
LEARNING TO RANK MUSIC TRACKS USING TRIPLET LOSS

Laure Prétet?† Gaël Richard? Geoffroy Peeters?

† Creaminal, Paris, France
? LTCI, Télécom Paris, Institut Polytechnique de Paris, France

ABSTRACT

Most music streaming services rely on automatic recommendation
algorithms to exploit their large music catalogs. These algorithms
aim at retrieving a ranked list of music tracks based on their similar-
ity with a target music track. In this work, we propose a method for
direct recommendation based on the audio content without explicitly
tagging the music tracks. To that aim, we propose several strategies
to perform triplet mining from ranked lists. We train a Convolutional
Neural Network to learn the similarity via triplet loss. These differ-
ent strategies are compared and validated on a large-scale experiment
against an auto-tagging based approach. The results obtained high-
light the efficiency of our system, especially when associated with
an Auto-pooling layer.

Index Terms— audio music similarity, deep learning, triplet
loss, triplet mining.

1. INTRODUCTION

Many domains, such as music streaming services, make use of large
music catalogs. To organize these tracks, it is necessary to pro-
vide efficient retrieval mechanisms. While browsing by tags (genre,
mood, instrumentation) can be efficient for small-scale catalogs, it
does not provide an efficient retrieval mechanism at scale. This is
why most music streaming services rely on music recommendation.
For this purpose, an algorithm is used to retrieve a ranked list of
music tracks based on their similarity with a target music track. Pro-
vided a similarity metric is defined, the music ranking problem re-
duces to a music similarity problem. This task has been the subject
of many publications (see [1] for an overview) and can be tackled in
different ways.

In Collaborative filtering recommendation, two music tracks can
be considered similar if they are listened to by the same audience
[2] [3]. Obviously, if no one has ever listen to a music track (for
example a new track in the catalog), it can not be recommended. This
is known as the cold start problem [4]. However, when applicable,
collaborative filtering has proved to provide very good results for
recommendation.

In Tag-based recommendation, a tag-based similarity measure
can be designed to compare music tracks based on their respec-
tive tags. Tags can be manually annotated (such as in Pandora [5]),
crowd-sourced (such as in Last.fm), or automatically inferred from
the audio content (auto-tagging case [6]).

In Direct recommendation, it is possible to compute directly a
distance between two music tracks based on their audio similarity.
For example, in one of the pioneer works [7], track MFCCs were
represented by a Gaussian Mixture Model and a Kullback-Leibler
divergence was used to compare two tracks. Since these methods use
a costly pairwise comparison, they cannot scale to large catalogs.

In this work, we propose a method for direct recommendation
based on the audio content. To this aim, we suppose we have ac-
cess to a large music catalog professionally annotated with tags. We
also assume we are given a function S which allows to compute a
similarity score between two sets of tags. For a given target track,
S allows us to retrieve similar tracks based on their tags. Our goal
is to reproduce the similarity ranking given by S without explicitly
tagging the tracks. We denote our approximation by Ŝ. For a given
target track, Ŝ allows us to retrieve similar tracks based on audio
directly. This allows to skip the long and expensive manual tagging
step. In this work, we tackle this task using deep learning. We train
a Convolutional Neural Network (CNN) with triplet loss to learn a
projection of the audio signal such that the proximity between two
projected music tracks accounts for their similarity S. We compare
this similarity to the one obtained by a CNN trained to estimate au-
tomatically the related tags which are then used in S.

Paper contributions. The three main contributions of our work
are the following. First, we propose several strategies to perform
triplet mining from ranked lists. This allows to apply a triplet loss to
the relative music similarity problem. Second, we compare and vali-
date these different strategies on a large-scale experiment against the
auto-tagging based approach. Third, we demonstrate the efficiency
of the recently proposed Auto-pooling layer [8] for a music task.

Paper organization. In section 2, we review works related to
ours. In section 3, we describe our proposed method to mine triplets
from ranked lists. In section 4, we evaluate the proposed approach,
along with an auto-tagger baseline, on a music retrieval task. In
section 5, we draw the conclusions of our results.

2. RELATED WORK

2.1. Music auto-tagging

In Music Information Retrieval (MIR), we call music auto-tagging
the task of predicting tags directly from audio signals. Tags are key-
words that describe a music track in terms of genre, mood, instru-
mentation or any other high-level attributes.

