78-17 of January 6, 1978, article 47.
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the algorithm functioned in the individual’s case.”17 This excludes, according to the
court, the use of an algorithm that “modifies its own rules without the control and
validation of the controller.”18 The Constitutional Court’s language “in detail and
in an intelligible form” now appears in the French Data Protection Act, thereby im-
posing a high level of local explainability. The use of convolutional neural networks
would appear prohibited in the absence of robust explanation tools.

4.3 Algorithms used in the private sector

Laws are also emerging on algorithmic transparency in the private sector. Unlike
governments, private companies do not have a general duty of transparency and
accountability to customers and citizens. A grocery store does not have to explain
why it no longer stocks a given brand of potato chips. Imposing a general duty
of explanation on all private entities would be disproportionate because in many
situations the social costs of explanations would outweigh the benefits.

For private entities, a duty of explanation generally arises when the entity be-
comes subject to a heightened duty of fairness or loyalty, which can happen when
the entity occupies a dominant position under antitrust law, or when it occupies
other functions that create market power or a situation of trust or dependency vis à
vis users. A number of specific laws impose algorithmic explanations in the private
sector. We examine some of them below.

4.3.1 Europe’s GDPR requires “meaningful information about the logic
involved”

Europe’s General Data Protection Regulation EU 2016/679 (GDPR) creates an
obligation of explanation whenever an entity uses an algorithm to make individual
decisions that create legal or similar significant effects for an individual, and there
is no meaningful human intervention. The GDPR requires that the explanation in-
clude ”meaningful information about the logic involved.”19 The GDPR also provides
individuals with the right to obtain “human intervention, to express his or her point
of view, and to obtain an explanation of the decision reached after such assessment

17French Constitutional Court Decision n° 2018-765 DC of June 12, 2018, paragraph 71.
18Id.
19Regulation 2016/679, article 13(2)(f).
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and to challenge the decision.”20 The GDPR applies both to private entities and to
governments, although as mentioned above, the rules applicable to government algo-
rithms often go further, as is the case in France, by requiring detailed explanations,
going beyond the GDPR’s requirement to provide only “the logic involved.”

4.3.2 Europe’s Platform to Business Regulation requires a “reasoned
description” of the “main parameters”

Europe’s Platform to Business Regulation (EU) 2018/1150 represents the most
developed efforts to date to put algorithmic explainability into European law. The
regulation imposes a duty of explanation on online intermediaries and search engines
with regard to ranking algorithms. The language in the regulation shows the difficult
balance between competing principles: providing complete information, protecting
trade secrets, avoiding giving information that would permit bad faith manipulation
of ranking algorithms by third parties, and making explanations easily understand-
able and useful for users. Among other things, the online intermediary or search
engine must provide a “reasoned description” of the “main parameters” affecting
ranking on the platform, including the “general criteria, processes, specific signals
incorporated into algorithms or other adjustment or demotion mechanisms used in
connection with the ranking.”21 Online intermediation services and search engines
are not required to disclose the detailed functioning of their ranking mechanisms,
including algorithms, nor to disclose trade secrets.22 However, the description must
be based on actual data on the relevance of the ranking parameters used. The ex-
planations must be given in ”plain and intelligible language,”23 and permit business
users to have an ”adequate understanding of the functioning of the ranking in the
context of their use” of the services.24

The ”reasoned description” given by online intermediaries and search engines
needs to be useful, i.e. it ”should help business users to improve the presentation of
their goods and services.”25 The content of the explanation is tied almost exclusively
to its intelligibility and utility by users. Whether an explanation is sufficient to

20Regulation 2016/679, recital 71.
21Regulation 2018/1150, recital 24.
22Regulation 2018/1150, recital 27.
23Regulation 2018/1150, recital 25.
24Regulation 2018/1150, recital 27.
25Regulation 2018/1150, recital 24.
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provide an ”adequate understanding” in a given situation will no doubt generate
disputes. Anticipating this, the regulation empowers the European Commission to
publish guidelines to help online platforms understand what they have to do. 26

4.3.3 French law on AI-powered medical devices requires traceability

In the field of health care, a proposed French law on use of algorithmic tools in
the diagnosis or treatment of disease would require that doctors inform patients of
the existence and modalities of any big data processing operations that contribute
to disease prevention, diagnostic, treatment of the patient.27 Any modification of
the parameters of the algorithm can only be done with the participation of a health
professional. Finally, any such system must ensure the traceability of algorithmic
decisions and the underlying data, and guarantee health professionals’ access of
those data.

4.3.4 United States banking laws require explanations for loan denials

In the United States, banks are required to provide explanations for the denial
of loans, whether or not the denials are based on algorithms. Regulation B requires
banks to give the “principal reasons” for denying an application or taking other
adverse action, including whether the bank relied on a credit score.28

4.3.5 Proposed Algorithmic Accountability Act and European Commis-
sion white paper would require a description of algorithmic design
and training data

A proposed law in the United States called the “Algorithmic Accountability
Act” would require companies that deal with personal data of more than 1,000,000
consumers or have more than $50 million in average annual gross receipts to pre-
pare impact assessments for certain high-risk algorithms. The impact assessments
would contain a ”detailed description of the automated decision system, its design,
its training, data, and its purpose.”29 The European Commission proposes similar
disclosure obligations for high-risk AI applications(European Commission, 2020).

26Regulation 2018/1150, article 5(7).
27Proposed Article L 4001-3 of the French Public Health Code, as proposed in Article 11 of the

Bioethics Bill adopted by the National Assembly in first reading on October 15, 2019.
2812 CFR Part 1002.9.
29Proposed Algorithmic Accountability Act, H.R. 2231, introduced April 10, 2019.
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4.3.6 Explanation as an element of good faith and loyalty

Legal scholars in the United States are debating whether a fiduciary duty should
be imposed on large data platforms, which would include an enhanced duty to in-
form users about algorithmic decisions, and justify the absence of conflicts of interest
(Balkin, 2015). In France, a duty to provide explanations exists for contract termi-
nation (Houtsieff, 2019), particularly for employment contracts or lease agreements.
Fabre-Magnan (1992) shows that the general duty to provide information to the
other contracting party is rooted in ethical considerations, and in the party’s legal
duty of good faith and cooperation.

