
HAL Id: hal-02491369
https://telecom-paris.hal.science/hal-02491369

Submitted on 26 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Network Configuration Management
Architecture for Future Aircraft Systems

Thibault Delmas, Luigi Iannone, Jean-Pierre Garcia, Bruno Monsuez

To cite this version:
Thibault Delmas, Luigi Iannone, Jean-Pierre Garcia, Bruno Monsuez. A New Network Configuration
Management Architecture for Future Aircraft Systems. 10th European Congress on Embedded Real
Time Software and Systems (ERTS 2020), Jan 2020, Toulouse, France. �hal-02491369�

https://telecom-paris.hal.science/hal-02491369
https://hal.archives-ouvertes.fr


1

A New Network Configuration Management
Architecture for Future Aircraft Systems

Thibault Delmas∗, Luigi Iannone†, Jean-Pierre Garcia∗ and Bruno Monsuez‡
∗name.surname@safrangroup.com †name.surname@telecom-paristech.fr, ‡name.surname@ensta-paristech.fr

Abstract—Aircraft systems are evolving and being enhanced
thanks to new design paradigms leveraging on recent technology
advances in embedded systems. However, the Integrated Modular
Avionics (IMA) model, used in current avionics, has shown
important limitations to accommodate such evolution. These new
paradigms demand for much more global system modularity than
what IMA is able to offer. Such system evolution has as well an
impact on the underlying different networks present on aircrafts.
In this context, it is mandatory to investigate the kind and the
breadth of adaptation networks need in order to cope with new
requirements.

To this end, this paper we firstly investigate the current
aircrafts network configuration and management procedures.
It appears that they lack the features, more specifically, the
configuration management features, necessary to support these
new use cases. We then look at proposals trying to fulfil
this features gap. Each of them, while providing parts of the
answers, also come with trade-off or insufficiencies that prevent
them from fully answering to the new needs. Then, a new
network configuration architecture able to cope with the newly
defined configuration management requirements is provided. A
comparison to the other approaches is presented, so to highlight
how the proposed architecture better fulfils long-term evolution
requirements while being less complex and more suitable for
current configuration procedures than the other proposal. Finally,
a simulation of the configuration architecture is done to provide
insights on the new proposed features.

Index Terms—Network management, Real Time Management,
Aircraft Systems

I. INTRODUCTION

Today aircraft systems are designed using the Integrated
Modular Avionic (IMA) [1] model. In the IMA model, the
configuration of such systems is created at design time. This
fits in the integration model used for aircrafts, mainly because
of certification and verification complexity. However, one
major consequence of using such architecture is the creation
of static systems, rarely evolving throughout the aircraft life
cycle.

Aircrafts systems base their resilience on pure service
protection through redundancy. This leads to static systems
being designed offline and loaded with a monolithic behavior
adjusted until it meets its safety objective. This has led to
severe limitations in scalability over time due to such a static
nature.

Nowadays, system engineers see new opportunities in in-
novative architectures, notably, two which are of interest:
the Distributed Integrated Modular Avionic (DIMA) [2]; the
Flexible Platform (FP) [3]. These architectures affect the
systems design and, by extension, their underlying networks,

more specifically, in how they are managed and in particular
in the way devices configurations are distributed.

To better understand the challenges brought by the use of
new, less rigid, architectures onto the network and what new
features are necessary to cope with them, we have first to
understand how the new architectures influence the systems,
the networks, and their management methods and tools. As
will be shown throughout the first part of this paper, an
important change brought by these new architectures is the
introduction of additional and alternative system modes of
operation, and with it, the need, particularly for the network,
to adapt to them.

In order to adapt to such changes, the whole configuration
system has to be revised. To this aim, several proposals to
embed part of the configuration management functions to
augment the network current capabilities have been made.

We propose a network configuration architecture that, com-
pared to other proposals, has low additional complexity to
the current configuration tools and procedures and that pro-
vides the configuration capabilities necessary for a network
to become more flexible. This solution is based on a cen-
tral controller, overseeing the network, capable of reacting
to configuration changes while integrating in the aeronautic
configuration management processes.

With this context given, the paper is organized as follows.
Sec. II investigates current solutions to see how they only
partially answer the requirements, formally defining the prob-
lem our proposal aims at solving. Sec. III presents the current
management methods and tools used in civil aeronautics.
Sec. IV provides a discussion around proposals being made
to cope with these new requirements. In Sec. V we introduce
a new architecture that we argue to better fulfill current
and future requirements. We provide an evaluation of the
proposed architecture in Sec. VI, along with a first example of
implementation. Sec. VII concludes the paper with a summary
of new emerging requirements, a description of why it is
necessary to fulfil them, and how our approach succeeds at
it.

II. PROBLEM STATEMENT

In order to better understand why configuration is critical
in the context of avionics, we will first have a look at the
shortcomings of the current IMA architecture. Then we will
overview new emerging architectures and formalize the impact
these bring to the aircraft network. This will allow us to then
focus on the configuration management tools and their specific
shortcomings in the next section.



