
HAL Id: hal-02460417
https://telecom-paris.hal.science/hal-02460417v1

Submitted on 31 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Spiking Neural Networks and online learning: An
overview and perspectives

Jesus Lobo, Javier del Ser, Albert Bifet, Nikola Kasabov

To cite this version:
Jesus Lobo, Javier del Ser, Albert Bifet, Nikola Kasabov. Spiking Neural Networks and online learning:
An overview and perspectives. Neural Networks, 2020, 121, pp.88-100. �10.1016/j.neunet.2019.09.004�.
�hal-02460417�

https://telecom-paris.hal.science/hal-02460417v1
https://hal.archives-ouvertes.fr

Spiking Neural Networks and Online Learning: An
Overview and Perspectives

Jesus L. Loboa,∗, Javier Del Sera,b,c, Albert Bifetd,e, Nikola Kasabovf

aTECNALIA, 48160 Derio, Spain.
bBasque Center for Applied Mathematics (BCAM), 48009 Bilbao, Spain

cUniversity of the Basque Country UPV/EHU, 48013 Bilbao, Spain
dTélécom ParisTech, Parı́s, C201-2 France

eUniversity of Waikato, Hamilton, New Zealand
fAuckland University of Technology (AUT), Auckland, New Zealand

Abstract

Applications that generate huge amounts of data in the form of fast streams are becom-
ing increasingly prevalent, being therefore necessary to learn in an online manner. These
conditions usually impose memory and processing time restrictions, and they often turn
into evolving environments where a change may affect the input data distribution. Such
a change causes that predictive models trained over these stream data become obsolete
and do not adapt suitably to new distributions. Specially in these non-stationary scenar-
ios, there is a pressing need for new algorithms that adapt to these changes as fast as
possible, while maintaining good performance scores. Unfortunately, most off-the-shelf
classification models need to be retrained if they are used in changing environments, and
fail to scale properly. Spiking Neural Networks have revealed themselves as one of the
most successful approaches to model the behavior and learning potential of the brain, and
exploit them to undertake practical online learning tasks. Besides, some specific flavors
of Spiking Neural Networks can overcome the necessity of retraining after a drift occurs.
This work intends to merge both fields by serving as a comprehensive overview, moti-
vating further developments that embrace Spiking Neural Networks for online learning
scenarios, and being a friendly entry point for non-experts.

Keywords: Online learning, spiking neural networks

∗Corresponding author: jesus.lopez@tecnalia.com (Jesus L. Lobo). TECNALIA. P. Tecno-
logico Bizkaia, Ed. 700, 48160 Derio, Spain. Tl: +34 946 430 50. Fax: +34 901 760 009.

Preprint submitted to Elsevier August 22, 2019

ar
X

iv
:1

90
8.

08
01

9v
1

 [
cs

.N
E

]
 2

3
Ju

l 2
01

9

1. Introduction

The term Big Data has gained progressive momentum during the last decade,
due to the feasibility of collecting data from almost any source and analyzing to
achieve data-based insights that enable cost and time reductions, new product de-
velopments, optimized offerings, or smart decision making, among others profits.
In these Big Data scenarios, some characteristics may play a relevant role: it is
not feasible to store the whole dataset, traditional algorithms cannot handle data
produced at high rates, and changes in data distribution may occur during learn-
ing process. An increasing number of applications are based on these training
data continuously available (stream learning), and applied to real scenarios, such
as mobile phones, sensor networks, industrial process controls and intelligent user
interfaces, among others (Žliobaitė, Pechenizkiy & Gama, 2016). Some of these
applications produce non-stationary data streams which are becoming increas-
ingly prevalent, and where the process generating the data may change over time,
producing changes in the patterns to be modeled (concept drift). This causes that
predictive models trained over these streaming data become obsolete and do not
adapt suitably to the new distribution. Especially in Online Learning (OL) scenar-
ios, where only a single sample is provided to the learning algorithm at every time
instant, there is a pressing need for new algorithms that adapt to these changes
as fast as possible, while maintaining good performance scores. OL in the pres-
ence of concept drift has been a very hot topic during the last few years (Gama,
Žliobaitė, Bifet, Pechenizkiy & Bouchachia, 2014; Webb, Hyde, Cao, Nguyen
& Petitjean, 2016), and still remains under active debate in the community be-
cause of its numerous open challenges (Krawczyk, Minku, Gama, Stefanowski &
Woźniak, 2017; Losing, Hammer & Wersing, 2018). The data mining commu-
nity prefers to refer to OL in the presence of concept drift as data stream mining
(De Francisci Morales, Bifet, Khan, Gama & Fan, 2016; Bifet, Gavaldà, Holmes
& Pfahringer, 2018).