4.3.7 Explanations and competition law

When a company occupies a dominant position under EU competition law, it
has an enhanced duty to apply objective, transparent and non-discriminatory terms
to its business partners. This can translate into a duty to make sure its terms
and conditions, and business practices, are understandable and predictable to its
economic partners. This constitutes a form of explanation duty. The French Com-
petition Authority’s recent €150 million sanction against Google is based in part on
Google’s failure to provide clear unambiguous information in its terms and condi-
tions30. The obligations imposed on online intermediaries and search engines under
the EU Platform to Business Regulation discussed above are inspired by competition
law principles. But the Platform to Business Regulation extends those principles
to all online intermediaries and search engines regardless of whether they occupy a
dominant position under competition law.

5 The economics of explanations

Laws and regulations generally impose explanations when doing so is socially
beneficial, that is, when the collective benefits associated with providing explana-
tions exceed the costs. When considering algorithmic explainability, where the law
has not yet determined exactly what form of explainability is required in which
context, the costs and benefits of explanations need to be taken into account. The
cost-benefit analysis will help determine when and how explanations should be pro-

30French Competition Authority Decision n° 19-D-26 of December 19 2019.
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vided, permitting various trade-offs – such as those highlighted in the EU Platform
to Business Regulation – to be understood and managed.

5.1 Explanations generate costs

Like human explanations, algorithmic explanations generate costs, and should
only be required in situations where the benefits of the explanations outweigh the
costs (Doshi-Velez et al., 2017, p. 12). According to the United Kingdom’s Informa-
tion Commissioner’s Office, cost and resources are cited as the principal reason for
not providing explanations (ICO, 2019). The relevant question is therefore whether
the benefits of a particular explanation are worth the costs. Explanations must be
built to fit the particular context, and context can often be translated into a rough
comparison of costs and benefits of explanations in the relevant situation. Where
the stakes are high, for example investigating the cause of a serious accident, the
benefits of requiring detailed explanations will be very high, because explanations
could help determine who is responsible for the accident and help prevent similar
accidents in the future. In a situation with lower stakes, for example finding out why
Netflix recommended a particular television series, the social benefits of requiring
detailed explanations will be low compared to the costs. Each situation warrants
its own level of explanation, going from light explanations for algorithmic decisions
with little or no consequence, to detailed explanations for high stakes algorithmic
decisions.

Doshi-Velez et al. (2017) illustrate this idea using the example of a smart toaster:
”Requiring every AI system to explain every decision could result in less efficient sys-

tems, forced design choices, and a bias towards explainable but suboptimal outcomes.
For example, the overhead of forcing a toaster to explain why it thinks the bread is
ready might prevent a company from implementing a smart toaster feature – either
due to the engineering challenges or concerns about legal ramifications” (Doshi-Velez
et al., 2017, p. 12).

HLEG (2019) expresses the idea in the form of a sliding scale : “the degree to
which explicability is needed is highly dependent on the context and the severity of
the consequences if that output is erroneous or otherwise inaccurate.”
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5.2 A taxonomy of explanation costs

Many of the costs of providing explanations are difficult to quantify. Neverthe-
less, a critical first step to evaluating costs, even from a qualitative angle, is to
break them down into categories (Maxwell, 2017). Each category of cost can then
be evaluated, and if necessary given a qualitative score (low, medium, high), and
compared to the corresponding benefits.

In connection with algorithmic explanations, we have identified seven categories
of costs.

5.2.1 Design costs

Unlike humans, algorithms do not have an implicit ability to explain their de-
cisions after the fact. Consequently, the explanation function must be explicitly
designed into the algorithm. The design costs can be high because there is no
one-size-fits-all approach to explanation, and the technical approaches are varied,
each approach having its advantages and drawbacks. Each kind of application may
require its own approach to explainability, and the approaches may vary over differ-
ent geographies based on different regulatory environments. As noted above, France
has a particularly high standard for explanations relating to government algorithms,
whereas the same level of explanation may not be required in other countries. Like
many aspects of ethical AI, the level of algorithmic explanation will depend on con-
text, local culture and regulation, making a global approach all but impossible. This
poses a challenge to operationalizing explainable AI decision systems (ICO, 2019).

5.2.2 Reducing prediction accuracy

Algorithmic accuracy and interpretability are often presented as trade-offs: in-
creased interpretability leads to decreased accuracy and vice versa. This trade-off is
largely due to the fact that most algorithms were built with only accuracy in mind.
Even algorithms with explanation models built on top may lead to sacrifices in ac-
curacy in some situations: “by requiring explanation we might cause the system to
reject a solution that cannot be reduced to a human-understandable set of factors”
(Doshi-Velez et al., 2017, p. 10).

In spite of technological advances, which we have examined in Section 3, most
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deep learning solutions do not yet incorporate explainability features, which leads
some users to prefer suboptimal but easily-explained models over higher performing
but more opaque models (Doshi-Velez et al., 2017, p. 12). Foregoing performance for
the sake of explainability can create large social costs. For example, some estimate
that criminal fund transfers account for 1-2% of global GDP, and that less than 1% of
criminal fund transfers are currently seized through existing anti-money laundering
mechanisms (Europol, 2017). Explainability is cited as one of the reasons why
banks do not introduce higher-performing AI-based system to detect criminal funds
(Institute of International Finance, 2018). Even a small percentage increase in the
rate of detection of hidden criminal transfers could yield enormous social benefits.
In this respect, requiring fully explainable models for anti-money laundering could
result in high social costs if it means that banks cannot deploy the best-performing
model.

5.2.3 Creation and storage of audit logs

A useful source of information (and explanations) consists in stored logs relating
to each algorithmic decision. Logging is one of the most straightforward ways to
facilitate after-the-fact local explanations, but it is very costly (Kroll et al., 2016,
pp. 651-652). Winfield and Jirotka (2017) propose that robots and autonomous
systems be equipped with the equivalent of a Flight Data Recorder to continuously
record sensor and relevant internal status data. The authors point out that in an
autonomous vehicle, the data recorder would only be able to store the last three
hours of driving data. In its white paper on AI, the European Commission does not
refer explicitly to decision logs, but proposes the storage of data sets used to train and
test algorithms ((European Commission, 2020). The problem of storing data is well
known by telecom operators, who are obliged in some countries to store connection
logs for up to two years to help law enforcement authorities investigate crimes.
The costs of retaining the connection logs are significant. The costs for storing AI
decision logs could potentially be much higher given the volume of data. In addition
to generating new storage costs, the retention of individual decision records can also
conflict with privacy legislation, which generally requires deletion of personal data
as soon as possible after the relevant processing operation has been completed.
A 2006 European directive requiring telecommunication operators to retain traffic
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data for up to two years was found unconstitutional because it disproportionately
interfered with individuals’ right to privacy.31 Similarly, the European Court of
Justice found that imposing technical costs on a hosting provider to detect and
block copyright infringing content interfered with the provider’s constitutional right
to conduct a business, and therefore could only be justified if the measure passed
the proportionality test. The proportionality test requires an analysis of whether
the measure is necessary to achieve the legitimate public policy objective, and in
particular whether the measure is the least intrusive means available (Maxwell,
2017).

