
HAL Id: hal-02461801
https://telecom-paris.hal.science/hal-02461801

Submitted on 30 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Tree-based Methods for Similarity Learning
Stéphan Clémençon, Robin Vogel

To cite this version:
Stéphan Clémençon, Robin Vogel. On Tree-based Methods for Similarity Learning. 2019, In: Nicosia
G., Pardalos P., Umeton R., Giuffrida G., Sciacca V. (eds) Machine Learning, Optimization, and Data
Science. LOD 2019. Lecture Notes in Computer Science, vol 11943. Springer, Cham. �hal-02461801�

https://telecom-paris.hal.science/hal-02461801
https://hal.archives-ouvertes.fr

On Tree-based Methods for Similarity Learning

Stephan Clémençon1 and Robin Vogel1,2

1Telecom ParisTech, LTCI, Université Paris Saclay, France,
first.last@telecom-paristech.fr

2IDEMIA, France, first.last@idemia.fr

Abstract

In many situations, the choice of an adequate similarity measure or
metric on the feature space dramatically determines the performance of
machine learning methods. Building automatically such measures is the
specific purpose of metric/similarity learning. In [21], similarity learning
is formulated as a pairwise bipartite ranking problem: ideally, the larger
the probability that two observations in the feature space belong to the
same class (or share the same label), the higher the similarity measure
between them. From this perspective, the ROC curve is an appropriate
performance criterion and it is the goal of this article to extend recur-
sive tree-based ROC optimization techniques in order to propose efficient
similarity learning algorithms. The validity of such iterative partition-
ing procedures in the pairwise setting is established by means of results
pertaining to the theory of U -processes and from a practical angle, it is
discussed at length how to implement them by means of splitting rules
specifically tailored to the similarity learning task. Beyond these theoret-
ical/methodological contributions, numerical experiments are displayed
and provide strong empirical evidence of the performance of the algorith-
mic approaches we propose.
Keywords: Metric-Learning · Rate Bound Analysis · Similarity Learning
· Tree-based Algorithms · U -processes.

1 Introduction

Similarity functions are ubiquitous in machine learning, they are the essential in-
gredient of nearest neighbor rules in classification/regression or K-means/medoids
clustering methods for instance and crucially determine their performance when
applied to major problems such as biometric identification or recommending sys-
tem design. The goal of learning automatically from data a similarity function or
a metric has been formulated in various ways, depending on the type of similar-
ity feedback available (e.g. labels, preferences), see [15, 1, 5, 14, 20]. A dedicated
literature has recently emerged, devoted to this class of problems that is referred
to as similarity-learning or metric-learning and is now receiving much attention,
see e.g. [2] or [16] and the references therein. A popular framework, akin to
that of multi-class classification, stipulates that pairwise similarity judgments
can be directly deduced from observed class labels: a positive label is assigned

1

ar
X

iv
:1

90
6.

09
24

3v
1

 [
st

at
.M

L
]

 2
1

Ju
n

20
19

mailto:first.last@telecom-paristech.fr
mailto:first.last@idemia.fr

to pairs formed of observations in the same class, while a negative label is as-
signed to those lying in different classes. In this context, similarity learning has
been recently expressed as a pairwise bipartite ranking problem in [21], the task
consisting in learning a similarity function that ranks the elements of a database
by decreasing order of the posterior probability that they share the same label
with some arbitrary query data point, as it is the case in important applications.
In biometric identification (see e.g. [12]), the identity claimed by an individual
is checked by matching her biometric information, a photo or fingerprints taken
at an airport for instance, with those of authorized people gathered in a data
repository of reference (e.g. passport photos or fingerprints). Based on a given
similarity function and a fixed threshold value, the elements of the database are
sorted by decreasing order of similarity score with the query and those whose
score exceeds the threshold specified form the collection of matching elements.
The ROC curve of a similarity function, i.e. the plot of the false positive rate
vs the true positive rate as the threshold varies, appears in this situation as
a natural (functional) performance measure. Whereas several approaches have
been proposed to optimize a statistical counterpart of its scalar summary, the
AUC criterion (AUC standing for Area Under the ROC Curve), see [18, 11], it
is pointed out in [21] that more local criteria must be considered in practice:
ideally, the true positive rate should be maximized under the constraint that
the false positive rate remains below a fixed level, usually specified in advance
on the basis of operational constraints (see [12, 13] in the case of biometric ap-
plications). If the generalization ability of solutions of empirical versions of such
pointwise ROC optimization problems (and the situations where fast learning
rates are achievable as well) has been investigated at length in [21], it is very dif-
ficult to solve in practice these constrained, generally nonconvex, optimization
problems. It is precisely the goal of the present paper to address this algo-
rithmic issue. Our approach builds on an iterative ROC optimization method,
referred to as TreeRank, that has been proposed in [8] (see also [7] as well as
[6] for an ensemble learning technique based on this method) and investigated at
length in the standard (non pairwise) bipartite ranking setting. In this article,
we establish statistical guarantees for the validity of the TreeRank methodol-
ogy, when extended to the similarity learning framework (i.e. pairwise bipartite
ranking), in the form of generalization rate bounds related to the sup norm in
the ROC space and discuss issues related to its practical implementation. In
particular, the splitting rules recursively implemented in the variant we propose
are specifically tailored to the similarity learning task and produce symmetric
tree-based scoring rules that may thus serve as similarity functions. Numerical
experiments based on synthetic and real data are also presented here, providing
strong empirical evidence of the relevance of this approach for similarity learn-
ing.
The paper is organized as follows. The rigorous formulation of similarity learn-
ing as pairwise bipartite ranking is briefly recalled in section 2, together with
the main principles underlying the TreeRank algorithm for ROC optimiza-
tion. In section 3, theoretical results proving the validity of the TreeRank
method in the pairwise setup are stated and practical implementation issues are
also discussed. Section 4 displays illustrative experimental results.