2

A. IMA Limitations

The IMA [1] model bases its architecture around hosting
multiple aircraft functions on computers on the avionic bay.
These centralized functions then use the avionic network to
communicate with sensors and actuator distributed aboard
the aircraft. This architecture draws its fault tolerance on
pure resiliency through redundancy, leading to static systems,
designed offline in several refinement cycles until they meet
the safety objective. One advantage of this model, ever since it
was created, was its ease of mastery (for behavior provability
purposes). Nevertheless, over time, it has led to severe limita-
tions in scalability due to its strict static nature. Indeed, static
resource reservation creates rigidity, as it limits the number of
possible evolutions down the line and prevents the possibility
to add different and new modes of operation. Adding new
resource reservation implies to re-certify the whole system,
which is a long and expensive procedure. Main example
of such a restriction is the Avionics Full DupleX switched
ethernet (AFDX [4]) network, which is strongly limited in the
number of new admissible communications between devices.

This problem is worsened by the centralized approach, with
every main function being in the avionic bay, where resources
may become scarce.

B. Emerging Architectures

As previously stated, there are two new emerging archi-
tectures that are of interest, namely the Distributed Inte-
grated Modular Avionic (DIMA) [2] and the Flexible Platform
(FP) [3].

DIMA brings to light the issues that came with too much
centralization and how new advances regarding embedded
technologies (e.g., smart sensors) help to redistribute functions
between devices in a system. This brings benefits such as
reduced number of devices [5]. DIMA answers to the IMA
limitations by redistributing the functions among devices and
creating operational modes for those. It helps with regards to
the resource utilization throughout the aircraft (bringing better
balance between the avionic bay and the rest of the aircraft)
and by enabling less monolithic behaviors in systems.

FP tries to extend the modularity offered by the IMA
architecture in the first place. Its goal is to reach maximum
modularity by providing various standardized APIs between
devices to allow configuration adaptation when needed. For
instance, with FP, an orchestrator is placed in one avionic bay
and it is capable of migrating a function from one avionic
server to another when the former suffers a failure. Differently
from DIMA, FP actually leverages on the IMA model and
integrates to it, but introduces a new level of flexibility, where,
thanks to new APIs, functions and hardware are not anymore
tight together.

As a whole, these architectures tackle the IMA rigidity
by improving either the devices (in the case of DIMA) or
system behavior (in the case of FP). However, it comes at the
expense of monolithic operational mode, and therefore put the
static resource reservation model at risk of not being able to
answering new requirements that they may introduce.

Fig. 1: Aircraft system configuration management process.

One of the highlights of these new architectures from a
network perspective is the need for more flexibility in system
configurations. It does bring with it a new need for systems to
handle more than one configuration (configuration modes for
FP, and configuration extensions for DIMA).

C. Network Systems in Emerging Architectures

The need for multiple per-system configurations, described
in the previous section, also impacts the underlying networks,
as they also are considered systems of their own (i.e., commu-
nications systems). This opens the question whether commu-
nications systems are able to handle multiple configurations.
From such a perspective, the network has to provide the
following three features:
• Application Programming Interfaces (APIs): FP brings

the need for APIs with the network to enable updates
upon need. When the FP architecture move functions
around, the network needs to be able to assure the
function’s communication still get through even in its new
position.

• Automation: DIMA and FP bring the need for more
automation in network configuration. Indeed, with less
static communications, the handling of changes has to be
automatically managed, but also kept under control.

• Adaptation: DIMA and FP are prone to create different
operational behaviors and therefore have more interaction
with the network. Network has to be able to adapt to
evolving operations.

Despite these new requirements, the current networks are
static and can only offer solution through static configurations,
as previously discussed in Sec. II-A, this severely limits or
even prevents them to implement these expected features.

III. CURRENT NETWORK CONFIGURATION MANAGEMENT

In the context of aeronautic, with the generic term configu-
ration three different entities are actually referred to, namely:
configuration data, configuration software, and configuration
parameters. Each one of these is tracked using part numbers.
Part numbers are identifiers used to reference aircraft parts.
This identifier is used to track the part and helps identify its
validity for use and its place in an aircraft.

It means that from the perspective of an aircraft maintainer,
a configuration file has the same life cycle as any other aircraft
part. It is therefore maintained through the normal aircraft
systems configuration change process, which consists of a
four-step process (cf. Fig. 1).

The first step of the process is the creation of the config-
uration according to strict specifications. In the second step,
the configuration is validated, checking whether it is a valid
system configuration. Validation is the step that is used to
verify whether the created configuration is compliant with



3

the specification used to create it in the first place. Then, in
the third step, the configuration is verified, in order to check
whether it complies with the system and safety requirements
(e.g., with functional testing). These two steps are performed
using various tools. The fourth and final step consists in
distributing the configuration to the different devices. In aero-
nautic, a configuration is created, validated and verified offline
at design time. An example of such creation and validation
for network configurations is described in the work of Steiner
et al. [6]. Distribution is done per network device thanks to
the Data Loader Centralized System (DLCS) during aircraft
maintenance.