Traditional approaches for music auto-tagging rely on the ex-
traction of handcrafted features to feed a classifier (linear or non-
linear) [9] [10]. Recently, deep learning approaches have allowed
to learn the features directly from the data (waveforms or spectro-
grams), leading to improved performances [11] [12] [13] [6]. Some
of these systems have proven their capacity to learn useful informa-
tion from audio [11] [14]. Therefore, we take inspiration from those
for our CNN architecture, but we use this CNN to learn music simi-
larity instead of tags.

2.2. Learning to rank

The task of retrieving items in a collection and to sort them by rel-
evance arises in a variety of domains. In early works, Weston [?]

and Usunier [15] proposed loss functions capable of optimizing the
top of ranked lists in item recommendation and information retrieval
contexts. Another common approach is to learn a similarity notion
from classes. In this case, it is assumed that the similarity of items
within a same class should be higher than the similarity of items from
different classes. As a result, the model’s recommendations are as-
sociated to a binary relevance score: the recommended item does
or does not belong to the expected class. Such problems have been
studied by for example by Weinberger and Saul [16] and Hoffer and
Ailon [17], who employed CNNs with innovative loss functions to
perform higher-accuracy image classification. Today, a widely used
loss for similarity learning is the triplet loss, as introduced by [16]
and used by Schroff and Philbin [18] for face recognition. In their
work, they use the triplet loss to force the CNN to learn a projection
of the image data such that the projections of images of the same
person will be pulled together, and the ones from different persons
will be pushed apart. The distance employed to compare the projec-
tions of the data is usually the Euclidean distance, squared Euclidean
distance, or the cosine distance [19].

In our problem (learning a similarity from ranked lists), there
are however no classes, nor binary relevance labels for each query-
document pair. Such a problem has already been addressed outside
the music case. For example, Mcfee and Lanckriet [20] propose
to use a listwise loss function to learn text recommendation from
ranked lists. Wang et al. [21] propose to use the triplet loss to learn
a ranking of similar images. Our proposal takes inspiration from the
work of [21] but for the music case.

2.3. Music similarity

The literature on music similarity is vast (see Wolff and Weyde [22]
for an overview). For example, Slaney et al. [23] propose a set
of linear transforms to embed tracks into an Euclidean metric space
and evaluate them on a nearest neighbor task for album, artist and
blog recognition. Tag-based approaches to metric learning include
a method by Weston et. al. [24] to project both audio features and
music tags into a shared embedding space. Wolf and Weyde [22]
insist on modeling relative music similarity (rankings) rather than
absolute similarity ratings, in order to avoid consistency issues due
to subjective user ratings. Following this idea, Lu et al. [25] em-
ploy a CNN with an improved triplet loss to predict relative music
similarity. However [25] do not propose any mining strategies from
ranked lists1. Our work takes inspiration from [25] but proposes a
mining strategy from ranked lists.

3. PROPOSED METHOD

3.1. Problem definition

Let D = {t1, . . . , tN} be a set of N tracks annotated with a taxon-
omy ofm tags. The problem addressed in this study is the following:
given a query track t, compute a ranked list of tracks from the dataset
D ordered by descending similarity to t. Let S be an oracle similar-
ity function that, given two sets of tag likelihoods t1 ∈ [0, 1]m and
t2 ∈ [0, 1]m, returns a similarity score S(t1, t2) ∈ R+.

For any t ∈ D, let RS(t) = [r1(t), . . . , rN−1(t)] be the
ordered list of the other tracks of D ranked by decreasing sim-
ilarity according to the function S. This is the ground truth,
against which our system will be evaluated. For any t ∈ D, let

1This is because these two last studies train their model using the similar-
ity triplet annotations provided in the MagnaTagATune dataset [26], which
has only partial similarity information, annotated by non-expert users.

RŜ(t) = [r̂1(t), . . . , r̂N−1(t)] be the estimated list of recom-
mended tracks made by the system for the target track t.

In this paper, we formulate the music ranking problem as a near-
est neighbor search problem in a d-dimensional Euclidean space. A
model is trained to define a specific embedding space (a projection
of the data) in which the Euclidean distance allows to retrieve tracks
with the same ranking as with the oracle similarity function S.

3.2. Mining triplets from ranked lists

We denote by f(t) ∈ Rd the embedding of the track t. f is obtained
by training a CNN using a triplet loss.