2

2 Background and Preliminaries

We start with recalling key concepts of similarity learning and its natural con-
nection with ROC analysis and next briefly describe the algorithmic principles
underlying the TreeRank methodology. Throughout the article, the Dirac
mass at any point x is denoted by δx, the indicator function of any event E by
I{E}, and the pseudo-inverse of any cdf F (u) on R by F−1(t) = inf{v ∈ R :
F (v) ≥ t}.

2.1 Similarity Learning as Pairwise Bipartite Ranking

We place ourselves in the probabilistic setup of multi-class classification here:
Y is a random label, taking its values in {1, . . . , K} with K ≥ 1 say, and X
is a random vector defined on the same probability space, valued in a feature
space X ⊂ Rd with d ≥ 1 and modelling some information hopefully useful
to predict Y . The marginal distribution of X is denoted by µ(dx), while the
prior/posterior probabilities are pk = P{Y = k} and ηk(X) = P{Y = k | X},
k = 1, . . . , K. The conditional distribution of the r.v. X given Y = k
is denoted by µk. The distribution P of the generic pair (X,Y) is entirely
characterized by (µ, (η1, . . . , ηK)). Equipped with these notations, we have
µ =

∑
k pkµk and pk =

∫
X ηk(x)µ(dx) for k ∈ {1, . . . , K}. In a nutshell, the

goal pursued in this similarity learning framework is to learn from a training
dataset Dn = {(X1, Y1), . . . , (Xn, Yn)} composed of independent observations
with distribution P a similarity (scoring) function, that is a measurable sym-
metric function s : X 2 → R+ (i.e. ∀(x, x′) ∈ X 2, s(x, x′) = s(x′, x)) such that,
given an independent copy (X ′, Y ′) of (X,Y), the larger the similarity score
between the input observations X and X ′, the higher the probability that they
share the same label (i.e. that Y = Y ′) should be. We denote by S the ensemble
of all similarity functions.
Optimal rules. Given this informal objective, the set of optimal similarity
functions is obviously formed of strictly increasing transforms of the (symmet-
ric) posterior probability η(x, x′) = P{Y = Y ′ | (X,X ′) = (x, x′)}, namely

S∗ = {T ◦ η : T : Im(η)→ R+ borelian, strictly increasing},

denoting by Im(η) the support of the r.v. η(X,X ′) =
∑
k ηk(X)ηk(X ′). A sim-

ilarity function s∗ ∈ S∗ defines the optimal preorder1 �∗ on the product space
X × X : for all (x1, x2, x3, x4) ∈ X 4, x1 and x2 are more similar to each other
than x3 and x4 iff η(x1, x2) ≥ η(x3, x4), and one then writes (x3, x4) �∗ (x1, x2).
For any query x ∈ X , s∗ also defines a preorder �∗x on the input space X , that
enables us to rank optimally all possible observations by increasing degree of
similarity to x: for any (x1, x2) ∈ X 2, x1 is more similar to x than x2 (one
writes x2 �∗x x1) iff (x, x2) �∗ (x, x1), that is η(x, x2) ≤ η(x, x1).
Pointwise ROC curve optimization. As highlighted in [21], similarity learn-
ing can be formulated as a bipartite ranking problem on the product space X×X
where, given two independent realizations (X,Y) and (X ′, Y ′) of P , the input
r.v. is the pair (X,X ′) and the binary label is Z = 2I{Y = Y ′}− 1, see e.g. [9].
In bipartite ranking, the gold standard by which the performance of a scoring

1A preorder on a set X is any reflexive and transitive binary relationship on X . A preorder
is an order if, in addition, it is antisymmetrical.

3

function s is measured is the ROC curve (see e.g. [10] for an account of ROC
analysis and its applications.): one evaluates how close the preorder induced by
s to �∗ is by plotting the parametric curve t ∈ R+ 7→ (Fs,−(t), Fs,+(t)), where

Fs,−(t) = P{s(X,X ′) > t | Z = −1}, Fs,+(t) = P{s(X,X ′) > t | Z = +1},

where possible jumps are connected by line segments. This P-P plot is referred
to as the ROC curve of s(x, x′) and can be viewed as the graph of a continuous
function α ∈ (0, 1) 7→ ROCs(α), where ROCs(α) = Fs,+ ◦ F−1s,−(α) at any

point α ∈ (0, 1) such that Fs,− ◦ F−1s,−(α) = α. The curve ROCs informs us
about the capacity of s to discriminate between pairs with same labels and
pairs with different labels: the stochastically larger than Fs,− the distribution
Fs,+, the higher ROCs. It corresponds to the type I error vs power plot (false
positive rate vs true positive rate) of the statistical test I{s(X,X ′) > t} when
the null hypothesis stipulates that the labels of X and X ′ are different (i.e.
Y 6= Y ′) and defines a partial preorder on the set S: one says that a similarity
function s1 is more accurate than another one s2 when, for all α ∈ (0, 1),
ROCs2(α) ≤ ROCs1(α). The optimality of the elements of S∗ w.r.t. this
partial preorder immediately results from a classic Neyman-Pearson argument:
∀(s, s∗) ∈ S × S∗, ROCs(α) ≤ ROCs∗(α) = ROCη(α) := ROC∗(α) for all
α ∈ (0, 1). For simplicity, we assume here that the conditional cdf of η(X,X ′)
given Z = −1 is invertible. The accuracy of any s ∈ S can be measured by:

Dp(s, s
∗) = ||ROCs − ROC∗||p, (1)

where s∗ ∈ S∗ and p ∈ [1,+∞]. When p = 1, one may write D1(s, s∗) =

AUC∗−AUC(s), where AUC(s) =
∫ 1

α=0
ROCs(α)dα is the Area Under the ROC

Curve (AUC in short) and AUC∗ = AUC(η) is the maximum AUC. Minimizing
D1(s, s∗) boils down thus to maximizing the ROC summary AUC(s), whose
popularity arises from its interpretation as the rate of concording pairs:

AUC(s) = P {s(X1, X
′
1) < s(X2, X

′
2) | (Z1, Z2) = (−1,+1)}

+
1

2
P {s(X1, X

′
1) = s(X2, X

′
2) | (Z1, Z2) = (−1,+1)} ,

where ((X1, X
′
1), Z1) and ((X2, X

′
2), Z2) denote independent copies of ((X,X ′), Z).