When a change in the configuration occurs, it does not
usually involve only one party. Airliner owning the aircraft,
aircraft manufacturer making it, and device manufacturer may
be involved. Each party has a role in this update process.
An example of change could be the device manufacturer
requiring new resources on the network (e.g., more bandwidth
to another device). The update process starts with the network
integrator, usually the aircraft manufacturer, turning this re-
quest into specifications, then creating a new network config-
uration according to these specifications. Next, a verification
is performed, to ensure that there is no impact on the other
devices using the network, and validating the change. Then,
the integrator goes back to the device manufacturer, which
will make its own internal tests to ensure the new configura-
tion change fulfills its requirements. This allows to split the
validation for both the integrator and the manufacturer, with
the former verifying that no other system has been harmed
by the change, and the latter to check whether the proposed
configuration answered its initial request.

A. Configuration Management Evolution

Systems configuration, like any other system, evolves in
time from two points of view: the system life cycle and
the configuration update. The aircraft systems life cycle is
split in several phases, or operational modes, going from its
development to its end of life (cf. Fig. 2). The system starts
by the development and installation phases, during which it
is created, tested, and installed in the aircraft. It then enters
the major part of its life cycle, looping between operation
and maintenance phases. It corresponds to the commercial
use of the system. Concerning configuration, its evolution
requirements are traceability, validity, and integrity.
• Traceability: Any evolution (through configuration up-

date) must be traceable (through part number evolution
for instance) to ensure a high degree of knowledge regard-
ing the aircraft state. This is very important, as software
configuration must be logged for the entire duration of
the aircraft life cycle (approximatively 40 years).

• Validity: Validity from a maintenance point of view is for
a given configuration, the verification of its compatibility
for use in the aircraft. Configuration part numbers helps
to identify compatibility issues that could arise when
installing a new configuration.

• Integrity: The configuration before installation must be
verified once distributed in the device to ensure no

Fig. 2: Aircraft system life cycle.

Fig. 3: Current configuration architecture.

tempering or degradation of the configuration happened
during its installation. The current verification system
is implemented with Cyclic Redundancy Check (CRC)
algorithms.

The overview on how current configuration is handled gives
the context in which network systems evolutions presented
in Sec. II have to take place. It is important to understand
how multiple configurations can exist within this context.
Indeed, generating multiple configurations and switching be-
tween them for different purposes has to fit with the update
process up to a certain extent. Each configuration needs to be
specified, created, and validated before it can be assumed safe
to use. Once passed these steps, their use and integrity need to
be tracked and monitored, as required by the aforementioned
traceability, integrity, and validity requirements.

B. Configuration Distribution

As stated in the previous section, configuration distribution
is done through the Data Loader Centralized System (DLCS).
In particular, the ARINC 615A [7] file transfer protocol is
used to distribute the configuration from the central DLCS to
every single device. As shown in Fig. 3, the DLCS is used as
a central module to send configuration individually to devices
in the network, including the network devices themselves.
Maintainers manually provide configuration updates to the
DLCS and use a graphical interface to manually request
devices to update their configuration with the newly provided
one. A configuration update consists of the reboot of the device
with the new configuration, followed by a safety test and a
rollback in case of an invalid update.

Networks are currently considered as pre-defined closed
systems, meaning that topology, load, and devices are known
in advance. The implication is that any dynamic behavior, such
as maintenance operations connections, as well as user-owned
devices connected through onboard Wi-Fi, have already been
accounted for.

Following the current situation, configuration tools in com-
mercial aircrafts can be qualified as being used proactively in
a distributed fashion during maintenance phase. The corollary
of this qualification is that, as of today, there are no dedicated
network management system aboard aircrafts. Looking at the



4

configuration life cycle in Fig. 1, only part of the distribution
functions are embedded in the aircraft.

C. Current Tools Shortcomings

With respect to the requirements showed in the previous
section, configuration distribution tools have the following
shortcomings.
• APIs: The DLCS architecture offers no explicit configu-

ration API. There is an interface for human intervention
only during maintenance phase, but there is no system
that can connect to it to request for configuration changes.

• Automation: There is no space for automation with the
current architecture since devices get updated individually
and manually and there are no APIs to do so in the first
place.

• Adaptation: The current system does not implement
adaptation capabilities. Rather, if there is to be some
dynamicity in an aircraft system, it has to be accounted
for in the initial configuration. This is due to two factors:
the limited number of possible configurations and the
design philosophy of these systems.

• Traceability: There is no way for the network to consoli-
date a view of global configuration state. The traceability
has to be done per device.

Regarding validity and integrity, they are currently handled
respectively manually and automatically in the transfer proto-
col used by the DLCS to send configurations. These, even if
not limited by the current procedure, have to be kept in mind
for the design of new solutions.

The main take away is that the current aircraft configuration
deployment system is designed solely for human maintainers
to upgrade the installed software but does not fulfil the new
requirement of handling possibly sets of different configura-
tions.

IV. RELATED WORK

Few proposals exist that overcome at least partially the
limitations presented in the previous sections. The first notable
one is the work of Heise et al. [8] that adapts the Open-
Flow [9] protocol for the aeronautical context. It offers a new
network architecture, specifically designed for network (re-
)configuration. This solution favors a dedicated controller that
manages configurations of the network devices. It provides an
API for both between the controller and the entity requesting
an update and between the controller and the administered
network.