This loss takes as input a triplet of tracks that consists of an an-
chor a, a positive example p and a negative example n. The CNN
outputs the embedding vectors of those, f(a), f(p) and f(n) respec-
tively. The triplet is created such that the positive is more similar to
the anchor than the negative according to the ground truth S. The
triplet loss then compares the squared Euclidean distances between
the three embedding vectors and ensures that the same condition is
respected in the embedding space:

L(a, p, n) = max(||f(a)− f(p)||22 − ||f(a)− f(n)||22 + α, 0).

In this expression, α is a margin parameter that enforces a minimal
distance between the positive and negative pairs.

To train such a system, it is necessary to prepare the data in
the form of triplets (a, p, n). Let t be a target track and RS(t) =
[r1(t), . . . , rN−1(t)] the associated reference ranking. We define
training triplets by using the track t as the anchor and by mining a
positive and a negative element from RS(t). A triplet is considered
valid if the index of the positive element is lower than the one of the
negative element: (a, p, n) = (t, ri(t), rj(t)) ∀i < j.

In practice, for large datasets, it is infeasible to use all valid
triplets for training, because their number grows cubically with
N . Additionally, all triplets may not be useful for training. Fig-
ure 1 (top) shows an illustration of the average similarity scores
[S(t, r1(t)), . . . ,S(t, rN−1(t))] for each track t ∈ D. The curve
shows that a few first tracks in the ranking are very similar to their
target, while most tracks in the dataset are actually irrelevant: their
similarity score is lower than 50%. Therefore, after a certain rank in
RS(t), mining positive samples does not make sense.

Given these observations, we limit the set of possible positives
per anchor to the Np first elements of the reference ranking: p ∈
[r1(t), . . . , rNp(t)]. We also limit the overall number of negatives
per anchor-positive pair to Nn. Then, to select the Nn negative
examples for a given anchor-positive pair (t, ri(t)), three different
strategies are tested (see Figure 1, bottom):
• Neighbors: The negatives are the Nn elements in RS(t) that

come directly after the positive: n ∈ [ri+1(t), . . . , ri+1+Nn(t)].
• Random uniform: The negatives are sampled uniformly among

the full RS(t) list after the positive: n ∈ {rj(t)}j>i s.t. P (n) ∼
U(1/(N − i+ 1)).

• Distance-based (inspired by [27] and [21]): The negatives are
sampled among the full RS(t) list after the positive with a prob-
ability that is proportional to its similarity with the anchor: n ∈
{rj(t)}j>i s.t. P (n) ∝ S(t, n).
This way, in all three variants, the set of triplets can be pre-

selected offline and we do not mine triplets during training. The
resulting total number of triplets is N ×Np ×Nn.

3.3. Auto-pooling

In usual CNNs applied to audio signals, the time dimension of the
audio signal is progressively discarded by a succession of max-

0 N

{n}t,p

Np

{p}t

p

Neighbors

Random	uniform

Distance-based

Similar	tracks
(k≤Np)

Negative	tracks
(k>Np)

Fig. 1: Illustration of the three proposed triplet mining strategies.
Top: Similarity scores in a typical similarity ranking (in percentage),
as a function of the rank in the list RS(t). Bottom: Three strategies
to mine negative samples for a given anchor-positive pair (t, p).

pooling layers. This implies a strong assumption related to how
information over time is processed: we only keep the maximum
activation over successive time frames. Other choices have been
made in the past such as the combination of Mean, Max and L2
Pooling [28]. A very elegant formulation has been proposed by
McFee et al. [8] with the Auto-Pooling layer, which allows to in-
terpolate between several pooling operators (such as min-, max-,
and average-pooling) via a learned parameter. Auto-pooling has
provided very good results for an audio event detection task. To our
knowledge, it has not been used for music-related tasks. We do this
here for the task of music similarity.

3.4. System architectures

In the following, the input representation used for all our architec-
tures is the Constant-Q transform (CQT). For each track, we com-
pute a CQT of 96 bins (12 bins/octave) with fmin=32.70 Hz, and
a hop size of 1024 at 44.1 kHz. We then convert it to power ampli-
tude and log-scale the magnitudes. The input of our CNN is a patch
of 512 CQT frames (11.88s). This duration was chosen as a good
compromise between memory efficiency and sufficient musical con-
text. Since the annotations of our dataset are at the track level (see
Section 4.1), we randomly select several of these (96×512) patches
to represent a given track and assume that the annotations apply to
each patch.