Many algorithms have been developed for stream learning based on Machine
Learning (ML) techniques. Unfortunately, most off-the-shelf models need to be
retrained if they are used in an evolving environment, and fail to scale properly due
to their learning algorithm. Artificial Neural Networks (ANNs) have been used
in the last years to deal with these fast evolving information flows. In essence,
they are a biologically inspired paradigm that mimics the process through which
the brain acquires and processes sensory information. One of their most biologi-
cally plausible neuron models is a key ingredient of the so-called Spiking Neural
Network (SNN) (Gerstner & Kistler, 2002), a popular an reputed model for its
capacity to capture informational dynamics observed among real biological neu-
rons, and to represent and integrate several information dimensions (e.g. time,

2

space, frequency, phase, and to deal with large volumes of data) into a single
model. The theory behind SNNs is currently mostly accepted to describe realistic
brain-like information processing, which in addition eases their implementation
on super-fast and reliable hardware platforms.

Considered nowadays as the third generation of ANNs, the advent of SNN
was propelled by the need for a better understanding of the information processing
skills of the mammalian brain, for which the community committed itself to the
development of more complex biologically connectionist systems. Some SNNs
are especially well-known in the OL research community for their ability to learn
continuously and incrementally, which account for their continuous adaptability to
non-stationary and evolving environments, and also their capacity to serve as drift
detectors (Lobo, Del Ser, Laña, Bilbao & Kasabov, 2018a). Besides, they have
shown the ability to capture temporal associations between temporal variables in
streaming data.

From all the rationale exposed above, the merging of both fields motivates fur-
ther developments that embrace SNNs for OL scenarios, with emphasis on those
requiring concept drift detection and adaptation. This work intends to serve as
a suitable entry point in the literature for non-experts in both fields, and a cata-
lyst material for future research efforts invested in this direction; it is organized
as follows: while, Section 2 and Section 3 provide a general introduction, and
present challenges and future work for OL scenarios and SNNs respectively, Sec-
tion 4 delves into the convergence of both fields. Finally, Section 5 draws the
conclusions related to this study.

2. Online Learning

In stream learning, data may arrive in chunks of data (batch learning) or in an
online manner, i.e., one single sample at a time (OL). In batch learning an entirely
accessible group of samples (batch) is provided, and the learning algorithm is al-
lowed to scan the batch before building/updating the model. However, in OL only
a single sample is provided to the learning algorithm at every time instant, which
is incrementally updated every time a new sample arrives. An OL environment
imposes different computational constraints when compared to traditional batch
learning setting:

• each sample is processed only once on arrival, and models must be able to
process samples sequentially as soon as they are received, without putting
the memory space and processing time restrictions at risk;

• the processing time of each sample must be small and constant, without
exceeding the rate at which new samples arrive;

3

• the algorithm should use only a preallocated and finite amount of memory;

• a valid model must be available at every scan of the streams of data; and

• the learning algorithm must produce a model that is equivalent to the one
that would be built in a batch learning scenario.

In batch learning, the evaluation procedure of the learning algorithm is de-
termined by the set of samples used for training and testing. The question raised
for OL in this regard is how to build a picture of accuracy over time. One of the
most used schemes is test-then-train, where each sample is used to test the model
before it is used for training, and then the accuracy can be incrementally updated.
This scheme has the advantage that can be applied when memory is restricted and
there is no holdout set for testing, getting the most out of the available dataset.
Next, we introduce the problem of OL in the presence of concept drift, proba-
bly the most challenging aspect in OL, being a very hot topic research in the last
decade (Webb, Hyde, Cao, Nguyen & Petitjean, 2016).