OpenFlow protocol offers a good network configuration API
for the data plane. Nevertheless, depending on the version, it
does not address all aspects of configuration (e.g., physical
layer parameters are not addressed). A great summary of the
different configurations parameters for a network device is
given by Aglargoz et al. [10].

For the parameters OpenFlow addresses, the controller can
be used to automate the configuration distribution in the
network. A real time perspective study of this behavior is
provided in the original work of Heise et al. [8].

There are two shortcomings with this solution. Firstly, not
embedding the controller in the aircraft means it is limited
to be used only during maintenance phase. It also potentially
implies the need for a specialized equipment during this phase.
Secondly, configurations stay static no matter the context. It
reduces its potential to adapt to systems dynamicity. However,
an example of an OpenFlow protocol adaptation that allows for
specific configurations to be used depending on the operating
mode has been proposed by Bush et al. [11].

Gao et al. [12] propose to extend the capabilities of the
existing tools and systems. Mainly by opening an API between
the DLCS and remote entities (e.g., a remote maintenance
operator). This conservative approach allows to provide a
configuration interface for devices, while conserving as much
as possible the existing established approach. However, it
does offer an open API for proposals such as FP. More
importantly, from a network perspective, the lack of dedicated
configuration tools limits the configuration capabilities that
this approach offers. Another important point is the use of the
DLCS as a proxy to configure the network, meaning that no
network specific functions are actually present on the DLCS.
Every network management function must be either added to
the devices or off-loaded to the remote entity, which makes
network configuration cumbersome.

The above-described solutions are first attempts to address
the requirements introduced in Sec.II-C. They adapt or add
new functions to allow for better new configurations APIs and
embed these functions in the network itself, so that they can
be used directly on the aircraft. Nevertheless, configuration
updates can still only happen during the maintenance phase of
the system. This strongly limits the possible use-cases that can
arise with approaches like FP. Going back to the avionic bay
orchestrator example, the lack of APIs on the network limits its
adaptation capabilities as well as its automation possibilities.
Configuration updates in specific operational phases, such as in
case of a failure, as presented in the FP proposal, open another
issue. More specifically, careful evaluation of the implication
of an operational phase configuration change is required as
its implication on safety is not trivial. All of the proposals
acknowledge the need for better configuration tools, to cope
with new network requirements. The need for automatic con-
figuration distribution is emphasized as it enables automation
capabilities and by extension helps fulfilling the adaptation
requirement.

Table I presents a summary of how the different solutions
presented in this section fulfil the requirements outlined in
Sec.II-C. It shows how each of the existing proposals partially
answer these requirements. These solutions provide partial
answers to the three requirements and each with their own
trade-offs.

What can be observed is that there is a strong correlation
between the capabilities offered by the APIs of the different
solutions and the limitations they have. The more conserva-
tive an approach is, the less it can achieve the automated
configuration change envisioned, as it does not embed the
necessary functions to do so. The OpenFlow approach, while
very promising, remains not complete as it solely focuses on
network policies.



5

TABLE I: Configuration Management Solution vs. Requirements

Solution APIs Automation Adaptation
Current solution no API, human required none unique configuration
Heise et al. [8] APIs to specific parameters provided by the central controller unique configuration

Adapted OpenFlow [11] APIs to specific parameters provided by the central controller phase dependent configuration
H. Gao et al. [12] API to the DLCS remote operator required unique configuration

Our proposal APIs to all parameters provided by the central controller sets of configurations

V. EVOLVED CONFIGURATION ARCHITECTURE

The solutions presented in the previous section offer insight
on the shortcomings of current configuration procedures, and
how difficult it is to provide the support for systems evolution.

The approach we follow embraces the new requirements,
while at the same time retains the best practices from the
existing solutions. To this end, we propose an architecture that
provides the necessary functions for configuration distribution,
while being appropriate for the current large aircraft system
management.

In our approach, we embed the necessary functions to
automate the distribution directly in the various steps of the
management process. In this way, the possibility to validate
and verify configuration thoroughly remains intact while it
opens the door for switching from one pre-defined configura-
tion to another.

An important aspect for the architecture definition is to
address which function from the configuration procedure it
should embed.

We argue that creation, validation, and verification, must
stay offline since, for commercial aircrafts, they are part
of a larger integration process. Aircraft system integrations
are subject to strong safety and certification requirements.
Precise modeling and extensive testing methods are required
to answer these requirements. Moreover, their development is
also subject to quality validation, depending on safety assess-
ments, as defined in ARPA4754 [13]. The consequence is the
necessity to provide a complete documentation and important
development time to validate each configuration. It also limits
the number of configurations that can be handled since each
configuration must be independently qualified. It also raises the
question about the admissibility of autonomous integration of
additional capabilities with the need to demonstrate that the
new configuration does not violate previously established and
validated safety objectives.

Regarding the support of configuration transition, we first
decompose these phases between mission operation, which are
the phases during which the aircraft is being operated (e.g., in
flight phases), and on ground-at-gate, when the aircraft is in
more "relaxed" conditions. While it can be argued that in the
advent of a device failure preventing a flight home for repair,
transitioning between two known configurations at gate can
be beneficial, it is harder to justify configuration dynamicity
during flight phases.