At test time, each track is represented by 8 randomly selected
patches. When the network is used for auto-tagging, we pass each of
them through our trained network to obtain the tag probability vector.
We then simply use the average vector over the 8 tag probability
vectors. When the network is used for embedding, we compute the
average embedding vector over the 8 embedding vectors.

All models have been implemented using Keras with an Adam
optimizer, a batch size of 42 patches and early stopping.

Baseline system: Auto-tagger (AT): The similarity function S,
used for ranking, relies on tag likelihood annotations. A naive ap-

AT Baseline TL TL Autopool
CQT (input: F=96,T=512,C=1)

Conv2D (3,3)×128 Conv2D (3,3)×64
MP (2,4) (F=48,T=128,C=128) MP (2,2) (F=48,T=256,C=64)

Conv2D (3,3)×256 Conv2D (3,3)×128
MP (2,4) (F=24,T=32,C=256) MP (2,2) (F=24,T=128,C=128)

Conv2D (3,3)×512 Conv2D (3,3)×256
MP (2,4) (F=12,T=8,C=512) MP (2,2) (F=12,T=64,C=256)

Conv2D (3,3)×1024 Conv2D (3,3)×512
MP (3,3) (F=4,T=2,C=1024) MP (2,2) (F=6,T=32,C=512)

Conv2D (3,3)×2048 Conv2D (3,3)×1024
MP (4,2) (F=1,T=1,C=2048) MP (6,1) (F=1,T=32,C=1024)

FC (d) (F=1,T=32,C=d)
FC (m) FC (d) Autopool (1,32) (d)

Table 1: Details of the three architectures used. In italic are the out-
put sizes of the Max-Pooling (MP) or Fully-Connected (FC) layers.

proach is therefore to automatically estimate these tag likelihoods
from the audio and then apply S directly to the estimated likeli-
hood vectors. Auto-tagging is a multi-label classification problem
(output activations are sigmoids, loss defined as the sum of binary
cross-entropies). Preliminary experiments have shown that VGG-
like architectures [6] were more suited to our dataset than musically-
motivated architectures [13]. Thus, we reproduce the FCN-5 archi-
tecture proposed by Choi et al. [6]. We adapt it to the shape of
our inputs (96×512) and outputs (m tags). While the ground-truth
annotations are likelihoods in [0, 1]m, we train the system with bi-
narized outputs {0, 1}m. This system is referred to as AT Baseline
in the rest of the paper. We give its architecture in Table 1, column
1 and provide the details (dropout, activations) in our code. We train
it with a learning rate of 10−4.

Triplet loss system (TL): Our objective here is to estimate di-
rectly an embedding such that applying the Euclidean distance be-
tween the embeddings of two tracks t1, t2 mimics S(t1, t2). The
network we use to compute the embedding is similar to the AT Base-
line one, but it differs in the output layer. The last fully-connected
layer has now d units (the dimension of the embedding space) in-
stead of the m units, and has linear activations instead of m sigmoid
activations (see Table 1, column 2). After a short grid search in a pi-
lot experiment, we set d to 128. The embeddings are L2-normalized
to the unit sphere. The margin parameter α of the triplet loss is set
to 0.5 and the learning rate to 10−6. Each mini-batch contains 42
triplets of patches. A given mini-batch represents one anchor track,
one positive track and 42 negative tracks. Patches from these tracks
are then randomly selected.

In the rest of the paper we denote this network as TL . We test
it with the three sampling strategies presented in 3.2: Neighbors,
Random uniform and Distance-based with Np=15 and Nn=250.

Triplet loss system with Auto-pooling (TL Autopool): In the
AT Baseline and TL networks, the time dimension is progressively
removed by a succession of max-pooling layers. We test here the use
of the Auto-Pooling layer proposed by McFee et al. [8]. Two main
adaptations were necessary to use Auto-pooling in our setup. First,
the max-pooling sizes of the TL network need to be adapted to carry
some temporal information until the last layer. Second, the number
of filters needs to be divided by two due to GPU memory constraints.
This network is refered to as TL Autopool in the rest of the paper
(see Table 1, column 3). As for the TL network, we train it to output

embeddings using the triplet loss. In the following, TL Autopool
will only be tested with the Distance-based mining strategy.