The use of biometrics such as facial recognition illustrates the tension between
explainability and the protection of personal data. In Europe, biometric access con-
trol mechanisms, e.g. fast-track border control at airports, should not generally
store any personal data in the system, including information indicating why a par-
ticular person’s image at the airport was not judged to be a sufficient match with
the passport. While consistent with the European data protection principle of data
minimization, the absence of logs can prevent the frustrated traveller from obtain-
ing an explanation as to why his or her access was denied. The absence of logs can
also make it difficult to test whether the system is biased in real-world conditions
against certain types of skin color. Privacy principles can therefore conflict with the
right to receive an explanation, and the right not to be subject to discriminatory AI
systems. These tensions are forms of costs that need to be weighed.

5.2.4 Violation of trade secrets

Some of the opacity surrounding algorithmic decisions comes from deliberate cor-
porate decisions not to share information, generally to protect trade secrets (Burrell,
2016). Like other forms of property, trade secrets are constitutionally protected.
The forced disclosure of source code creates costs in terms of interference with those
property rights. For many situations, the source code will contribute little value to
explanations. “Machine learning... is particularly ill-suited to source code analysis”
(Kroll et al., 2016, p. 638).

However, in high-stakes situations, such as the investigation of an accident, au-
31Court of Justice of the European Union, Cases C-293/12 and C-594/12, Digital Rights Ireland

v. Minister of Communications, April 8, 2014.
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thorities will require disclosure of source code and all other relevant information
that may contribute to understanding the cause of the failure.

The protection of trade secrets also enhances competition. A systematic disclo-
sure of trade secrets, such as the kinds of algorithms used by data solution providers,
might harm their ability to compete. Too much transparency could hurt smaller
competitors more than big ones.

5.2.5 Conflict with security and other policy objectives

We saw above that explanations can conflict with data protection law. Expla-
nations can also conflict with other policy objectives, such as security. For example,
the functioning of an algorithm designed to detect fraud or money laundering should
remain secret in order to prevent criminals from reverse engineering the system to
avoid detection. Transparency therefore must always be balanced against counter-
vailing costs, such as costs of decreased effectiveness against fraud or cyberattacks.
Search engines face the same problem: being too transparent would permit web pub-
lishers to artificially boost their own rankings by manipulating the search algorithm,
which would be unfair to other web publishers.

5.2.6 Reducing decisional flexibility in the future

By giving an explanation, a person implicitly binds herself to apply the same
rule in the future. Consequently, by requiring an explanation, we also limit the
scope of future decisions by the person or entity giving the explanation (Schauer,
1995). Reducing the range of options in the future can create costs because a future
situation may not justify application of the same rule, and the decision-maker will
be trapped by the explanation she gave in the past.

5.2.7 Slowing down innovation

The United Kingdom’s Information Commissioner’s Office (ICO, 2019) points
out that new innovative products are being developed so quickly and frequently
that legal or compliance departments are not able to provide input, including the
requirement to put explainability into the product specifications. Explainability can
be viewed as a compliance constraint that could increase time-to-market, slowing
the pace of innovation.
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5.3 The benefits of explanations

The operational benefits of explainability were mentioned in Section 1 and 2.
They include the ability to foster user trust in the system, and the ability to make
algorithms more robust and certifiable for safety-critical applications. The societal
benefits (individual rights and collective interests) were mentioned in Section 3. We
do not propose to list each of those benefits again here. Suffice it to say that for each
situation the relevant benefit from explainability will have to be defined precisely
so that the benefits can be considered in relation to the costs. That the relevant
benefits cannot be quantified does not prevent the benefits from being listed, and
their relative importance evaluated through a scoring mechanism (Maxwell, 2017).
This helps put benefits in front of the corresponding costs, and facilitate a cost-
benefit analysis.

As a general matter, the level of potential benefits will increase with the level of
potential harm that may be caused by the algorithm (see Figure 10). An algorithm
that has the potential of killing a human (an autonomous vehicle, for example)
will generate high benefits from explainability, whereas an algorithm that provides
shopping recommendations will generate low benefits (HLEG, 2019).
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Figure 10: Summary of benefits and costs of explanations

5.4 A sliding scale of explanation solutions

As a general rule, the higher the level of potential harm, the higher the benefits
from explainability. These higher benefits will in turn justify higher explanation
costs. However, even in high-stakes situations there may still be trade-offs. For
example, how much individual information about an AI-powered diagnostic tool
should be stored in audit logs, and how long should the logs be kept? The storage
of logs creates costs for the operator of the algorithm, but also societal costs associ-
ated with potential harms to privacy. Each case will require identifying explanation
scenarios, and then assessing the benefits (and costs) of different forms of explana-
tions in each scenario. The ideal form of explanation will be the one that maximizes
net social welfare, i.e. total social benefits less total social costs.

5.5 Four kinds of contextual factors

As pointed out in the introduction, context plays a key role in determining what
level of explanation may be required. In the three-step methodology outlined in
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the introduction of this paper, we proposed that context be broken down into four
factors:

• Audience/recipient factors: Who is receiving the explanation? What is their
level of expertise? What are their time constraints?

• Impact factors: What harms could the algorithm cause and how might expla-
nations help? The higher the potential harm, the more explanation is likely
to be needed.

• Regulatory factors: What is the regulatory environment for the application?
What fundamental rights are affected?

• Operational factors: To what extent is explanation an operational imperative?
For safety certification? For user trust?