The proposed architecture is presented in the following
manner. We firstly define the components composing it and
assign each their role in the configuration architecture. Then,
we show how these components communicate through their
dedicated network and finally we formalize the capabilities
(i.e. APIs) and how each of them needs to fulfill their roles.

Fig. 4: Evolved architecture.

A. Architecture Components

There are two new components in the configuration archi-
tecture that interact with two components that already exists
in the current architecture (but need to be slightly modified).

In our proposal we consider that the maintenance system,
i.e. the DLCS, is still there, but is now accompanied by a new
component that we call the avionic orchestrator. The avionic
orchestrator represents an on-board system inside the aircraft
that requests the network a configuration change. Its role is
to notify network devices that they have to deploy a new
configuration.

The other new component of the system is the central
controller. Its role is to administrate the network configurations
and connect the network with the maintenance system and
the avionic orchestrator. It is responsible for the network
configuration deployment. The interface with the maintenance
system is important to guarantee integration in the global
aircraft management system, while at the same time, the
interface with the avionic orchestrator offers the possibility for
aircraft systems to interact with it in order to directly require
configuration updates. It hosts management applications for
the network which takes sets of functions to execute either
when on-demand or periodically according to schedule. Such
functions leverage on the knowledge the central controller has
over the complete network configuration to react to APIs call
from either the external entities or the network devices.

The last component we consider is the switch which is the
administered device. Differently from previous components,
more than one switch composes the network, however, from
a logical perspective and without loss of generality, it remains
just one type of component with whom to interact in the same
way. It embeds a local agent responsible for its configuration
management. This local agent is responsible for receiving and
handling requests from the central controller.

Fig. 4 offers insight of the new network architecture we
propose. With this setup, the central controller is able to
receive new configurations from the maintenance system as
well as change requests from the avionic orchestrator. It is
able to send these configurations to the switches through the
network.



6

Fig. 5: Architecture components description.

Fig. 5 show each component functions. The central con-
troller has three main functions. An interface handler whose
role is to receive and parse the requests to and from the
external entities and the network. An event engine, who
triggers the necessary routines based on the incoming requests.
A configuration engine that stores the current sets of available
configurations.

B. Dedicated Network

Topology wise, we make use of the centralized controller,
which is connected out-of-band to every device. This choice
allows us to make use of a simple and dedicated configuration
network, which can be based on a flooding mechanism, since
this method does not require specific network configuration,
hence, limiting the complexity added to the original network
(e.g., no reliance on DHCP [14] or ARP [15] protocols).
Such an approach is possible thanks to one of the benefits
of controlled environments, such as an aircraft, where it is
possible to know in advance the MAC addresses of each device
in the network. For instance, AFDX switches use Ethernet
MAC addresses that are based on their position in the aircraft,
configured via hardware pins. We can safely make a similar
assumption, where the controller is aware of the MAC address
of each device that may interact with it.

The dedicated network is therefore configured to flood
every message from the controller to the switches. Flooding
in this case is used so that every switch receives every
communication from the network. Special care is necessary in
the implementation of the flooding mechanism in order to not
overburden the network with traffic and to not generate loops
which would result in packet storms. This is made possible
thanks to the regular nature of the network topology, a ladder
mesh network, which is very similar to the one currently
used in aircrafts [16]. It requires the central controller position
known in the topology and systematic use of ports.

The flooding mechanism illustrated in Fig. 6 is done in the
following patterns. Every message that enters the port linking
the switch to the previous one is in the topology is forwarded.
The topology is divided into two sides, the right one and the
left one. The switch on the right side forwards the message to
the next right and left switches and the same-level left switch.
Similarly, the left switch forwards the message the next right
and the next left switches and the same-level right switch. This

Fig. 6: Evolved architecture massages flooding.

pattern covers the entire topology and can be used recursively
as the ladder mesh expands. Moreover, the opposite direction
flooding, from switches to the controller, is done from the
switch local agent towards the beginning of the topology where
the central controller is located. This approach ensuring that
every flow is moving only one way in the ladder enables to
prevent the creation of loops in the network.

We propose to use a flooding-based approach in order to
keep the architecture very simple. Nevertheless, flooding is
known to be bandwidth inefficient, and as such, it is important
to estimate how much bandwidth is actually needed. To this
end, we perform an analytical estimation of the bandwidth
consumed at each switch, based on a simple topology in
Sec. VI.

C. APIs

The configuration architecture has two types of interfaces.
The ones with the maintenance system and avionic orchestra-
tor and the one between the central controller and the switches.
The first type is defined to provide access to the network
configuration capabilities to these external components.

The central controller/external entities APIs are:
Node Configuration: This primitive returns to the external

entity the current configuration of the network. It is essen-
tial for network state reporting and aircraft configuration
validation.

Node Configuration Update: This primitive triggers a con-
figuration change on the network based on the request
intent (e.g., change one or multiple configurations).

Node Monitoring Management: This primitive triggers a
monitoring configuration on one of the switches. It is
used for maintenance troubleshooting.