A simple empirical counterpart of AUC(s) can be derived from this formula,
paving the way for the implementation of ”empirical risk minimization” strate-
gies, see [9] (the algorithms proposed to optimize the AUC criterion or surrogate
performance measures are too numerous to be listed exhaustively here). How-
ever, as mentioned precedingly, in many applications, one is interested in finding
a similarity function that optimizes the ROC curve at specific points α ∈ (0, 1).
The superlevel sets of similarity functions in S∗ define the solutions of point-
wise ROC optimization problems in this context. In the above framework, it
indeed follows from Neyman Pearson’s lemma that the test statistic of type
I error less than α with maximum power is the indicator function of the set
R∗α = {(x, x′) ∈ X 2 : η(x, x′) ≥ Q∗α}, where Q∗α is the conditional quantile of
the r.v. η(X,X ′) given Z = −1 at level 1− α. Considering similarity functions
that are bounded by 1 only, it corresponds to the unique solution of the problem:

max
s : X 2 → [0, 1],

borelian

E[s(X,X ′) | Z = +1] subject to E[s(X,X ′) | Z = −1] ≤ α.

4

Though its formulation is natural, this constrained optimization problem is very
difficult to solve in practice, as discussed at length in [21]. This suggests the
extension to the similarity ranking framework of the TreeRank approach for
ROC optimization (see [8] and [7]), recalled below. Indeed, in the standard (non
pairwise) statistical learning setup for bipartite ranking, whose probabilistic
framework is the same as that of binary classification and stipulates that training
data are i.i.d. labeled observations, this recursive technique builds (piecewise
constant) scoring functions s, whose accuracy can be guaranteed in terms of
sup norm (i.e. for which D∞(s, s∗) can be controlled) and it is the essential
purpose of the subsequent analysis to prove that this remains true when the
training observations are of the form {((Xi, Xj), Zi,j) : 1 ≤ i < j ≤ n},
where Zi,j = 2I{Yi = Yj} − 1 for 1 ≤ i < j ≤ n, and are thus far from
being independent. Regarding its implementation, attention should be paid to
the fact that the splitting rules for recursive partitioning of the space X × X
must ensure that the decision functions produced by the algorithm fulfill the
symmetric property.

2.2 Recursive ROC Curve Optimization - The TreeRank
Algorithm

Because they offer a visual model summary in the form of an easily interpretable
binary tree graph, decision trees remain very popular among practicioners, see
e.g. [4] or [19]. In general, predictions are computed through a hierarchical
combination of elementary rules comparing the value taken by a (quantitative)
component of the input information (the split variable) to a certain threshold
(the split value). In contrast to (supervised) learning problems such as classifica-
tion/regression, which are of local nature, predictive rules for a global problem
such as similarity learning cannot be described by a simple (tree-structured)
partition of X × X : the (symmetric) cells corresponding to the terminal leaves
of the binary decision tree must be sorted in order to define a similarity function.
Similarity Trees. We define a similarity tree as a binary tree whose leaves all
correspond to symmetric subsets C of the product space X × X (i.e. ∀(x, x′) ∈
X 2; (x, x′) ∈ C ⇔ (x′, x) ∈ C) and is equipped with a ’left-to-right’ orientation,
that defines a tree-structured collection of similarity functions. Incidentally,
the symmetry property makes it a specific ranking tree, using the terminology
introduced in [8]. The root node of a tree TJ of depth J ≥ 0 corresponds to the
whole space X × X : C0,0 = X 2, while each internal node (j, k) with j < J and
k ∈ {0, . . . , 2j − 1} represents a subset Cj,k ⊂ X 2, whose left and right siblings
respectively correspond to (symmetric) disjoint subsets Cj+1,2k and Cj+1,2k+1

such that Cj,k = Cj+1,2k∪Cj+1,2k+1. Equipped with the left-to-right orientation,
any subtree T ⊂ TJ defines a preorder on X 2: the degree of similarity being the
same for all pairs (x, x′) lying in the same terminal cell of T . The similarity
function related to the oriented tree T can be written as:

∀(x, x′) ∈ X 2, sT (x, x′) =
∑

Cj,k: terminal leaf of T

2J
(

1− k

2j

)
· I{(x, x′) ∈ Cj,k}.