These four factors will help characterize the needs for explanation, and evaluate
the likely benefits. One of the most important factors is the audience: who is
the explanation targeting? The human-machine interface will be a predominant
consideration to how explanations are formulated. AI systems serving in a decision-
support role might require different degrees of explanation than systems acting in
a decision-making capacity. For example, an expert radiologist might be able to
recognize situations when an automated analysis support tool is likely to misbehave.
In such a situation, explanation might not be as necessary.

The context of the relationship between the human user and the AI system may
be as important as the relationship between two human decision-makers. A system
that acts as a partner will require different explanation than a delegate. From
a technical perspective, both of these contexts may involve decidability, but the
human-machine partnership and how those decisions are to be used and interpreted
plays an important role. Similarly, accountability explanations, such as in diagnosing
failure situations, will probably require a different kind of explanation than one as a
part of a continuous interaction. Moreover, the depth of explanation required may
vary. In some situations, the fact that a neural net did not recognize a given object
in an image may suffice, where in others a deeper explanation of why a given object
was not recognized may be required.
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This relationship will further evolve over time as a co-adaptive system (Mackay,
1990) between human user and machine. As the user grows accustomed to the
quality of the system’s performance, her behavior may alter accordingly. Ironically,
as the system becomes more reliable, the user may be more likely to place undue
confidence in it than a system perceived to be more unreliable (and thus in need of
greater supervision).

6 Explainability’s role in algorithmic quality con-
trol and governance

Explainability has an important role in algorithmic quality control, both before
the system goes to market and afterwards, because it helps bring to light weak-
nesses in the algorithm such as bias that would otherwise go unnoticed (ICO, 2019).
Explainability contributes to ”total product lifecycle” (US Food and Drug Adminis-
tration, 2019) or ”safety lifecycle” (Kurd and Kelly, 2003) approaches to algorithmic
quality and safety.

6.1 The verification and validation (V&V) of AI-based sys-
tems

The quality of machine learning models is often judged by the average accuracy
rate when analyzing test data. This simple measure of quality fails to reflect weak-
nesses affecting the algorithm’s quality in certain situations, particularly bias and
failure to generalize. The explainability solutions presented in Section 3 can assist in
identifying areas of input data where the performance of the algorithm is poor, and
identify defects in the learning data that lead to bad predictions, and thereby help
make the model more robust. A saliency map may reveal that a classifier is relying
on irrelevant features in the training data to make predictions, for example snow in
the background of photographs of wolves. Understanding areas of input data that
do not belong within the training region of the deep neural network can help build
so-called “safety cages” that create an alert when the input data fall outside of a
range of confidence (Borg et al., 2019). The safety cage then would redirect exe-
cution to a safe-track procedure which does not make use of the machine learning
algorithm.
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Traditional approaches to software verification and validation (V&V) are poorly
adapted to neural networks (Peterson, 1993; Borg et al., 2019; US Food and Drug Ad-
ministration, 2019). The challenges include the non-determinism of neural network
decisions, which makes it hard to demonstrate the absence of unintended function-
ality, and the adaptive nature of machine-learning algorithms, which makes them
moving target (Borg et al., 2019; US Food and Drug Administration, 2019). Speci-
fying a set of requirements that comprehensively describe the behavior of a neural
network is considered the most difficult challenge with regard to traditional V&V
and certification approaches (Borg et al., 2019; Bhattacharyya et al., 2015). The
absence of complete requirements poses a problem because one of the objectives
of V&V is to compare the behavior of the software to a document that describes
precisely and comprehensively the system’s intended behavior (Peterson, 1993). For
neural networks, there may remain a degree of uncertainty about the output for a
given input. Other barriers include the absence of detailed design documentation
and the lack of interpretability of machine learning models, which challenge com-
prehensibility and trust which are generally required in certification processes (Borg
et al., 2019).

6.2 Verification of the training data

Evaluation of training data is particularly important for the detection of bias
(Lehr and Ohm, 2017; Peterson, 1993). The source and quality of the training data
should be verified by human reviewers independent of the designers of the algorithm.
The key characteristics of the training data, including their limitations and possible
sources of bias, should be included in the global explainability user’s manual dis-
cussed above (IEEE, 2019; European Commission, 2020). A full disclosure of the
limitations of the training data has been imposed by at least one court in the United
States as a legal explainability requirement, and that requirement is likely to become
a global norm.32 Disclosures relating to the training data would be required under
the proposed Algorithmic Accountability Act in the United States, and under the
European Commission’s proposed approach for high-risk AI applications (European
Commission, 2020). Consequently the requirement of global explainability will force
system developers to ensure that the quality of the training data has been evaluated

32See the discussion of Loomis v. State of Wisconsin in Section 5 above.
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and any defects corrected. For defects in training data that cannot be completely
cured (e.g. bias), the defects should be prominently disclosed to users.

6.3 AI impact assessments and an independent review com-
mittee

A number of approaches have emerged relating to institutional governance mech-
anisms for ethical AI, including the general requirement for human control (Euro-
pean Commission, 2019). One governance approach is to require an ethical impact
assessment for any AI system that is considered risky.33 Yeung et al. (2019) propose
an approach modeled after the ‘safety case’ framework used for regulating safety of
offshore oil rigs. This approach, which is similar to the risk management framework
imposed on financial institutions under the Solvency II Directive,34 consists of de-
veloping a comprehensive risk assessment, listing all the possible things that could
go wrong for the AI system – including societal and environmental harms – and as-
sessing the severity of harm for each possible bad event, and the probability of each
bad event occurring. The impact assessment is similar to the GDPR’s requirement
for data protection impact assessments.35 Each harm would then be addressed by a
mitigation measure to bring the risk – considered as the product of the severity of
harm multiplied by its probability – to acceptable levels. In the case of AI systems,
the risks of harm would include things like: the inability of a citizen to understand
and challenge an algorithmic decision, the inability of a court or regulator to deter-
mine the cause of an accident due to the unavailability of logs, or the risk of bias
from non-representative training data. Explainability solutions would be presented
as mitigation measures designed to reduce each of these identified risks.

Under the safety case approach, the operator of the system would bear the
responsibility for developing the impact assessment and safety arguments to show
that the mitigation measures are sufficient to reduce the identified risks to acceptable

33This approach has been proposed in the draft Algorithmic Accountability Act in the United
States, the European Commission’s communication on Building Trust in Human-Centric Artificial
Intelligence (2019), and the Council of Europe’s Draft Recommendation on the human rights
impacts of algorithmic systems (2019).