Node Event Reporting: This primitive provides a subscrip-
tion channel to offer publishing capabilities to commu-
nicate their current state to the central controller in an
on-demand fashion. Its main use is for external entities
to be able to adopt specific behaviors with the central
controller.

The second type is defined to enable the central controller
to manage the network. These APIs are:
Get: Primitive to get the current configuration of a device.

Necessary for safety tests of the network.
Set: Primitive to send a new configuration. Necessary to

update configuration parameters. Setting it as an abstract



7

primitive allows to specify a flexible wire format that
either sends a whole new configuration or solely a specific
parameter change.

Report: Reporting device capabilities for multi-vendor net-
work for example. It serves fewer purposes in integrated
networks, nevertheless, it can be useful for an on-line
system check.

Subscribe: Subscribing to specific events and state teleme-
try is an important management capability for dynamic
management. Considering the requirements, it may have
a limited use, since telemetry policy will be designed
offline, however, it can enable specific on-line tests on
demand.

The API can be implemented as UDP streams, since such
a solution offers the lightest implementation to transfer files.
Compared to the currently used ARINC615A protocol, the
main point that needs to be implemented is the verification
handshake to accept the new file (through version checking)
and the integrity check upon reception (i.e., the Cyclic Redun-
dancy Code -CRC- recalculation).

The above API is generic enough, so to adapt to the differ-
ent granularity of the various network devices configuration
parameters. Routines leveraging on this API can also be
implemented to accommodate testing or network validation
during development phases. For instance, extensive link status
monitoring can be required through the monitoring primitives
(report/subscribe) for on field-testing. This architecture retains
compliance with the DLCS management model and allows the
creation of a dedicated overlay that supports the evolution and
requirements of future systems as presented before.

D. Configuration Routine Example
Our approach allows to implement the controller side and

the device side completely independent, which helps to intro-
duce modularity in the network. If a new switch is installed,
for example to replace a broken one, the network can push
the intended configuration it requires based on its place in
the topology. In order to do so, the central controller uses the
Get primitive to request for switch configurations, receives
an empty or invalid one from the newly placed switch which
triggers it to push the intended one to said switch, allowing
for its use in the aircraft. This kind of routine is of use
during maintenance phases to ease the installation process of
a replacement device.

The proposed architecture achieves the objectives outlined
in Sec.II, introducing a well-defined API allowing flexible
configuration deployment while retaining simplicity and the
philosophy of the current system. Sec. VI will show how it is
in line with aircrafts’ requirements.

VI. EVALUATION

We evaluate our proposed architecture in two different ways.
First, we summarize the tradeoffs made by our architecture and
the ones described in Sec. IV with respect to maintenance and
new use-cases requirements. Then, a first implementation of
the architecture through simulation is proposed and proof of
concept for the network configuration service is implemented
using mininet [17] and the gRPC [18] framework.

A. Tradeoff Summary

As explained in Sec. IV, proposals are being created
around the OpenFlow protocol. Comparing the OpenFlow
based solution to ours revolves around studying two aspects of
the proposed solutions: capabilities and maintenance require-
ments. Capability wise, both solutions try to offer a way to
automate configuration distribution with one key difference:
the use of the OpenFlow protocol limits the engineers to the
configurations of switch rules. Furthermore, when OpenFlow
is used to configure networks, it is used in coordination with
complementary protocols for other parameters which are not
directly network related. This limits what their solution is able
to configure. Whereas by sticking to file-based management,
we ensure that the configuration protocol is not bound to
any specific aspects of network configuration. The proposed
architecture does not modify current configuration manage-
ment process, as opposed to OpenFlow based solutions. An
important aspect of configuration validation in aircrafts is the
fact that the final configuration is always verified. Whereas
OpenFlow based solution relies on the conversion of Open-
Flow messages into a final configuration. The closer the
configuration is to hardware, like in our proposal, the less
conversion steps are needed, and therefore the less possible
unintended interpretation of the configuration arise.

Concerning the maintenance qualities, it is quite hard to
evaluate for Consumer-Off-The-Shelf (COTS) protocols, as
they do not follow development processes that are compatible
with the expected constraints and safety of airworthy technolo-
gies. This leads to the use of technologies such as TCP for
sessions between the controller and their administered devices.

Another important difference can be found in the traceability
aspect of the configuration update process. In general, con-
figuration of aircraft systems is done by means of files and
not by individual parameters. This is done to ease and ensure
traceability of any change in aircrafts system configuration.
Even though per-flow management, like in OpenFlow, has
shown numerous advantages for network administrators, it
may reveal to be incompatible with aircrafts configuration
update process. Indeed, a per-flow approach may dilute the
modified information in several pieces, in contrast of the ne-
cessity to keep it unfragmented in order to guarantee consistent
traceability of the systems evolution. Validity and integrity are
also harder to evaluate for a parameter-based configuration
protocol as the final configuration is created by the device
based on the requests it receives. There is no direct mechanism
to ensure that the configuration request sent is correct from a
validity or integrity standpoint.