Observe that its symmetry results from that of the Cj,k’s. The ROC curve
of the similarity function sT (x, x′) is the piecewise linear curve connecting the

5

knots:

(0, 0) and

(
k∑
l=0

F−(Cj,l),
k∑
l=0

F+(Cj,l)

)
for all terminal leaf Cj,k of T ,

denoting by Fσ the conditional distribution of (X,X ′) given Z = σ1, σ ∈
{−. +}. Setting p+ = P{Z = +1} =

∑
k p

2
k, we have F+ = (1/p+)

∑
k p

2
k·µk⊗µk

and F− = (1/(1−p+))
∑
k 6=l pkpl ·µk⊗µl. A statistical version can be computed

by replacing the Fσ(Cj,l)’s by their empirical counterpart.
Growing the Similarity Tree. The TreeRank algorithm, a bipartite rank-
ing technique optimizing the ROC curve in a recursive fashion, has been in-
troduced in [8] and its properties have been investigated in [7] at length. Its
output consists of a tree-structured scoring rule (2.2) with a ROC curve that
can be viewed as a piecewise linear approximation of ROC∗ obtained by a
Finite Element Method with implicit scheme and is proved to be nearly op-
timal in the D1 sense under mild assumptions. The growing stage is per-
formed as follows. At the root, one starts with a constant similarity function
s1(x, x′) = I{(x, x′) ∈ C0,0} ≡ 1 and after m = 2j +k iterations, 0 ≤ k < 2j , the
current similarity function is

sm(x, x′) =

2k−1∑
l=0

(m− l) · I{(x, x′) ∈ Cj+1,l}+

2j−1∑
l=k

(m− k − l) · I{(x, x′) ∈ Cj,l}

and the cell Cj,k is split so as to form a refined version of the similarity function,

sm+1(x, x′) =

2k∑
l=0

(m− l) · I{(x, x′) ∈ Cj+1,l}+

2j−1∑
l=k+1

(m− k− l) · I{(x, x′) ∈ Cj,l}

namely, with maximum (empirical) AUC. Therefore, it happens that this prob-
lem boils down to solve a cost-sensitive binary classification problem on the set
Cj,k, see subsection 3.3 in [7]. Indeed, one may write the AUC increment as

AUC(sm+1)−AUC(sm) =
1

2
F−(Cj,k)F+(Cj,k)× (1− Λ(Cj+1,2k | Cj,k)),

where Λ(Cj+1,2k | Cj,k)
def
= F+(Cj,k \ Cj+1,2k)/F+(Cj,k) + F−(Cj+1,2k)/F−(Cj,k).

Setting p = F+(Cj,k)/(F−(Cj,k)+F+(Cj,k)), the crucial point of the TreeRank
approach is that the quantity 2p(1−p)Λ(Cj+1,2k | Cj,k) can be interpreted as the
cost-sensitive error of a classifier on Cj,k predicting positive label for any pair
lying in Cj+1,2k and negative label fo all pairs in Cj,k\Cj+1,2k with cost p (respec-
tively, 1−p) assigned to the error consisting in predicting label +1 given Z = −1
(resp., label −1 given Z = +1), balancing thus the two types of error. Hence,
at each iteration of the similarity tree growing stage, the TreeRank algorithm
calls a cost-sensitive binary classification algorithm, termed LeafRank, in or-
der to solve a statistical version of the problem above (replacing the theoretical
probabilities involved by their empirical counterparts) and split Cj,k into Cj+1,2k

and Cj+1,2k+1. As described at length in [7], one may use cost-sensitive versions
of celebrated binary classification algorithms such as CART or SVM for in-
stance as LeafRank procedure, the performance depending on their ability to

6

capture the geometry of the level sets R∗α of the posterior probability η(x, x′).
As highlighted above, in order to apply the TreeRank approach to similarity
learning, a crucial feature the LeafRank procedure implemented must have is
the capacity to split a region in subsets that are both stable under the reflection
(x, x′) ∈ X 2 7→ (x′, x). This point is discussed in the next section. Rate bounds
for the TreeRank method in the sup norm sense are also established therein
in the statistical framework of similarity learning, when the set of training ex-
amples {((Xi, Xj), Zi,j}i<j is composed of non independent observations with
binary labels, formed from the original multi-class classification dataset Dn.

3 A Tree-Based Approach to Similarity Learn-
ing

We now investigate how the TreeRank method for ROC optimization recalled
in the preceding section can be extended to the framework of similarity-learning
and next establish learning rates in sup norm in this context.

3.1 A Similarity-Learning Version of TreeRank

From a statistical perspective, a learning algorithm can be derived from the
recursive approximation procedure recalled in the previous section, simply by
replacing the quantities Fσ(C), σ ∈ {−, +} and C ⊂ X × X borelian, by their
empirical counterparts based on the dataset Dn:

F̂σ,n(C) =
1

nσ

∑
i<j

I{(Xi, Xj) ∈ C, Zi,j = σ1}, (2)

with nσ = (2/(n(n − 1)))
∑
i<j I{Zi,j = σ1}. Observe incidentally that the

quantities (2) are by no means i.i.d. averages, but take the form of ratios of
U -statistics of degree two (i.e. averages over pairs of observations, cf [17]), see
section 3 in [21]. For this reason, a specific rate bound analysis (ignoring bias
issues) guaranteeing the accuracy of the TreeRank approach in the similarity
learning framework is carried out in the next subsection.

7

The Similarity TreeRank Algorithm

Input. Maximal depth D ≥ 1 of the similarity tree, class A of measurable and
symmetric subsets of X × X , training dataset Dn = {(X1, Y1), . . . , (Xn, Yn)}.

1. (Initialization.) Set C0,0 = X ×X , αd,0 = βd,0 = 0 and αd,2d = βd,2d = 1
for all d ≥ 0.

2. (Iterations.) For d = 0, . . . , D − 1 and k = 0, . . . , 2d − 1:

(a) (Optimization step.) Set the entropic measure:

Λd,k+1(C) = (αd,k+1 − αd,k)F̂+,n(C)− (βd,k+1 − βd,k)F̂−,n(C) .

Find the best subset Cd+1,2k of the cell Cd,k in the AUC sense:

Cd+1,2k = arg max
C∈A, C⊂Cd,k

Λ̂d,k+1(C) . (3)

Then, set Cd+1,2k+1 = Cd,k \ Cd+1,2k.