34See Art. 44 et seq. of Directive 2009/138/EC of the European Parliament and of the Council
on the taking-up and pursuit of the business of Insurance and Reinsurance (Solvency II), and Art.
258 et seq. of Commission delegated regulation (EU) 2015/35 of 10 October 2014 supplementing
such directive.

35Regulation (EU) 2016/679, article 35.
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levels. Where residual risks remain, the user’s manual accompanying the system
may contain warning labels informing users about residual risks, and advising the
user not to use the algorithm in certain contexts. The operator of the system
would then have to present its risk assessment to an independent body such as a
safety or AI ethics regulator and convince the regulator that the risk assessment has
considered all the risks, and that the mitigation measures are sufficient to address
them. The regulator’s role is to stress-test the operator’s risk assessment and where
appropriate improve the risk assessment and mitigation measures proposed by the
operator. Once the final risk assessment and mitigation package are finalized, the
measures become binding on the operator, which is similar to how risk management
operates under the Solvency II Directive. The regulator then has the right to audit
the operator against these requirements, and impose penalties in case of deviation.
This kind of continuous oversight of safety is consistent with approaches used for
safety of oil rigs, risk management in financial institutions, the regulation of AI in
medical devices and for other AI systems deployed in safety-critical environments
(Yeung et al., 2019; US Food and Drug Administration, 2019; Babic et al., 2019;
Kurd and Kelly, 2003). Instead of a risk assessment, the European Commission
proposes a conformity assessment for high-risk AI applications, but the conformity
assessment may well include an obligatory risk assessment by the relevant operator
(European Commission, 2020).

For less risky artificial intelligence systems, an external review may not be justi-
fied. However, in that case internal committees may be set up to assess the quality
of learning data and test the validity of the system based on their expertise. Just
as V&V is systematically applied in software development, a mandatory testing and
validation step should be implemented in the business process, involving relevant
domain experts and machine learning experts. The internal committee would have
a dual responsibility: an evaluation before the system is put into production and
a responsibility for handling contentious cases that are reported over time by the
field.

46



7 Conclusion: Context-specific AI explanations
by design

Explainability is both an operational and ethical requirement. The operational
needs for explainability are driven by the need to increase robustness, particularly for
safety-critical applications, as well as enhance acceptance by system users. The eth-
ical needs for explainability address harms to fundamental rights and other societal
interests which may be insufficiently addressed by the purely operational require-
ments.

Research on explainable AI focuses first and foremost on operational require-
ments: how to make systems more robust and safe through explainability? The use
of hybrid solutions, combining machine learning and symbolic AI, is a promising
field of research for safety-critical applications, and applications such as medicine
where important bodies of domain knowledge must be associated with algorithmic
decisions. Explainability will increasingly become a performance criterion for algo-
rithms, and included by design.

Regulation of AI explainability remains largely unexplored territory, the most
ambitious efforts to date being the French law on the explainability of government
algorithms and the EU regulation on Platform to Business relations. However, even
in those instances, the law leaves many aspects of explainability open to interpre-
tation. The form of explanation and the level of detail will be driven by the four
categories of contextual factors described in this paper: audience/recipient factors,
impact factors, regulatory factors, and operational factors. The level of detail of ex-
planations – global or local – would follow a sliding scale depending on the context,
and the costs and benefits at stake. One of the biggest costs of local explanations
will relate to storage of individual decision logs. The kind of information stored in
the logs, and the duration of storage, will be key questions to address when deter-
mining the right level of explainability. AI impact assessments, which are likely to
be imposed by law for risky AI systems, are the right place to weigh these contextual
factors in order to design right-fitting explainability solutions.

As technical solutions to explainability converge toward hybrid AI approaches,
we can expect that the trade-off between explainability and performance will become
less acute. Explainability will become part of performance. Also, as explainability
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becomes a requirement for safety certification, we can expect alignment between
operational/safety needs for explainability and ethical/human rights needs for ex-
plainability. Some of the solutions for operational explainability may serve both
purposes.

References

Al-Shedivat, M., Dubey, A., and Xing, E. P. (2017). Contextual explanation net-
works. arXiv preprint arXiv:1705.10301.

Alvarez-Melis, D. and Jaakkola, T. S. (2017). A causal framework for explain-
ing the predictions of black-box sequence-to-sequence models. arXiv preprint
arXiv:1707.01943.

Babic, B., Gerke, S., Evgeniou, T., and Cohen, I. G. (2019). Algorithms on regula-
tory lockdown in medicine. Science, 366(6470):1202–1204.

Balkin, J. M. (2015). Information fiduciaries and the first amendment. UCDL Rev.,
49:1183.

Bang, S., Xie, P., Wu, W., and Xing, E. (2019). Explaining a black-box using deep
variational information bottleneck approach. arXiv preprint arXiv:1902.06918.

Bhattacharyya, S., Cofer, D., Musliner, D., Mueller, J., and Engstrom, E. (2015).
Certification considerations for adaptive systems. In 2015 International Confer-
ence on Unmanned Aircraft Systems (ICUAS), pages 270–279. IEEE.

Borg, M., Englund, C., Wnuk, K., Duran, B., Levandowski, C., Gao, S., Tan, Y.,
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A Appendix: Glossary of AI explainability terms

Concept Definition
-ability “ability, inclination, or suitability for a specified action or condi-

tion” (American Heritage Dictionary, Fifth Edition)
Accountability ”Accountability focuses on being able to place the onus on the ap-

propriate organisations or individuals for the proper functioning of
AI systems. Criteria for accountability include respect for prin-
ciples of human values and fairness, transparency, robustness and
safety.” (OECD, 2019a, p. 99)
”Liability to account for and answer for one’s conduct; judgment of
blameworthiness; obligation to provide a satisfactory answer to an
external oversight agent.” (IEEE, 2019)
”A set of mechanisms, practices and attributes that sum to a gov-
ernance structure which “consists of accepting responsibility for
the stewardship of personal and/or confidential data with which it
[data organization] is entrusted in a cloud environment, for process-
ing, storing, sharing, deleting and otherwise using data according
to contractual and legal requirements from the time it is collect-
ed until when the data are destroyed (including on- ward transfer
to and from third parties). Accountability involves committing to
legal and ethical obligations, policies, procedures and mechanism,
explaining and demonstrating ethical implementation to internal
and external stakeholders and remedying any failure to act prop-
erly” (Felici et al., 2013).
“Accountability - the need to have corporate governance measures
in place to appropriately manage the whole AI decision process”
(ICO, 2019, p. 31).
Accountable: “expected or required to account for one’s actions;
answerable. Capable of being explained” (American Heritage Dic-
tionary, Fifth Edition)