2.1. Concept Drift
Learning and adaptation to drift in non-stationary environments requires mod-

eling approaches capable of monitoring, tracking and adapting to eventual changes
in the produced data. In this context, a drift may occur in the feature domain
(new features appear, part of them disappear, or their value range evolves) or in
the class domain (new classes emerge or some of them fade along time). More
formally, concept drift between time step ts0 and ts1 can be defined as: ∃x ∈
X : pts0(x, y) 6= pts1(x, y), where pts0(x, y) and pts1(x, y) are the joint probability
distributions at time steps ts0 and ts1, respectively, between the input variables x
that conform a data sample and the target variable y. Specific terminology is often
used to indicate the cause or nature of changes. In terms of what is changing (see
Figure 1), drifts can be:

Real drift when the posterior probabilities of classes p(y|x) vary over time inde-
pendently from variations in p(x), having an impact on unconditional prob-
ability density functions, and

Virtual drift when the distribution of the input data p(x) changes without affect-
ing the posterior probabilities of classes p(y|x), but affects only the condi-
tional probability density functions.

Concept drift can be also categorized in terms of speed and severity (Minku,
2011). On the one hand, in the case of speed, an abrupt drift may occur when a

4

(a) Original, virtual (p(x) changes, but not p(y|x)) and
real (p(y|x) changes) concepts respectively

 abrupt

gradual

incremental

recurrent

blip

t

Drift
types

(b) Types of drift

Figure 1: (a) nature of drift depending on what is changing; (b) types of drift.

change happens suddenly between two classification contexts, whereas a gradual
drift represents the case when dealing with a smooth transition between two con-
cepts. When there are several intermediate concepts in between the old and the
new concept, the change is incremental. Likewise, if previously known concepts
reoccur after some time, it is considered as a recurrent drift. Finally, a challenge
may emerge when an outlier (blip) can be mixed with concept drift; in this case
no adaptation is needed because it is a temporary event that does not affect the
future data and thus the subsequent learning of the algorithm. Figure 1 also shows
these types of drifts. On the other hand, severity can be regarded as the amount of
changes that a new concept causes; therefore, a measure of severity can be com-
puted as the percentage of the input space whose target class has changed after the
drift. It is worth mentioning that many efforts have been devoted to the character-
ization of concept drift (Webb, Hyde, Cao, Nguyen & Petitjean, 2016; Khamassi,
Sayed-Mouchaweh, Hammami & Ghédira, 2018), however, it is still an open is-
sue in the state of the art due to the complexity of characterizing manifold types
of data changes over time.

Algorithms that handle concept drift can be designed for adaptation or detec-
tion purposes, even both when the active strategy requires a detection mechanism
to trigger the adaptation process. The adaptation process can be carried out proac-
tively (first detecting concept drift, so that only the model gets updated when a
drift is detected, known as active or informed approaches), or passively (updating
the model continuously every time new data samples are received, known as pas-
sive or blind approaches). Passive approaches are effective with gradual drifts and
recurring concepts (although active ones are also able to do it but with more diffi-
culties), and they are more recommendable for batch learning. Active approaches
work well when the drift is abrupt, and they are more recommendable for OL.

Drift detectors are methods that can detect data distributions changes based
on information about a base learner performance (e.g. classification errors) or the

5

incoming data. Such changes usually trigger the need for updating, replacing or
retraining the model (or the ensemble). Drift detectors may return not only sig-
nals about drift occurrence, but also warning signals, which represent the moment
when a change is suspected and a new training set representing the new concept
should start being collected to retrain the models, as Figure 2 shows.

t
detection delay

real drift warning
detection

drift
detection

Figure 2: Drift detection example.