Table I, in Sec. IV, already shows the main benefits of our
architecture benefits. The comparison between the proposed
management architecture or the solution proposed Gao et
al. [12], is mainly based on available capabilities. The use
of RPCs that re-implement existing functions allow keeping
already existing procedures. This implies that current con-
figuration tools/procedures, from an aircraft perspective, can
still be reused while the network can explore new operational
services.



8

Fig. 7: Flooding in ladder meshed topology.

B. Analytical Evaluation of Network Bandwidth

The topology following a mesh ladder pattern, having N
rows and 2 sides, namely, Right and Le f t, as presented in
Fig. 7. The streams from the central controller are flooded to
the end of the topology following the pattern, represented as
well in Fig. 7 and described in Sec. V-B.

A switch Rn, on the Right side of the ladder, receiving a
stream s will send such a stream to: the next Right side switch
Rn+1; the next Le f t switch Ln+1; the Le f t switch on the same
row Ln. Symmetrically, a stream arriving on the current Le f t
side switch Ln will re-emit it to: Ln+1; Rn+1; Rn.

Therefore, a switch Ln+1 receives four copies of a stream;
one from Rn itself, two through Ln and one through Rn+1.
Same for Rn+1 that receives four copies of a stream; one from
Rn itself, two through Ln, and one through Ln+1.

This enable to draw this recurring relation to calculate the
number of times NBS(n) a stream is received at a given node:

NBS(n) = 4 ∗ NBS(n − 2) ∀n > 2

with NBS(1) = NBS(2) = 1. The bandwidth used by streams
at a given switch therefore can be calculated by dividing the
link capacity (in the test network 1gb/s) by the number of
replicated streams the network NBS(n). Such bandwidth can
be used to calculate the theoretical transfer time of a file of
size S as a reference for the simulation results.

C. Simulations

We started by simulating our architecture so to offer a first
representation of how the management architecture works,
before going to a more adequate production-ready implemen-
tation. This evaluation looks at the timeliness of the distri-
bution mechanism with our proposal. The gRPC framework
allows to implement the API defined in Sec V as Remote
Procedure Calls (RPCs) [19]. Mininet is used as a network
simulation environment, since it allows to deploy the topology
and emulate the architecture.

The simulation implements a sequential installation of con-
figuration files to each switch in the network. Each switch
runs an RPC server ready to receive the file and its metadata,
while the controller acts as the RPC client using gRPC streams

Fig. 8: Per-node file transfer time.

to send them. The network is statically configured so that
the streams are flooded across the network as previously
described.

D. Results

Fig. 8 shows the measured time for each node to receive
1, 10, and 100 megabytes files. Nodes with lower number
are closer to the controller. The closest the switches are to the
controller, the lower the transfer time. This can be explained by
the feedback effect of flooding. Indeed, network load increases
as the distance between the controller and the node does
as flooding generate more traffic the longer the network is.
This phenomenon is well known and is also called broadcast
storm. Thus, lowering the effective bandwidth at the end of
the network. To limit such excessive bandwidth consumption,
we limited the packets Time To Live (TTL) in the network,
so to decrease the number of unwanted replicas. An unwanted
replica is one that goes along a network beyond its destination.

Another option would be to change the controller placement
to mitigate this performance drop, but its position on the
network topology is selected to match the reality of an
aircraft structure. Usually, aircraft computers sit at the front
of the aircraft for hardware accessibility and less environment
requirements.

The performance is also limited by two other factors. One
is the fact that simulations are performed on top of a virtual
machine on an Apple laptop, using 2 VCPUs and 4GB of
RAM. The second factor is the use of TCP by gRPC. TCP
reacts poorly to the duplicates generated by the flooding mech-
anism, because it considers duplicates as a sign of congestion,
so triggering its congestion control mechanism, which keeps
throughput low.

Cumulated transfer times from Fig. 8, while realistically
slow, averaging at around thirty minutes for the 100MB files
scenario, still shows promising results as the typical accepted
time for a configuration change by airliners is fifteen minutes.
However, typical configurations are way smaller than that in
embedded contexts. More importantly, it shows that despite
severe bandwidth limitations in a representative network, the
architecture simplicity shows advantages in system flexibility
such as not requiring the use of complex network discovery
mechanisms.



9

Fig. 9: Ideal vs Simulated transfer time.

As expected, the configuration deployment time scales with
the file sizes and the available bandwidth. File size linearly
increases the transfer time while controller/switch distance
in the topology increases it exponentially as shown by the
linear curve in the logarithmic scale. This can be observed
particularly well by the ideal curve in Fig. 9.

Fig. 9, already discussed in Sec. VI-B, also shows the
measured transfer time for each node. At first, on near nodes,
completion time is very far from ideal which can be explained
by the simulation limitations. Once bandwidth becomes less
available as the flooding mechanism creates more replicas,
the ideal time becomes less viable. Our solution performs
well, close to ideal, because of the TTL limitation that we
introduced in our simulations, showing the effectiveness of
such mechanism.

As a proof of concept, this simulation highlights the strength
of our configuration architecture. Indeed, the defined API has
powerful primitives to create configuration routines according
to either maintenance needs or system behaviors. Moreover,
despite the aggressive flooding mechanism made to avoid the
introduction of complexity in the network, the performance
seems tolerable from a maintenance perspective.