Accuracy “Accuracy: to which extent the model accurately predict unseen
instances.” (Guidotti et al., 2018, p. 7)

Auditability Audit: “to examine or evaluate (something) closely” (American
Heritage Dictionary, Fifth Edition)

Comprehensiblity “According to the literature, we refer to interpretability also with
the name comprehensibility.” (Guidotti et al., 2018, p. 7)

Domain theory “In machine learning, a domain theory is a collection of rules that
describes task-specific inferences that can be drawn from the given
facts. For classification problems, a domain theory can be used to
prove whether or not an object is a member of a particular class.”
(Towell and Shavlik, 1994, p. 119)
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Concept Definition
Empirical learn-
ing

“Empirical learning systems inductively generalize specific exam-
ples. Thus, they require little theoretical knowledge about the
problem domain; instead they require a large library of examples.”
(Towell and Shavlik, 1994, pp. 121-122)

Explainability
and explana-
tions

“In this paper, when we use the term explanation, we shall mean a
human-interpretable description of the process by which a decision-
maker took a particular set of inputs and reached a particular con-
clusion. In addition to this formal definition of an explanation, and
explanation must also have the correct type of content in order for
it to be useful. As a governing principle for the content an explana-
tion should contain, we offer the following: an explanation should
permit an observer to determine the extent to which a particular
input was determinative or influential on the output. Another way
of formulating this principle is to say that an explanation should be
able to answer at least one of the following questions: What were
the main factors in a decision? Would changing a certain factor
have changed the decision?.... Why did two similar-looking cases
get different decisions, or vice versa?” (Doshi-Velez et al., 2017, p.
3)
“... explanation is distinct from transparency. Explanation does
not require knowing the flow of bits through an AI system, no
more than explanation from humans requires knowing the flow of
signals through neurons (neither of which would be interpretable
to a human!). Instead, explanation, as required under the law, as
outlined in Section 2, is about answering how certain factors were
used to come to the outcome in a specific situation.” (Doshi-Velez
et al., 2017, pp. 6-7)
“We argue that regulation around explanation from AI systems
should consider the explanation system as distinct from the AI
system. . . .the designer of the explanation system must output a
human-interpretable rule ex() that takes in the same input x and
outputs a prediction y. To be locally faithful under counterfactual
reasoning formally means that the predictions y and y are the same
under small perturbations of the input x.” (Doshi-Velez et al., 2017,
p. 7)
Explain: “to make plain or comprehensible” (American Heritage
Dictionary, Fifth Edition)
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Concept Definition
Explainability
and explana-
tions

Explainability concerns the ability to explain both the technical
processes of an AI system and the related human decisions (e.g.
application areas of a system). Technical explainability requires
that the decisions made by an AI system can be understood and
traced by human beings. Moreover, trade-offs might have to be
made between enhancing a system’s explainability (which may re-
duce its accuracy) or increasing its accuracy (at the cost of ex-
plainability). Whenever an AI system has a significant impact on
people’s lives, it should be possible to demand a suitable explana-
tion of the AI system’s decision-making process. Such explanation
should be timely and adapted to the expertise of the stakeholder
concerned (e.g. layperson, regulator or researcher). In addition,
explanations of the degree to which an AI system influences and
shapes the organisational decision-making process, design choices
of the system, and the rationale for deploying it, should be avail-
able (hence ensuring business model transparency). (HLEG, 2019,
p. 18)

Explanation
– black box
explanation

“Given a black box model solving a classification problem, the black
box explanation problem consists in providing an interpretable and
transparent model which is able to mimic the behavior of the black
box and which is also understandable by humans (see Figure 4). In
other words, the interpretable model approximating the black box
must be globally interpretable.” (Guidotti et al., 2018, p. 13)

Feature extrac-
tion

“There are also ways of simplifying machine learning models such as
‘feature extraction’ an approach that analyses what features actu-
ally matter to the classification outcome removing all other features
from the model.” (Burrell, 2016)

Fidelity “The fidelity captures how much is good an interpretable model in
the mimic of the behavior of a black-box.” (Guidotti et al., 2018, p.
7)

Fidelity – local
fidelity

“...for an explanation to be meaningful it must at least be locally
faithful, i.e. it must correspond to how the model behaves in the
vicinity of the instance being predicted.” (Ribeiro et al., 2016b)

Fidelity – global
fidelity

“We note that local fidelity does not imply global fidelity: features
that are globally important may not be important in the local con-
text, and vice versa. While global fidelity would imply local fidelity,
identifying globally faithful explanations that are interpretable re-
mains a challenge for complex models.” (Ribeiro et al., 2016b)
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Concept Definition
Inscrutability “... the property of inscrutability suggests that models available for

direct inspection may defy understanding...” (Selbst and Barocas,
2018, p. 1091)
“We define this difficulty as ‘inscrutability’ – a situation in which
the rules that govern decision-making are so complex, numerous,
and interdependent that they defy practical inspection and resist
comprehension” (Selbst and Barocas, 2018, p. 1094)

Interpretability “On the machine learning side, the subfield of “interpretability”
– within which researchers have been attempting to find ways to
understand complex models – is over thirty years old.” (Selbst and
Barocas, 2018, p. 1099)
“...in data mining and machine learning, interpretability is defined
as the ability to explain or to provide the meaning in understand-
able terms to a human.” (Guidotti et al., 2018, p. 5)
“An essential criterion for explanations is that they must be inter-
pretable, i.e., provide qualitative understanding between the input
variables and the response. We note that interpretability must take
into account the user’s limitations.” (Ribeiro et al., 2016b, p. 2)
“interpretability summarizes every effort that is made by humans
or machines to provide descriptive information, i.e. visualizations,
local explanations, that enable humans to understand the decisions
made by ADM.” (Waltl and Vogl, 2018)
Interpret: “to explain the meaning of; to translate from one lan-
guage to another” (American Heritage Dictionary, Fifth Edition)