2.2. Applications
The Internet of Things (IoT) has become one of the main applications of OL,

since it is generating huge quantity of data continuously in real time. The IoT
may be defined as sensors and actuators connected by networks to computing sys-
tems (Manyika, Chui, Bisson, Woetzel, Dobbs, Bughin & Aharon, 2015), which
can monitor/manage the health and actions of connected objects/machines in real-
time. It has the potential to fundamentally shift the way we interact with our sur-
roundings, or dramatically improve health outcomes with wearable devices and
portable monitors. It has also the potential to deliver trillions of dollars in eco-
nomic growth in the coming years. It will boost productivity, drive the emergence
of new markets, and encourage innovation. In (Middleton, Tsai, Yamaji, Gupta
& Rueb, 2017), the authors predict that the IoT will grow at a 32% rate from
2016 through 2021, reaching an installed base of 25.1 billion units. In 2021, 7.6
billion “things” will ship, with 64% being consumer applications. The IoT will
support total spending on endpoints and services of about $3.9 trillion in 2021.
The characteristics of the IoT are:

Interconnectivity: anything can be interconnected with the global information
and communication infrastructure,

Things-related services: the IoT is capable of providing thing-related services
within the constraints of things (e.g. privacy protection and semantic con-
sistency between physical things and their associated virtual things). In
order to provide thing-related services within the constraints of things, both
the technologies and information in the physical world will change,

6

Heterogeneity: IoT devices are heterogeneous as based on different hardware
platforms and networks. They can interact with other devices or service
platforms through different networks,

Dynamic changes: the state of devices change dynamically, e.g., sleeping and
waking up, connected and/or disconnected as well as the context of devices
including location and speed. Moreover, the number of devices can change
dynamically, and

Enormous scale: the number of devices that need to be managed and that com-
municate with each other will be at least an order of magnitude larger than
the devices connected to the current Internet. The ratio of communication
triggered by devices as compared to communication triggered by humans
will noticeably shift towards device-triggered communication. Even more
critical will be the management of the data generated and their interpreta-
tion for application purposes. This relates to semantics of data, as well as
efficient data handling.

In IoT applications, OL algorithms are needed to manage the data currently
generated, at an ever increasing rate, from applications such as: sensor networks,
measurements in network monitoring and traffic management, log records or click-
streams in web exploring, manufacturing processes, call detail records, email,
blogging, twitter posts and others (Žliobaitė, Pechenizkiy & Gama, 2016). In
fact, all data generated can be considered as streaming data since it is obtained in
specific intervals of time.

2.3. Available Open Software/Frameworks
The references provided here contain software implementations for algorithms

that can work on stationary and non-stationary scenarios. We do not claim this list
to be exhaustive, but provides several opportunities for novices to get started, and
established researchers to expand their contributions, all the while advancing the
OL field by tackling some of the open challenges described in the next subsection.

MOA: is probably the most popular open source Java framework for data stream
mining (Bifet, Gavaldà, Holmes & Pfahringer, 2018),

SAMOA: is a Scalable Advanced Massive Online Analysis tool (Morales & Bifet,
2015) for distributed stream learning,

Scikit-Multiflow: is implemented in Python given its increasing popularity in
the ML community (Montiel, Read, Bifet & Abdessalem, 2018), and it is
inspired by MOA. It contains a collection of ML algorithms, datasets, tools,
and metrics for OL evaluation,

7

Scikit-Learn: although it is mainly focused on batch learning, this framework1

also provides researchers with some OL methods, such as Multinomial
Naive Bayes, Perceptron, a Stochastic Gradient Descent classifier, a Pas-
sive Aggressive classifier, among others, and

SparkML: is a Spark-based ML library (Meng, Bradley, Yavuz, Sparks, Venkatara-
man, Liu, Freeman, Tsai, Amde, Owen et al., 2016) for large-scale data
processing.

2.4. Recent Challenges and Future Trends
Next, we summarize some of the most remarkable challenges and trends in

Online Learning (Ramı́rez-Gallego, Krawczyk, Garcı́a, Woźniak & Herrera, 2017;
Gomes, Barddal, Enembreck & Bifet, 2017; Wang, Minku & Yao, 2018; Benczúr,
Kocsis & Pálovics, 2018):

Structured prediction: instead of having only one output attribute to predict,
in structured prediction we may have several output attributes at the same
time, that can be numeric or discrete. If they are discrete, we refer to it using
the term multi-label learning and if they are numeric, the term multi-target
learning,