(b) (Update.) Set

αd+1,2k+1 = αd,k + F̂−,n(Cd+1,2k), βd+1,2k+1 = βd,k + F̂+,n(Cd+1,2k)

and αd+1,2k+2 = αd,k+1, βd+1,2k+2 = βd,k+1 .

3. (Output.) After D iterations, get the piecewise constant similarity func-
tion:

sD(x, x′) =

2D−1∑
k=0

(2D − k) I{(x, x′) ∈ CD,k}, (4)

together with an estimate of the curve ROC(sD, .), namely the broken line

R̂OC(sD, .) that connects the knots {(αD,k, βD,k) : k = 0, . . . , 2D}, and the
following estimate of AUC(sD):

ÂUC(sD) =

∫ 1

α=0

R̂OC(sD, α)dα =
1

2
+

1

2

2D−1−1∑
k=0

Λ̂D−1,k+1(CD,2k).

The symmetry property of the function (4) output by the learning algorithm is
directly inherited from that of the candidate subsets C ∈ A of the product space
X × X among which the Cd,k’s are selected. We new explain at length how to
perform the optimization step (3) in practice in the similarity learning context.
Splitting for Similarity Learning. As recalled in subsection 2.2, solving (3)
boils down to finding the best classifier on Cd,k ⊂ X 2 of the form

gC|Cd,k(x, x′) = I{(x, x′) ∈ C} − I{(x, x′) ∈ C \ Cd,k} with C ⊂ Cd,k, C ∈ A,

in the empirical AUC sense, that is to say that minimizing a statistical version
of the cost-sensitive classification error based on {((Xi, Xj), Zi,j) : 1 ≤ i <
j ≤ n, (Xi, Xj) ∈ Cd,k}

Λ(C | Cd,k) =
P{gC|Cd,k(X,X ′) = 1 | Z = −1}
P{(X,X ′) ∈ Cd,k | Z = −1}

+
P{gC|Cd,k(X,X ′) = −1 | Z = 1}

P{(X,X ′) ∈ Cd,k | Z = 1}
.

Notice that, equipped with the notations previously introduced, the statistical
version of Λ(C | Cd,k) is Λd,k+1(C)/ ((αd,k+1 − αd,k)(βd,k+1 − βd,k)). In [7], it is

8

highlighted that, in the standard ranking bipartite setup, any (cost-sensitive)
classification algorithm (e.g. Neural Networks, CART, Random Forest,
SVM, nearest neighbours) can be possibly used for splitting, whereas, in the
present framework, classifiers are defined on product spaces and the symmetry
issue must be addressed. For simplicity, assume that X is a subset of the space
Rq, q ≥ 1, whose canonical basis is denoted by (e1, . . . , eq). Denote by PV (x, x′)
the orthogonal projection of any point (x, x′) in Rq×Rq equipped with its usual
Euclidean structure onto the subspace V = Span((e1, e1), . . . , (eq, eq)). Let
W be V ’s orthogonal complement in Rq × Rq. For any (x, x′) ∈ X 2, denote by
f(x, x′) = (f1(x, x′), . . . , f2q(x, x

′)) the 2q-dimensional vector, whose first q
components are the coordinates of the projection PV (x, x′) of (x, x′) onto the
subspace V in an orthonormal basis of V (say {(1/

√
2)(e1, e1), . . . , (1/

√
2)(eq, eq)}

for instance) and whose last components are formed by the absolute values of the
coordinates of the projection PW (x, x′) of (x, x′) onto W expressed in a given
orthonormal basis (say {(1/

√
2)(e1, −e1), . . . , (1/

√
2)(eq, −eq)} for instance).

Observing that, by construction, f(x, x′) = f(x′, x) for all (x, x′) ∈ X 2, our
proposal relies on the following result (whose proof is straightforward and left
to the reader).

Lemma 1. Let S : X 2 → R. Then, S is symmetric iff there exists s : Rq×Rq+ →
R such that: ∀(x, x′) ∈ X 2, S(x, x′) = (s ◦ f)(x, x′).

In order to get splits that are symmetric w.r.t. the reflection (x, x′) 7→ (x′, x),
we propose to build directly classifiers of the form (G ◦ f)(x, x′). In practice,
this splitting procedure referred to as Symmetric LeafRank and summarized
below simply consists in using as input space Rq × Rq+ rather than R2q and
considering as training labeled observations the dataset {(f(Xi, Xj), Zi,j) :
1 ≤ i < j ≤ n, (Xi, Xj) ∈ Cd,k} when running a cost-sensitive classification
algorithm. Just like in the original version of the TreeRank method, the
growing stage can be followed by a pruning procedure, where children of a same
parent node are recursively merged in order to produce a similarity subtree that
maximizes an estimate of the AUC criterion, based on cross-validation usually,
one may refer to section 4 in [7] for further details. In addition, as in the
standard bipartite ranking context, the Ranking Forest approach (see [6]),
an ensemble learning technique based on TreeRank that combines aggregation
and randomization, can be implemented to dramatically improve stability and
accuracy of similarity tree models both at the same time, while preserving their
advantages (e.g. scalability, interpretability).

9

Symmetric LeafRank

• Input. Pairs {((Xi, Xj), Zi,j) : 1 ≤ i < j ≤ n, (Xi, Xj) ∈ Cd,k} lying in
the (symmetric) region to be split. Classification algorithm A.

• Cost. Compute the number of positive pairs lying in the region Cd,k

p =

∑
1≤i<j≤n I{(Xi, Xj) ∈ Cd,k, Zi,j = +1}∑

1≤i<j≤n I{(Xi, Xj) ∈ Cd,k}

• Cost-sensitive classification. Based on the labeled observations

{(f(Xi, Xj), Zi,j) : 1 ≤ i < j ≤ n, (Xi, Xj) ∈ Cd,k} ,

run algorithm A with cost p for the false positive error and cost 1 − p for
the false negative error to produce a (symmetric) classifier g(x, x′) on Cd,k.