Global inter-
pretability (or
explainability)

“... the property of inscrutability suggests that models available for
direct inspection may defy understanding...” (Selbst and Barocas,
2018, p. 1091)

Local inter-
pretability (or
explainability)

“... the property of inscrutability suggests that models available for
direct inspection may defy understanding...” (Selbst and Barocas,
2018, p. 1091)

Hand-built clas-
sifiers

“Hand-built classifiers correspond to teaching by giving a person a
domain theory without an extensive set of examples; one could call
this learning by being told.” (Towell and Shavlik, 1994, p. 120)

Hybrid systems “... a “hybrid” system that effectively combines a hand-built clas-
sifier with an empirical learning algorithm might be like a student
who is taught using a combination of theoretical information and
examples.” (Towell and Shavlik, 1994, p. 120)
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Concept Definition
KBANN
(Knowledge-
Based Artificial
Neural Net-
works)

“KBANN (Knowledge-Based Artificial Neural Networks) is a hy-
brid learning system built on top of connectionist learning tech-
niques. It maps problem-specific “domain theories”, represented in
propositional logic, into neural networks and then refines this re-
formulated knowledge using backpropagation.” (Towell and Shavlik,
1994, p. 119)

Logging “One extremely straightforward and very commonly used form of
dynamic program review comes from the practice of logging, or
recording certain program actions in a file either immediately be-
fore or immediately after they have taken place. Analysis of log
messages is among the easiest and is perhaps the most common
type of functional review performed on most software programs.
However, analyzing program logs requires that programs be writ-
ten to log when they perform events which might be interesting for
analysis (and that they log enough information about those events
to actually perform the analysis in question)....Because of this, au-
dit logs meant to record sensitive actions requiring reliable review
are generally access controlled or sent to special restricted remote
systems dedicated to receiving logging data.” (Kroll et al., 2016, pp.
651-652)
Log: “a record, as of the performance of a machine or the progress
of an undertaking” (American Heritage Dictionary, Fifth Edition).

Monotonicity “A predictor respecting the monotonicity principle is, for example,
a predictor where the increase of the values of a numerical attribute
tends to either increase or decrease in a monotonic way the proba-
bility of a record of being member of a class.” (Guidotti et al., 2018,
p. 7)

Non-
intuitiveness

“...non intuitiveness suggests that even where models are under-
standable, they may rest on apparent statistical relationships that
defy intuition.” (Selbst and Barocas, 2018, pp. 1091)
“The problem in such cases is not inscrutability, but an inability
to weave a sensible story to account for the statistical relationships
in the model. Although the statistical relationship that serves as
the basis for decision-making might be readily identifiable, that re-
lationship pay defy intuitive expectations about the relevance of
certain criteria to the decision.” (Selbst and Barocas, 2018, pp.
1096-1097)
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Concept Definition
Opacity “Three distinct forms of opacity include: (1) opacity as inten-

tional corporate or institutional self-protection and concealment
and, along with it, the possibility of knowing deception; (2) opac-
ity stemming from the current state of affairs where writing (and
reading) code is a specialist skill and; (3) an opacity that stems
from the mismatch between mathematical optimization in high-
dimensionality characteristic of machine learning and the demands
of human-scale reasoning and styles of semantic interpretation.”
(Burrell, 2016)

Partial depen-
dence plots
(also variable
importance
plots)

“More specifically, they produce plots – often called partial depen-
dence or individual conditional expectation plots – that graph the
outcome variable as a function of a given input variable.” (Lehr and
Ohm, 2017, p. 710)
“The output of such methods is known as a variable importance
plot, which displays graphically the relative importances of different
input variables.” (Lehr and Ohm, 2017, p. 708)
“These plots help in visualizing and understanding the relationship
between the outcome of a black box and the input in a reduced
feature space.” (Guidotti et al., 2018, p. 17)

Procedural regu-
larity

“We show that computer systems can be designed to prove to over-
sight authorities and the public that decisions were made under an
announced set of rules consistently applied in each case, a condition
we call procedural regularity...
Procedural regularity ensures that a decision was made using con-
sistently applied standards and practices. It does not, however,
guarantee that such practices are themselves good policy.” (Kroll
et al., 2016, pp. 637-638)

Robust “The system continues to provide useful results even if some of the
inputs are missing or estimated.” (Peterson, 1993, p. 204)
“In order to test for robustness, the data can be modified and the
response checked. For example, we can find out what the network
does if it is given an outlier; or we can try running the network
when some of the data is missing, or if the user estimates the value
of the missing data.” (Peterson, 1993, p. 204)

Saliency masks ”An efficient way of pointing out what causes a certain outcome, es-
pecially when images or texts are treated, consists in using “masks”
visually highlighting the determining aspects of the record ana-
lyzed. They are generally used to explain deep neural networks.”
(Guidotti et al., 2018, p. 17)
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Concept Definition
Simulatability “As computer scientist Zachary Lipton explains, simulatability –

the ability to practically execute a model in one’s mind – is an
important form of understanding a model.” (Selbst and Barocas,
2018, p. 1096)
Simulation is a remarkably flat and functional definition of under-
standing, but it seems like a minimum requirement for any more
elaborate definition. This notion of understanding has nothing to
say about why the model behaves the way it does; it is simply a
way to account for the facility with which a person can play out
how a model would behave under different circumstances. When
models are too complex for humans to perform this task, they have
reached the point of inscrutability.” (Selbst and Barocas, 2018, p.
1096)

Source-code
analysis

“Perhaps the most obvious approach is to disclose a system’s source
code, but this is at best a partial solution to the problem of account-
ability for automated decisions. . . Machine learning, one increas-
ingly popular approach to automated decision-making, is particu-
larly ill-suited to source code analysis because it involves situations
where the decisional rule itself emerges automatically from the spe-
cific data under analysis, sometimes in ways that no human can
explain.” (Kroll et al., 2016, p. 638)

Testing – black
box testing,
white box test-
ing

“Dynamic testing can be divided into ‘black-box testing,’ which
considers only the inputs and outputs of a system or component,
and ‘white-box testing,’ in which the structure of the system’s in-
ternals is used to design test cases.” (Kroll et al., 2016, pp. 651-652)