Semisupervised and delayed learning: as the number of class labels available
may be small, we may need to used semi-supervised techniques to get ben-
efit of having huge quantities of unlabeled data, to make predictions. An-
other interesting and real case scenario is the one where class labels arrive
with delay. We may use also semi-supervised techniques to deal with this
delayed setting,

Active learning: if there is a cost for obtaining the label of an instance, active
learning can be used to decide which instances to select to pay the cost for
the label, optimizing the cost and the number of labels used,

Data preprocessing: in high-dimensional data, using all attributes can not be fea-
sible, and we may need to preprocess the data to perform feature selection,
or feature transformation. How to do that in an efficient way is still quite
challenging, and

Imbalanced learning and anomaly detection: in many applications data is not
balanced, the distribution of the class labels is not uniform and may be

1https://scikit-learn.org/stable/

8

evolving other time. One application of imbalanced learning is anomaly de-
tection, where the problem consists in predicting when an anomaly appears.
As anomalies appear with a very low frequency, it is a classical example of
imbalanced learning.

Distributed computation: when dealing with large quantities of data, an impor-
tant trend will be how to do OL using distributed streaming engines, such
as Apache Spark, Apache Flink, Apache Storm among others. Algorithms
have to be distributed in an efficient way, so that the performance of the
distributed algorithms does not suffer from the network cost of distributing
the data, and

The use of neural networks: how to execute only doing one pass over the data
will be an important future area of research, considering that the standard
deep learning techniques currently do several passes over the data.

3. Spiking Neural Networks (SNNs)

The computational power of bio-inspired systems has attracted increasing at-
tention from research community (Kasabov, 2019). Despite the lack of consen-
sus about the information processing involved in brain, biological processes have
served as reference for recent computational models. ANNs were developed as
simplified versions of biological neural networks in terms of structure and func-
tion. SNNs have raised as the new generation of neural networks, a more bio-
logical realistic approach by utilizing spikes, incorporating the concepts of space
and time trough neural connectivity and plasticity. They deal with precise timing
spikes improving the traditional ANNs in terms of accuracy and computational
power, being potentially better suited for hardware implementation due to their
simple “integrate-and-fire” nature (see Section 3.3). There are several trade-offs
of the hardware implementations of SNNs: there are no multiplications as in tra-
ditional models, pulse processing can be implemented using shifts and adds, and
interconnections transmit only a single bit instead of real numbers. Sparse and
asynchronous communication can also be easily implemented. However, it should
be remarked that this prospective advantage does not manifest itself yet when im-
plementing SNNs in a general purpose computer platform. In order to have an
overview of SNNs in comparison with some statistical methods (e.g. multiple
linear regression, k-nearest neighbors, support vector machines, etc.) and second
generation of ANNs (e.g. multilayer perceptron, convolutional neural networks,
etc.), we present Table 1.

We would like to underline the importance of model interpretation. By having
the possibility of building a model visualization or extracting the set of rules that

9

Σ
wji

dji Σ
input spiking neuron i

output spiking neuron j

Figure 3: Scheme for SNNs.

govern the SNN model, we are able to interpret the internal mechanisms behind
the model learning. In contrast to other ANNs where it is hard to look into the
network and figure out exactly what or how it has learned, some SNNs allow us
to know about their learning process (Soltic & Kasabov, 2010).

Statistical methods 2nd generation SNNs

Information representation Scalars Scalars Spike sequences
Input data representation Scalars, Vectors Scalars, Vectors Whole SSTD patterns
Learning Statistical, limited Hebbian rule Spike-time dependent
Dealing with SSTD Limited Moderate Excellent
Parallelisation of computations Limited Moderate Massive
Hardware support Standard VLSI Neuromorphic VLSI

Table 1: Comparison of SNNs with statistical methods and second generation of ANNs. SSTD
refers to Spatio- and Spectro-Temporal Data, and VLSI to Very Large Scale Integrated.