4. EVALUATION OF THE PROPOSED METHOD

4.1. Dataset

To test our proposal, we need a dataset for which tags have been
annotated at the track level and a similarity metric has been designed.
Such datasets exist in streaming services such as Pandora. In our
case, we use an extract of N = 14, 246 tracks from the catalog of
Creaminal, a music supervision company. This dataset is private and
cannot be shared but the proposals made here are not specific to this
dataset and can be applied to other ones.

Each track has a duration comprised between 45s and 5 minutes,
and is sampled at 44100 Hz. The taxonomy used for this dataset
is made of m = 488 tags, organized in 5 categories: Genre (e.g.
Blues, Reggae, Electro-funk, Japanese Pop), Recording (e.g. Acous-
tic, Saturated, Guitar bass), Mood (e.g. Epic, Dancing, Nostalgic),
Movement (e.g. Acceleration, Repetitive), and Lyrics (e.g. Death,
Freedom, Nature). Each track was professionally annotated with a
number of tags comprised between 5 and 35, the average number
of tags per track being 16.8. The dataset features a majority of Pop
tracks, along with Electro, Rock, Country and Movie soundtracks.
The function S is also specific to this dataset and relies on a non-
linear combination of weighted tags. For our experiments, we split
the dataset into a training, validation and test sets (60%, 20% and
20% respectively)2. The distribution of tags is approximately the
same in training and test.

4.2. Evaluation metrics

To evaluate our systems, we used each track of the test set as a query
and ask the systems to rank all the other tracks of the test set by
decreasing similarity with the query.

Let RSk (t) = [r1(t), . . . , rr(k)] be the list RS(t), truncated at
rank k. Without loss of generality, we consider here that the relevant
tracks to recommend for a given test query t are the five first tracks
of the ranking: RS5 (t). Thus, for each target track t, we ask our sys-
tem to retrieve the 5 relevant ground truth recommendations RS5 (t)
among its k estimated recommendation RŜk (t). Here we set k to 20.
We then use four of the evaluation metrics proposed by [1]:
• Mean Average Precision (MAP): evaluates if the relevant tracks

appear in high position in RŜk (t);
• Recall@k: indicates which proportion of the relevant tracks ap-

pear in RŜk (t);
• Reciprocal rank (RR): is the inverse of the rank of the first rele-

vant track in RŜk (t). Since we consider only the top k, the recip-
rocal rank is set to 0 if the rank is higher than k;

• Normalized Discounted Cumulative Gain (nDCG): this metric
allows to have a relevance scale instead of binary relevance judg-
ments (e.g., recommending r1(t) will produce a higher score than
recommending r5(t) at the same rank in RŜk (t)).

4.3. Results and discussion

In Table 2, we compare the systems AT Baseline, TL (with the three
mining strategies Neighbors, Random uniform and Distance-based)
and TL Autopool. We indicate for each the average and confidence
interval at 95% of the four metrics (expressed as percentages).

2 The same artist cannot be in both the training and test set. However
it can appear both as a query and recommendations at test time; which may
bias the results.

Model MAP@20 Recall@20 RR@20 nDCG@20

AT Baseline 4.50 12.57 15.62 11.30
± 0.34 ± 0.66 ± 1.07 ± 0.69

TL Neighbors 5.58 12.73 19.18 13.41
± 0.41 ± 0.67 ± 1.23 ± 0.80

TL Random 5.39 15.01 17.86 13.50
uniform ± 0.38 ± 0.70 ± 1.12 ± 0.76
TL Distance- 5.98 15.79 19.89 14.41
based ± 0.40 ± 0.73 ± 1.19 ± 0.78

TL Autopool 7.99 17.74 24.68 17.95
± 0.51 ± 0.79 ± 1.34 ± 0.92

Table 2: Comparison of the results of the AT Baseline vs TL systems
(with various sampling strategies) vs TL Autopool. Higher is better.

We first observe that the AT baseline is outperformed by all TL
systems on all metrics. This shows that in our case, learning the
ranking directly is more efficient than learning the tags and applying
S to their estimates. For information, the AT Baseline system (which
replicates [6] architecture) achieves a mean-over-tag AUC of 0.79 on
its auto-tagging task.