• Output Define the subregions:

Cd+1,2k = {(x, x′) ∈ Cd,k : g(x, x′) = +1} and Cd+1,2k+1 = Cd,k \ Cd+1,2k.

3.2 Generalization Ability - Rate Bound Analysis

We now prove that the theoretical guarantees formulated in the ROC space
equipped with the sup norm that have been established for the TreeRank
algorithm in the standard bipartite ranking setup in [8] remain valid in the sim-
ilarity learning framework. The rate bound result stated below is the analogue
of Corollary 1 in [8]. The following technical assumptions are involved:

• the feature space X is bounded;

• α 7→ ROC∗(α) is twice differentiable with a bounded first order derivative;

• the class A is intersection stable, i.e. ∀(C, C′) ∈ A2, C ∩ C′ ∈ A;

• the class A has finite VC dimension V < +∞;

• we have {(x, x′) ∈ X 2 : η(x, x′) ≥ q} ∈ A for any q ∈ [0, 1];

Theorem 1. Assume that the conditions above are fulfilled. Choose D = Dn so
that Dn ∼

√
log n, as n→∞, and let sDn denote the output of the Similarity

TreeRank algorithm. Then, for all δ > 0, there exists a constant λ s.t., with
probability at least 1− δ, we have for all n ≥ 2: D∞(sDn

, s∗) ≤ exp(−λ
√

log n).

Proof. The proof is based on the following lemma, proved in [21] (in a more
general version, the present one being a restriction to classes of indicator func-
tions), which provides upper confidence bounds for the suprema of collections
of ratios of U -statistics.

Lemma 2. (Lemma 1, [21]) Suppose that Theorem 1’s assumptions are fulfilled.
Let σ ∈ {−, +}. For any δ ∈ (0, 1), we have with probability at least 1− δ,

sup
C

∣∣∣F̂σ,n(C)− Fσ(C)
∣∣∣ ≤ 2C

√
V

n
+ 2

√
log(1/δ)

n− 1
,

where C is a universal constant, explicited in [3] (see page 198 therein).

10

Class asymmetry Model complexity Model bias

p+ D1(sD, s
∗) D∞(sD, s

∗) Dgt D1(sD, s
∗) D∞(sD, s

∗) D D1(sD, s
∗) D∞(sD, s

∗)

0.5 0.07(±0.07) 0.30(±0.07) 1 0.00(±0.01) 0.06(±0.01) 1 0.21(±0.13) 0.65(±0.13)
10−1 0.08(±0.08) 0.31(±0.08) 2 0.03(±0.04) 0.20(±0.04) 2 0.11(±0.10) 0.43(±0.10)
10−3 0.42(±0.17) 0.75(±0.17) 3 0.07(±0.07) 0.30(±0.07) 3 0.07(±0.07) 0.30(±0.07)

2 · 10−4 0.45(±0.08) 0.81(±0.08) 4 0.12(±0.09) 0.43(±0.09) 8 0.06(±0.06) 0.28(±0.06)

Parameters: D = Dgt = 3. Dgt = D, p = 0.5. Dgt = 3, p = 0.5.

Shared parameters: X = R3, δ = 0.01, ntest = 100, 000, ntrain = 150 · (5/4)D
2
gt .

Table 1: Synthetic data experiments. Between parenthesis are 95%-confidence
intervals based off the normal approximation obtained on 400 runs.

This crucial result permits to control the deviation of the progressive outputs
of the Similarity TreeRank algorithm and those of the nonlinear approxima-
tion scheme (based on the true quantities) investigated in [8]. The proof can be
thus derived by following line by line the argument of Corollary 1 in [8]. �

This universal logarithmic rate bound may appear slow at first glance but
attention should be paid to the fact that it directly results from the hierarchical
structure of the partition induced by the tree construction and the global nature
of the similarity learning problem. As pointed out in [8] (see Remark 14 therein),
the same rate bound holds true for the deviation in sup norm between the

empirical ROC curve R̂OC(sDn
, .) output by the TreeRank algorithm and the

optimal curve ROC∗.

4 Illustrative Numerical Experiments

To begin with, we study the ability of similarity ranking trees to retrieve the
optimal ROC curve for synthetic data, issued from a random tree of depth Dgt

with a noise parameter δ. Our experiments illustrate three aspects of learning
a similarity sD with TreeRank of depth D: the impact of the class asymmetry
p+ � 1 − p+ as seen in the bounds of [21], the trade-off between number of
training instances and model complexity, see theorem 1, and finally the impact
of model biais. Results are summarized in table 1. Details about the synthetic
data experiments and real data experiments can be found in the appendix.

5 Conclusion

In situations where multi-class data are available, the objective of similarity
learning can be naturally formulated as a ROC curve optimization problem,
whose solutions are given by similarity functions yielding a maximal true positive
rate with a false positive rate below a fixed value of reference, when thresholded
at an appropriate level. Given the importance of this learning task, that finds
its motivation in many practical problems, related to biometrics applications in
particular, the present paper proposes an extension of the recursive approach
TreeRank for ROC optimization to the similarity framework. Precisely, from
an algorithmic viewpoint, it is shown how to adapt it in order to build symmetric
scoring functions and, from a theoretical angle, the accuracy properties are

11

proved to be preserved in spite of the complexity of the data functional that
is optimized by the algorithm in a recursive manner. Experimental results
supporting the approach promoted are also presented.

References

[1] A. Bellet and A. Habrard. Robustness and Generalization for Metric Learn-
ing. Neurocomputing, 151(1):259–267, 2015.

[2] A. Bellet, A. Habrard, and M. Sebban. Metric Learning. Morgan & Clay-
pool Publishers, 2015.