Before finishing this subsection, some problems of SNNs are presented. They
highly depend on the optimization of a large number of parameters, they show
an unknown behavior for different types of spatio-temporal data, and they suffer
from the lack of a solid consensus about the best information encoding scheme
and neuron model. Despite these limitations, they are one of the most promising
technique in ML. Now the scope is placed on SNNs (see Figure 3), providing a
general overview on this family of connectionist models, showing their principles,
current applications, and future trends and challenges (Kasabov, 2018).

3.1. Biological Inspiration
Brain-inspired neural networks show similarities with respect to the way brains

process information, they are intrinsically associated with the computation of neu-
ronal units that use spikes. The utilization of spikes brings together the definitions

10

of time varying post-synaptic potential (PSP), firing threshold (ϑ), and spike la-
tencies (∆), as depicted in Figure 4. They try to simulate the processes carried out
between the neurons (synapses) in a network.

dendrites

binary
event

PSP

time

OUTPUT

ϑ

spike

Action potential

Δ1

dendrites

axon

INPUT
Action potential

synapse

OUTPUT
INPUTS

Δ2

Δ3

Figure 4: Biological neuron and its association with an artificial spiking neuron (Gerstner &
Kistler, 2002).

3.2. Data and Information Representation as Spikes
Before presenting the input data to the SNN, it must be encoded into spike

trains in order to apply the neuron model. This encoding part aims to generate
spiking patterns that represent the input stimuli, and it is still an open issue in
neuroscience (what is the information contained in such a spatio-temporal pattern
of spikes?, what is the code used by neurons to transmit that information?, how
might other neurons decode the signal?, etc.), but traditionally it has been shown
that most of the relevant information is contained in the mean firing rate of neu-
rons. In the literature we can find two main encoding schemes: temporal encoding
and rate-based encoding (see Figure 5). The first one is used over the latter one
when patterns within the encoding window provide information about the stimu-
lus that cannot be obtained from spike count. The rate-based encoding scheme
is based on a spiking characteristic within a time interval (e.g. frequency), in the
temporal encoding scheme the information is encoded in the time of spikes.

Rate-based encoding schemes (“rate as a spike count”, “rate as a spike den-
sity”, and “rate as a population activity”) correspond to three different notions of
mean firing rate (either an average over time, or an average over several repetitions
of the experiment, or an average over a population of neurons respectively). Tem-
poral encoding schemes are based on spike timing: “time-to-first-spike” (when a
code for the timing of the first spike contains all information about the new stim-
ulus), “phase” (when we can apply a “time-to-first-spike” encoding scheme also
where the reference signal is not a single event, but a periodic signal), and “corre-
lations and synchrony” (where we use spikes from other neurons as the reference
signal for a spike code).

11

Rate encoding

Time

N
e
u
r
o
n

n
u
m
b
e
r

1

2

3

4

5

Temporal encoding

Time

N
e
u
r
o
n

n
u
m
b
e
r

1

2

3

4

5

Figure 5: Temporal encoding versus Rate-based encoding.

3.3. Spiking Neuron Models
A spiking neuron model is a mathematical description of the properties of neu-

rons that generate electrical potentials across their cell membrane. Some of the
most relevant neuron models are described subsequently, and graphically repre-
sented in Figure 6.

Leaky Integrate-and-Fire (LIF) (Gerstner & Kistler, 2002) model, where a neu-
ron is considered as an electrical circuit and the current potential is com-
puted with an appropriate equation. Model consists of capacitor C in par-
allel with resistor R, driven by a current I(t) = IR + Icap. The standard
form of the model is defined as τmdu

dt
= −u(t) + RI(t), where τm = RC

is the membrane time constant. Here spikes are events characterized by a
firing time tf : u(tf) = ϑ, and after tf , the potential is reset to a resting
potential ur. In a more general form, the LIF model can also include a re-
fractory period, in which the dynamics are interrupted for an absolute time
∆abs. LIF model is simple and computationally effective, and it is the most
widely used spiking neuron model despite other more biologically realistic
models. One of the most used approximations of the LIF model is the Spike
Response Model (SRM), where each time a neuron receives an input from
a previous neuron, its internal state (membrane potential) changes. In sum-
mary, a neuron emits an spike each time its membrane potential reaches a
threshold value (θ) (see Figure 4). Then, after emitting the spike, the neuron
goes through a phase of high hyperpolarization during which it is impossi-
ble to emit a second spike for some time (refractory period).