Traceability The traceability of AI systems should be ensured; it is important to
log and document both the decisions made by the systems, as well
as the entire process (including a description of data gathering and
labelling, and a description of the algorithm used) that yielded the
decisions. (European Commission, 2019) trace: “an act of research-
ing or ascertaining the origin or location of something” (American
Heritage Dictionary, Fifth Edition)

Transparency Transparency;:” the quality or state of being transparent” (Ameri-
can Heritage Dictionary, Fifth Edition)
Transparent: “open to public scrutiny; not hidden or proprietary”
(American Heritage Dictionary, Fifth Edition)
“Article four of the EPSRC Principles of Robotics asserts that
Robots are manufactured artefacts. They should not be designed
in a deceptive way to exploit vulnerable users; instead their ma-
chine nature should be transparent.” . . . “Mueller sees explanation
as one of the three main characteristics of transparent computers,
the others being dialogue and learning.” (Wortham et al., 2016)
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Concept Definition
Transparency “Stated simply, transparent A/IS are ones in which it is possible to

discover how and why a system made a particular decision, or in
the case of a robot, acted the way it did. Note that here the term
transparency also addresses the concepts of traceability, explicabil-
ity, and interpretability” (IEEE, 2019, Principle 4)
“For technologists, transparency of an AI system focuses largely
on process issues. It means allowing people to understand how an
AI system is developed, trained and deployed. It may also include
insight into factors that impact a specific prediction or decision. It
does not usually include sharing specific code or datasets.” (OECD,
2019a, p. 91)
“transparency means the process of making a decision-making pro-
cess visible with all the phases and interactions between compo-
nents of the algorithms.” (Waltl and Vogl, 2018)
“Tranparency - the need to be open and engaged with customers
and the wider public about the use of AI decisions” (ICO, 2019, p.
31).

Transparency
–fishbowl trans-
parency

“Fishbowl transparency, as its name suggests, refers to the public’s
ability to peer inside government and acquire information about
what officials are doing. It focuses on public access to information
the government holds and information about what the government
does. It includes public access to government hearings, records
stored in filing cabinets, and materials available on government
computers.” (Coglianese and Lehr, 2018, p. 16)
“Clearly, algorithmic governance presents real concerns about fish-
bowl transparency. Governmental use of machine learning gener-
ates a broad range of potentially disclosable information, including
the algorithm’s source code, its objective function, its specifica-
tions and tuning parameters, its training and test data sets, and
the programming details of any ancillary computer programs that
translate its predictions into actions.” (Coglianese and Lehr, 2018,
p. 27)

Transparency
– optimisation
transparency

“Optimisation transparency is transparency about a system’s goals
and results.” (OECD, 2019a, p. 93)

Transparency –
reasoned trans-
parency

By contrast to fishbowl transparency’s emphasis on public access
to information about what government is doing, reasoned trans-
parency emphasizes the usefulness of that information – that is,
whether government reveals why it took action. Reasoned trans-
parency stresses the importance of the government explaining its
actions by giving reasons.” (Coglianese and Lehr, 2018, p. 16)
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Concept Definition
Usability Another property that influences the trust level of a model is us-

ability: people tend to trust more models providing information
that assists them to accomplish a task with awareness. In this line,
and interactive and queryable explanation results to be more usable
than a textual and fixed explanation.” (Guidotti et al., 2018, p. 7)

Validation “Validation has taken place when the final product passes a compre-
hensive and feasible test. If the test is not passed and weaknesses
are found, then validation fails – the product has not been validated.
The weaknesses need to be corrected and validation tried again. A
validation should have sufficient force to compel acceptance of the
product by the customer.” (Peterson, 1993, p. 198)

Verification “A verification is precisely the same as a validation except it is
applied to intermediate products or processes. A verification should
have sufficient force to compel acceptance by the developers who
will use the intermediate product or the results of the process.”
(Peterson, 1993, p. 198)
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B Appendix: Machine learning approaches

A supervised classifier can be defined as a model or function that transforms an
input, which contains information about the object of interest, in the output being a
label that assigns this object to one of the predefined categories (or classes). Due to
its fundamental nature, (scientific) literature on this problem dates back to Fisher
(1936) who introduced the discriminant analysis, and Rosenblatt (1957) who made
a seminal step in the development of contemporary learning methodology including
neural networks. The first method is based on plugging in a data-based estimator
in the expression of the prevalence of one of the classes given a new object, and
was followed by such approaches as k nearest neighbors’ classifiers or kernel density
analysis (Stone, 1977). The decision taken (which label/output to choose) here
is well explained by imitating the prevailing behavior in the neighborhood, but
the methods suffer from a major drawback of extremely bad scalability and thus
are in general not competitive with the state-of-the-art approaches. The so-called
Perceptron of Rosenblatt attempts to separate two classes by a hyperplane – a linear
separating surface – whose exact position in the features space is learnt from the
training data. Once the hyperplane’s position is learnt, new objects are assigned to
one of the two classes depending on which side of the hyperplane they are (Minsky
and Papert, 1969).

The learning rule of the perceptron was pioneering for the machine learning
phenomenon and gave rise to the stochastic gradient descent algorithm (implemented
as back-propagation for neural networks; (Rumelhart et al., 1986). Nevertheless, in
its raw form it is unstable due to dependence on the exact sequence of the training
data on one side and is too simple due to its linearity on the other side. The first
drawback has been later compensated by the generalized portrait algorithm and
its successor, the support vector machine (SVM) (Cortes and Vapnik, 1995), which
searches a unique hyperplane that maximizes the margin between classes. However,
the obtained hyperplane is non-optimal in sense the of desired (indicator-nature)
risk, lacks robustness, and needs fine-tuning before being used in practice. These
shortcomings led to an interruption in neural network research for a decade.

A different direction of approach is based on aggregation of very simple linear
rules to give a non-linear separation surface. Examples of those include the classifica-
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tion and regression trees (CART) (Breiman, 1984) and their bagged version random
forest (RF) (Breiman, 2001), as well as boosting-based aggregation (Schapire, 1990).
(Pavlo please insert a mention of kernel based approaches.) Connecting a substan-
tial number of perceptrons with (continuous) non-linear transformation yielded the
whole area of (deep) neural networks (NNs), which are capable to learn a highly-
complicated (adapted to a particular domain of industry) separation rule.
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