We then see that among the various mining strategies of the TL
systems, the Distance-based negative sampling performs best on all
metrics. It should be noted that the Distance-based negative sam-
pling was initially proposed by [27] which uses the learned embed-
dings to compute the distance online. In our case, the distance can
be calculated offline since we use the ground truth S instead of the
embeddings for the distance computation. The Neighbors and Ran-
dom uniform sampling strategies have similar performances, but the
first has a better recall while the latter has a better reciprocal rank.

The last row of Table 2 indicates the results of the TL Autopool
system. We observe a boost in performances due to the added flexi-
bility of Auto-pooling. This system is able to retrieve one of the top
5 most relevant tracks with almost a probability of 1/5 (Recall@20 =
17.74). It should be noted that in our case, neither the query nor the
reference tracks have been seen during training. The first relevant
track is on average at rank 5.6 (inverse of RR@20=24.68), among
approximately 2,900 test tracks. This makes our system a promis-
ing approach to efficient music retrieval in large datasets. Addition-
ally, an informal listening test reveals that some of the recommended
tracks, although judged ”irrelevant” by our evaluation system, actu-
ally share important characteristics with the target.

Reproducibility: Although we cannot distribute our private
dataset and its oracle similarity function, to allow reproducibility of
our work we provide the architecture and experimental code 3.

5. CONCLUSION AND PERSPECTIVES

We propose here a method to learn a similarity ranking using a triplet
loss network and a dataset of reference rankings. We show that using
the triplet loss to learn the ranking gives better results than learning
the tags used by the ground truth similarity function. This result
is consistent across all our metrics. Finally, we show that Auto-
pooling, proposed in the framework of audio event detection, also
allows improvement in the case of music similarity.

Future works will focus on improving the training efficiency by
mining on the fly useful triplets [19] [29] [30].

3https://gitlab.com/creaminal/publications/icassp2020-learning-to-rank-
music-tracks

https://gitlab.com/creaminal/publications/icassp2020-learning-to-rank-music-tracks
https://gitlab.com/creaminal/publications/icassp2020-learning-to-rank-music-tracks

6. REFERENCES

[1] Julián Urbano, Evaluation in Audio Music Similarity, Ph.D.
thesis, Universidad Carlos III de Madrid, 2013.

[2] Aaron van den Oord, Sander Dieleman, and Benjamin
Schrauwen, “Deep content-based music recommendation,” in
Proc. of NIPS, Lake Tahoe, NV, USA, 2013.

[3] Hung-Chen Chen and Arbee LP Chen, “A music recommenda-
tion system based on music data grouping and user interests,”
in Proc of ACM CIKM, Seville , Spain, 2001, pp. 231–238.

[4] Andrew I Schein, Alexandrin Popescul, Lyle H Ungar, and
David M Pennock, “Methods and metrics for cold-start rec-
ommendations,” in Proc. of SIGIR, Tampere, Finland, 2002.

[5] Stephanie Clifford, “Pandora’s Long Strange Trip,” in
https://www.inc.com/magazine/20071001/pandoras-long-
strange-trip.html. 2007, Inc.com.

[6] Keunwoo Choi, George Fazekas, and Mark Sandler, “Auto-
matic tagging using deep convolutional neural networks,” in
Proc. of ISMIR, Suzhou, China, 2016.

[7] Jean-Julien Aucouturier and Francois Pachet, “Finding Songs
That Sound The Same,” in Proc. of IEEE Benelux Workshop
on Model based Processing and Coding of Audio, Leuven, Bel-
gium, 2002.

[8] Brian McFee, Justin Salamon, and Juan Pablo Bello, “Adaptive
pooling operators for weakly labeled sound event detection,”
IEEE/ACM Transactions on Audio, Speech and Language Pro-
cessing, vol. 26, no. 11, pp. 2180–2193, 2018.

[9] Douglas Eck, Paul Lamere, Thierry Bertin-Mahieux, and
Stephen Green, “Automatic Generation of Social Tags for
Music Recommendation,” in Proc. of NIPS, Vancouver, BC,
Canada., 2008.

[10] Yandre M.G. Costa, Luiz S. Oliveira, and Carlos N. Silla, “An
evaluation of Convolutional Neural Networks for music classi-
fication using spectrograms,” Applied Soft Computing Journal,
vol. 52, pp. 28–38, 2017.

[11] Sander Dieleman and Benjamin Schrauwen, “End-to-end
learning for music audio,” in Proc. of ICASSP, Florence, Italy,
2014.