Hodgkin-Huxley (Hodgkin & Huxley, 1952) model, where a semipermeable cell
membrane separates the interior of the cell from the extracellular liquid,

12

acting as a capacitor (C). When an input current I(t) is injected into the
cell, it may add further charge on C, or leak through the channels in the
cell membrane. Because of active ion transport through the cell membrane,
the ion concentration inside the cell is different from that in the extracel-
lular liquid. The Nernst potential generated by the difference in ion con-
centration is represented by a battery. A detailed description of the in-
fluences of the conductance of three ion channels (Na, K and L) on the
spike activity of the giant axon of squid is given by the following equation:∑

ch ich(t) = GNa ·m3 ·h · (vc− vNa) +GK ·n4 · (vc− vK) ·GL · (vc− vL),

and its differential equations:
dm

dt
= αm(vc) · (1 − m) − βm(vC) · m,

dn

dt
= αn(vc) · (1−n)−βn(vC) ·n, and

dh

dt
= αh(vc) · (1−h)−βh(vC) ·h.

In the equations, GNa, GK , GL are the conductance of the sodium, pota-
sium, and leakage channels; VNa, VK , and VL are constants called reverse
potentials; m and n control the Na channel and variable h controls the K
channel; α and β are empirical functions of vc.

Izhikevich (Izhikevich, 2007) model claims to be as biological plausible as the
Hodgkin-Huxley model with computational efficiency of LIF models. It
is defined by the equation v′ = 0.004v2 + 5v + 140 − u + I and u′ =
a(bv−u). Here it is considered that ifv ≥ 30mV, thenv ←− c, u←− u+d;
where a, b, c and d are parameters of the model, v represents the membrane
potential, and u the membrane recovery.

Probabilistic (Kasabov, 2010) model, which stores its information in connection
weights and probabilistic parameters related to spikes to the occurrence and
the propagation of spikes.

3.4. Learning Methods and Algorithms in SNN
Synaptic plasticity is the capacity of synaptic connections to change their

strength, which is the basis of the learning and memory processes in biological
neural networks. Several synaptic plasticities coexist, mainly differing on the
time scale and the conditions required for the induction. Regarding the time scale,
some of them decay on the order of about 10 − 100 ms, while others, such as
Long-Term Potentiation (LTP) or Long-Term Depression (LTD), persist during a
longer time. Referred to the conditions for the induction, some synaptic plastici-
ties depend only on the history of pre-synaptic stimulation (independently of the
post-synaptic response), while others depend on the coincidence of pre-synaptic

13

R C

pre-synaptic
i(t)

post-synaptic

PSPθ

axon synapse soma spike generation

(a) LIF model

peak 30 mV

reset cv(t)

u(t)

reset d

sensitivity b

decay with rate a

(b) Izhikevich model

inside

outside
Na

K GL

I(t)

C

GK GNa

VL VK VNa

inside

outside

(c) Hodgkin-Huxley model

Figure 6: Three of the most representative neuron models.

and post-synaptic activity, on the temporal order of their spikes, and on other fac-
tors (e.g. a concentration of specific chemicals).

In supervised learning, Supervised Hebbian Learning (SHL) rule provides
probably the most straightforward solution for from a biologically realistic view.
Here, a spike-based Hebbian process is supervised by an additional “teaching”
signal that reinforces the post-synaptic neuron to fire at the target times and to re-
main silent at other times. ReSuMe (Ponulak, 2005) and SpikeProp (Bohte, Kok
& La Poutre, 2002) are two of the most representative algorithms in supervised
learning for SNN. In unsupervised learning, by modifying synaptic strengths of
Hebbian processes, the connections are reorganized within a neural network and,
under certain conditions, may lead to an emergence of new functions (input clus-
tering, pattern recognition, source separation, dimensionality reduction, forma-
tion of associative memories or self-organizing maps). It was demonstrated that
the change in the synaptic efficacy after several repetitions of the experiment was
a function of the relative differences of the spike times; and that whereas pre-
synaptic spikes that precede post-synaptic ones induce potentiation, the reversed
order of spikes induce synaptic depression. This phenomenon is called Spike-
Time Dependent Plasticity (STDP) (Bi & Poo, 2001).