[3] O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical
learning theory. In Advanced Lectures on Machine Learning, pages 169–
207. 2004.

[4] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth and Brooks, 1984.

[5] Q. Cao, Z.-C. Guo, and Y. Ying. Generalization Bounds for Metric and
Similarity Learning. Machine Learning, 102(1):115–132, 2016.

[6] G. Clémençon, M. Depecker, and N. Vayatis. Ranking Forests. J. Mach.
Learn. Res., 14:39–73, 2013.

[7] S. Clémençon, M. Depecker, and N. Vayatis. Adaptive partitioning schemes
for bipartite ranking.

[8] S. Clémençon and N. Vayatis. Tree-based ranking methods. IEEE Trans-
actions on Information Theory, 55(9):4316–4336, 2009.

[9] S. Clémençon, G. Lugosi, and N. Vayatis. Ranking and Empirical Mini-
mization of U-Statistics. The Annals of Statistics, 36(2):844–874, 2008.

[10] T. Fawcett. An Introduction to ROC Analysis. Letters in Pattern Recog-
nition, 27(8):861–874, 2006.

[11] J. Huo, Y. Gao, Y. Shi, and H. Yin. Cross-modal metric learning for
auc optimization. IEEE Transactions on Neural Networks and Learning
Systems, PP(99):1–13, 2018.

[12] A. Jain, L. Hong, and S. Pankanti. Biometric identification. Communica-
tions of the ACM, 43(2):90–98, 2000.

[13] A. K. Jain, A. Ross, and S. Prabhakar. An introduction to biometric recog-
nition. IEEE Transactions on Circuits and Systems for Video Technology,
14(1):4–20, 2004.

[14] L. Jain, B. Mason, and R. Nowak. Learning Low-Dimensional Metrics. In
NIPS, 2017.

[15] R. Jin, S. Wang, and Y. Zhou. Regularized Distance Metric Learning:
Theory and Algorithm. In NIPS, 2009.

12

[16] B. Kulis. Metric Learning: A Survey. Foundations and Trends in Machine
Learning, 5(4):287–364, 2012.

[17] A. J. Lee. U -statistics: Theory and practice. Marcel Dekker, Inc., New
York, 1990.

[18] B. McFee and G. R. G. Lanckriet. Metric Learning to Rank. In ICML,
2010.

[19] J. Quinlan. Induction of Decision Trees. Machine Learning, 1(1):1–81,
1986.

[20] N. Verma and K. Branson. Sample complexity of learning mahalanobis
distance metrics. In NIPS, 2015.

[21] R. Vogel, S. Clémençon, and A. Bellet. A Probabilistic Theory of Super-
vised Similarity Learning: Pairwise Bipartite Ranking and Pointwise ROC
Curve Optimization. In ICML, 2018.

[22] K. Q. Weinberger and L. K. Saul. Distance Metric Learning for Large
Margin Nearest Neighbor Classification. Journal of Machine Learning Re-
search, 10:207–244, 2009.

6 Appendix

Code is available on the authors’ repository. 2

6.1 Acknowledgments

This work was supported by IDEMIA. We thank the LOD reviewers for their
constructive input.

6.2 Illustrative figures

Figure 1 represents a fully grown tree of depth 3 with its associated scores.
Figure 2 represents a split produced by the LeafRank procedure.

6.3 Representation of proposal functions for X ×X = R×R
We illustrate visually the outcomes of TreeRank for different proposition re-
gions, for a similarity function on the unit square [0, 1] × [0, 1]. To obtain a
symmetric similarity function, a natural approach is to transform the data us-
ing any function f : X × X → Im(f) such that f(x, x′) = f(x′, x) and then
choose a collection of regions D ⊂ P(Im(f)), to form C such that

C = {x, x′ ∈ X × X | f(x, x′) ∈ D}D∈D .

The i-th element of the vector f(x, x′) will be written f (i)(x, x′).
In that context, we present two approaches:

2https://github.com/RobinVogel/On-Tree-based-methods-for-Similarity-Learning

13

https://github.com/RobinVogel/On-Tree-based-methods-for-Similarity-Learning

Figure 1: A piecewise constant similarity function described by an oriented
binary subtree T . For any pair (x, x′) ∈ X 2, the similarity score sT (x, x′) can
be computed very fast in a top-down manner using the heap structure: starting
from the initial value 2J at the root node, at each internal node Cj,k, the score
remains unchanged if (x, x′) moves down to the left sibling and one subtracts
2J−(j+1) from it if (x, x′) moves down to the right.

• Set f(x, x′) =
(
x∨x′
x∧x′

)
where x ∨ x′ and x ∧ x′ respectively stand for the

element-wise maximum and minimum of x and x′. We introduce the
collection Csq of all regions:{

x, x′ ∈ X × X
/(

σf (i)(x, x′) ≥ σA
)
⊗
(
σf (i+D)(x, x′) ≤ σA

)}
where i ∈ {1, . . . , D}, σ ∈ {−1,+1}, A ∈ R and ⊗ is the standard XOR.

• Set f(x, x′) =
(|x−x′|
x+x′

)
. We introduce the collection Cdiag of all regions:{

x, x′ ∈ X × X
/
σf (i)(x, x′) ≥ σA

}
where i ∈ {1, . . . , D}, σ ∈ {−1,+1}, A ∈ R.

We illustrate with fig. 3 the results of the outcome of the TreeRank algo-
rithm with either one of these two approaches, in a simple case where X = [0, 1],
µ(x) = 1, K = 2 and P{Y = 2|X = x} = 0.6 · I{x ≥ 0.5} + 0.2. More compli-
cated decision regions can be chosen, such as any linear decision function on the
transformation f(x, x′) of the pair x, x′. As stated in section 3.1, those could
be learned for example by an asymmetrically weighted SVM.