VII. CONCLUSION

The new architectures for aircraft systems impose new
requirements to embedded networks. Throughout this paper,
we presented the new evolutions happening from a system-
engineering point of view and how these will affect underlying
networks. Aircraft networks will need to cope with more
modular systems than before. Nevertheless, at present, these
networks have static behaviors and cannot cope with these
changes due to a lack of configuration management capabili-
ties.

We investigated the current configuration procedures aboard
aircrafts to better understand their limitations. We argued
that two kind of requirements arise for a new configuration
architecture. The first kind being related to the newly expected
network capabilities and the second one being related the
maintenance procedures expectation.

We looked at proposals being made to enhance the current
solutions. Current proposals lack either sufficient capabilities
to cope with the needed network adaptiveness or do not answer

the requirements fully as they focus on specific aspects of
network configuration.

We propose a new configuration architecture that supports
the emerging use-cases while answering these requirements.
Our solution leverages various advances in network man-
agement design, while proposing a modular architecture that
integrates in aeronautical procedures. Both from a system
integration point of view and from a network configuration
one.

We evaluated a proof of concept based on our configuration
architecture to investigate its capabilities and performance.
We found that our robust architecture, while refraining from
adding too much complexity to the network, still enables
to implement the capabilities we were looking for, while
respecting the two kind of requirements we aimed to fulfil.

Early results for a simple network configuration architecture
are promising, and suggest that the proposed solution will help
to support long-term evolutions of aircraft systems.

REFERENCES

[1] C. B. Watkins and R. Walter, “Transitioning from federated avionics
architectures to integrated modular avionics,” in Digital Avionics Systems
Conference, 2007. DASC’07. IEEE/AIAA 26th. IEEE, 2007.

[2] Y. Hao, X. Zhang, X. Cui, and B. Huang, “Design and realization of
ima/dima system management based on avionics switched network,” in
2016 International Conference on Computer, Information and Telecom-
munication Systems (CITS). Kunming, China: IEEE, 2016.

[3] S. Korn, R.-R. Riebeling, S. Görke, and R. Reichel, “Flexible platform
approach for cs27/29 fly-by-wire systems,” 2013.

[4] A. R. incorporated. Arinc 664 p 7 Avionics full duplex networks.
[Online]. Available: https://standards.globalspec.com/std/1283307/arinc-
664-p7

[5] M. S. Haouati, “Architectures innovantes de systèmes de commandes
de vol,” Ph.D. dissertation, Institut National Polytechnique de Toulouse-
INPT, 2010.

[6] W. Steiner, M. Gutiérrez, Z. Matyas, F. Pozo, and G. Rodriguez-Navas,
“Current techniques, trends, and new horizons in avionics networks
configuration,” in 2015 IEEE/AIAA 34th Digital Avionics Systems Con-
ference (DASC). San Diego, California, USA: IEEE, 2015.

[7] A. R. incorporated. Arinc 615a software data
loader using ethernet interface. [Online]. Available:
https://standards.globalspec.com/std/1017557/arinc-615a

[8] P. Heise, F. Geyer, and R. Obermaisser, “Self-configuring deterministic
network with in-band configuration channel,” in Software Defined Sys-
tems (SDS), 2017 Fourth International Conference on. Valencia, Spain:
IEEE, 2017.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, 2008.

[10] A. Aglargoz, A. Bierig, and A. Reinhardt, “Dynamic reconfigurability of
wireless sensor and actuator networks in aircraft,” in 2017 IEEE Inter-
national Conference on Wireless for Space and Extreme Environments
(WiSEE). IEEE, 2017, pp. 1–6.

[11] J. E. Bush, A. Ayyagari, and S. L. Arnold, “System and method for
automatic generation of filter rules,” Oct. 5 2017, uS Patent App.
15/088,006.

[12] H. Gao, A. Jasti, and R. Pendse, “An intelligent network monitoring and
management tool for aircraft data networks,” in 24th Digital Avionics
Systems Conference, vol. 2. IEEE, 2005, pp. 7–pp.

[13] S. ARP4754, “Certification considerations for highly-integrated or com-
plex aircraft systems,” SAE, Warrendale, PA, 1996.

[14] R. Droms, “Rfc 2131-dynamic host configuration protocol, march 1997,”
Obsoletes RFC1541. Status: DRAFT STANDARD, vol. 3, no. 1, 1997.

[15] D. C. Plummer, “Rfc 826: An ethernet address resolution protocol,”
InterNet Network Working Group, 1982.

[16] B. Annighoefer, C. Reif, and F. Thieleck, “Network topology optimiza-
tion for distributed integrated modular avionics,” in 2014 IEEE/AIAA
33rd Digital Avionics Systems Conference (DASC). IEEE, 2014, pp.
4A1–1.



10

[17] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010.

[18] Google. (2017) grpc network management interface. [Online]. Available:
https://github.com/openconfig/gnmi

[19] A. D. Birrell and B. J. Nelson, “Implementing remote procedure calls,”
ACM Transactions on Computer Systems (TOCS), vol. 2, no. 1, pp. 39–
59, 1984.