[12] Jordi Pons, Oriol Nieto, Matthew Prockup, Erik M. Schmidt,
Andreas F. Ehmann, and Xavier Serra, “End-to-end learning
for music audio tagging at scale,” in Proc. of ISMIR, Paris,
France, 2018.

[13] Jordi Pons, Olga Slizovskaia, Rong Gong, Emilia Gómez, and
Xavier Serra, “Timbre analysis of music audio signals with
convolutional neural networks,” in Proc. of EUSIPCO, Kos,
Greece, 2017.

[14] Keunwoo Choi, George Fazekas, and Mark Sandler, “Explain-
ing Deep Convolutional Neural Networks on Music Classifica-
tion,” arXiv preprint arXiv:1607.02444, 2016.

[15] Nicolas Usunier, David Buffoni, and Patrick Gallinari, “Rank-
ing with ordered weighted pairwise classification.,” in Proc. of
ICML, Montreal, Canada, 2009.

[16] Kilian Q Weinberger and Lawrence K Saul, “Distance met-
ric learning for large margin nearest neighbor classification,”
Journal of Machine Learning Research, vol. 10, no. Feb, pp.
207–244, 2009.

[17] Elad Hoffer and Nir Ailon, “Deep metric learning using triplet
network,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). 2015, vol. 9370, pp. 84–92, Springer
Verlag.

[18] Florian Schroff and James Philbin, “FaceNet: A Unified Em-
bedding for Face Recognition and Clustering,” in Proc of
CVPR, Boston, MA, USA, 2015.

[19] Alexander Hermans, Lucas Beyer, and Bastian Leibe, “In De-
fense of the Triplet Loss for Person Re-Identification,” arXiv
preprint arXiv:1703.07737, 2017.

[20] Brian Mcfee and Gert Lanckriet, “Metric Learning to Rank,”
in Proc of ICML, Haifa, Israel, 2010.

[21] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg,
Jingbin Wang, James Philbin, Bo Chen, and Ying Wu, “Learn-
ing Fine-grained Image Similarity with Deep Ranking,” in
Proc of CVPR, Columbus, OH, USA, 2014.

[22] Daniel Wolff and Tillman Weyde, “Learning music similarity
from relative user ratings,” Information Retrieval, vol. 17, no.
2, pp. 109–136, 2014.

[23] Malcolm Slaney, Kilian Weinberger, and William White,
“Learning a Metric for Music Similarity,” in Proc. of ISMIR,
Philadelphia, PA, USA, 2008.

[24] Jason Weston, Samy Bengio, and Philippe Hamel Google,
“Large-Scale Music Annotation and Retrieval : Learning to
Rank in Joint Semantic Spaces,” arXiv preprint, 2011.

[25] Rui Lu, Kailun Wu, Zhiyao Duan, and Changshui Zhang,
“Deep ranking: Triplet MatchNet for music metric learning,”
in Proc. of ICASSP, New Orleans, LA, USA, 2017.

[26] Edith Law, Kris West, Michael Mandel, and Mert J Bay
Stephen Downie, “Evaluation of Algorithms Using Games:
The Case of Music Tagging,” in Proc. of ISMIR, Kobe, Japan,
2009.

[27] R. Manmatha, Chao Yuan Wu, Alexander J. Smola, and Philipp
Krahenbuhl, “Sampling Matters in Deep Embedding Learn-
ing,” in Proc. of ICCV, Venice, Italy, 2017.

[28] Sander Dieleman, “Recommending music on Spotify with
deep learning,” 2014.

[29] Anastasiya Mishchuk, Dmytro Mishkin, Filip Radenovic, and
Jiri Matas, “Working hard to know your neighbor’s margins:
Local descriptor learning loss,” in Proc. of NIPS, Long Beach,
CA, USA, 2017.

[30] Guillaume Doras and Geoffroy Peeters, “Cover Detection Us-
ing Dominant Melody Embeddings,” in Proc. of ISMIR, Delft,
The Netherlands, 2019.

	 Introduction
	 Related work
	 Music auto-tagging
	 Learning to rank
	 Music similarity

	 Proposed method
	 Problem definition
	 Mining triplets from ranked lists
	 Auto-pooling
	 System architectures

	 Evaluation of the proposed method
	 Dataset
	 Evaluation metrics
	 Results and discussion

	 Conclusion and perspectives
	 References