6.4 Details about the synthetic data experiments of sec-
tion 4

Assume a fully grown tree T of depth Dgt, with terminal cells Cl ⊂ X ×X for all
0 ≤ l ≤ L := 2Dgt −1. The tree is constructed with splits on the transformation
of the input space X × X by the function f introduced in lemma 1. The
split is chosen by selecting the split variable uniformly at random, and the
split value using a uniform law over that variable on the current cell. The
distribution of the data is assumed to be defined by p+, F+ =

∑L
l=1 δ

+
l · U(Cl)

14

Figure 2: Symmetric split produced by the Symmetric LeafRank procedure.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

neg
pos

(a) Training pairs

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(b) Csq

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

(c) Cdiag

Figure 3: Representation of TreeRank score function with different proposal
regions. The x-axis corresponds to x1 while the y-axis corresponds to x′1.

and F− =
∑L
l=1 δ

−
l · U(Cl) where U(Cl) is the uniform distribution over Cl.

Introduce σ as the permutation that orders the cells Cl by decreasing δ+l /δ
−
l ,

i.e. δ+σ(l)/δ
−
σ(l) ≥ δ+σ(l+1)/δ

−
σ(l+1) for all 0 ≤ l ≤ L − 1, then the optimal ROC

curve ROC∗ is the line that connects the dots (0, 0) and (
∑l
j=0 δ

−
σ(j),

∑l
j=0 δ

+
σ(j))

for all 0 ≤ l ≤ L.
Now we detail our choice for the specification of the parameters δ+l and δ−l .

Assume σ to be the identity permutation. To study the ability of our method to
retrieve the optimal ROC curve for different levels of statistical noise, introduce
a noise parameter 0 < δ < 1 and fix δ+l = c+δ · δl/L, and δ−l = c−δ · δ−l/L for
all 0 ≤ l ≤ L, with c+δ and c−δ normalization constants in l such that both sets
{δ+l }0≤l≤L and {δ−l }0≤l≤L sum to one.

When δ is close to 0, ROC∗ approaches the unit step, whereas when δ is
close to 1, ROC∗ approaches the ROC of random assignment. The experiments
presented here used δ = 0.01, which makes for an AUC∗ of 0.96 approximately.
By varying the parameter δ, one can study the outcome of our approach for

15

different levels of statistical noise.
The first experiment shows that the learned model sD generalizes poorly

when positive instances are rare, as shown in the bounds of [21]. The second one
that when Dn ∼

√
log n, learned models stay decent, as show by theorem 1. The

last experiment illustrates the fact that using an overly deep tree comparatively
to the ground truth does not hinder performance, thanks to the global nature
of the ranking problem.

6.5 Real data experiments

We compare the performance of our approach to the widely acclaimed metric
learning technique LMNN, see [22], as well as a similarity derived from the
cosine similarity of a low-dimensional neural network encoding of the instances,
optimized for classification with a softmax cross-entropy loss. For that matter,
we use the MNIST database with reduced dimensionality by PCA. The neural
network approach is inspired by state of the art techniques in applications of
similarity learning, such as in facial recognition. It has shown outstanding
performance, but is not directly derived from the ranking problem that these
systems usually tackle.

The MNIST database of handwritten digits has a training set of 60,000
images and a test set of 10,000 images and is widely used to benchmark clas-
sification algorithms. Each image represents a number between 0 and 9 with a
monochrome image of 28×28 pixels, which makes for K = 10 classes and an ini-
tial dimensionality of 784. The standard principal components analysis (PCA)
was set to keep 95% of the explained variance, which reduces the dimensional-
ity of the data to d = 153. This first step was necessary to limit the memory
requirements of the LMNN algorithm. We used the implementation of LMNN
provided by the python package metric-learn, and changed the regularization
parameter to be 0.01.

The neural network approach learned an encoding e : X = Rd → Rde of size
de = 128, used for classification at training time, with a simple softmax-cross
entropy behind a fully connected de × K layer. The encoding was composed
of three stacked fully connected layers followed by ReLU activations of sizes
153×146, 146×140 and 140×134, and finally a 134×128 fully connected layer
without an activation function. These layer sizes are arbitrary and were simply
chosen as a linear interpolation between the input size d and output size de. The
similarity between two instances is computed using a simple cosine similarity
between their embeddings.

Our approach was based off a ranking forest with for symmetric LeafRank
an asymmetric classification tree over the transformed data of fixed depth 5,
see fig. 2 for an exemple of this type of proposal region. The ranking forest
aggregates the results of 44 trees of depth 15 learned on only 105 pairs each.
Refer to [7] and [6] for details on ranking forests. ROC curve plots are shown
in fig. 4. For now, our method shows higher performance than the linear met-
ric learning approach, but performs worse than the neural network encoding
approach. Further work will aim to improve the performance of our approach,
perhaps with a better LeafRank algorithm.

16

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

MNIST ROC

LMNN

Neural Network

Ranking Forest

random

Figure 4: ROC curves for the real data experiments.

17

	1 Introduction
	2 Background and Preliminaries
	2.1 Similarity Learning as Pairwise Bipartite Ranking
	2.2 Recursive ROC Curve Optimization - The TreeRank Algorithm

	3 A Tree-Based Approach to Similarity Learning
	3.1 A Similarity-Learning Version of TreeRank
	3.2 Generalization Ability - Rate Bound Analysis

	4 Illustrative Numerical Experiments
	5 Conclusion
	6 Appendix
	6.1 Acknowledgments
	6.2 Illustrative figures
	6.3 Representation of proposal functions for XX= RR
	6.4 Details about the synthetic data experiments of expsimdata
	6.5 Real data experiments