14

3.5. Applications
Many practical applications of SNNs can be found in the fields of motor con-

trol (e.g. (DeWolf, Stewart, Slotine & Eliasmith, 2016) for the motor control of
the arm), robotics control based (Bing, Meschede, Röhrbein, Huang & Knoll,
2018), trajectory tracking, decision making with application to financial market,
spatial navigation and path planning, decision making and action selection, reha-
bilitation, image and odor recognition, spatial navigation and mental exploration
of the environment, etc. (Ponulak & Kasinski, 2011).

It is worth mentioning that there is a great opportunity for the use of SNNs
in the Green Artificial Intelligence paradigm (Villani, Bonnet, Rondepierre et al.,
2018), which is becoming an important subfield of Artificial Intelligence. It is
based on the reduction of the usage of resources while training and testing our
models, using techniques of energy efficiency, energy aware computing, hardware
accelerators, and embedded systems. Here, the use of SNN in OL allows for a very
fast real-time simulations of large networks and a low computational cost.

3.6. Available Hardware and Software/Frameworks
Again, we do not claim this subsection to be an entire list, but offers some of

the most known hardware/software/platforms for beginners to get started. Now
we reference some of these software implementations/frameworks for SNNs.

Brian: is an open source simulator for SNNs (Goodman & Brette, 2008) written
in Python2,

Cypress: is a C++ SNNs simulation framework3 that provides a wrapper around
PyNN, and allows to directly run networks on the Human Brain Project
(Markram, 2012) neuromorphic hardware systems,

Neuron: is a simulation environment (Carnevale & Hines, 2006) that can perform
efficient discrete event simulations of SNNs with LIF models, as well as
hybrid simulations involving both LIF neurons and cells with voltagegated
conductances. It is especially recommended for simulations that involve
cells with complex anatomical and biophysical properties,

Nest: is a simulation environment (van Albada, Rowley, Senk, Hopkins, Schmidt,
Stokes, Lester, Diesmann & Furber, 2018) best suited for models that focus
on the dynamics, size, and structure of neural systems rather than on the
detailed morphological and biophysical properties of individual neurons,

2http://briansimulator.org/
3https://github.com/hbp-unibi/cypress

15

PyNN: is a Python package4 for simulator-independent specification of neuronal
network models. Once the model has been implemented with PyNN API
and Python, we can run it without modification on any simulator that PyNN
supports (Neuron, Nest, Brian) or on the supported neuromorphic hardware
systems, such as SpiNNaker and BrainScaleS (see below),

NeuCube: is a 3D eSNN computational neurogenetic model (Kasabov, 2014) to
map, learn and mine brain data,

PCSIM: is a software package written in Python (although its computational core
is written in C++) for simulation of neural circuits (Pecevski, Natschläger &
Schuch, 2009) primarily designed for distributed simulation of large scale
networks of SNNs, and

ANNarchy: is a neural simulator (Vitay, Dinkelbach & Hamker, 2015) designed
for distributed rate-coded or SNNs (or both). The core of the library is
written in C++, but it provides an interface in Python for the definition of
the networks.

Next, we list two of the most known available hardware platforms:

SpiNNaker: is a massively parallel computing platform (Furber, Galluppi, Tem-
ple & Plana, 2014) mainly targeted towards neuroscience, robotics, and
computer science. It is based on numerical models running in real time
on custom digital multicore chips using the ARM architecture. Next gen-
eration small scale test chips of the SpiNNaker architecture is available for
first test users since early 2018,

BrainScaleS: is a project5 that aims at understanding and emulating function and
interaction of multiple spatial and temporal scales in brain information pro-
cessing. It is based on physical (analogue or mixed-signal) emulations of
neuron, synapse and plasticity models with digital connectivity, running up
to 10 thousand times faster than real time. Next generation small scale test
chips of the BrainScaleS architecture is available for first test users since
early 2018.

4http://neuralensemble.org/PyNN/
5https://brainscales.kip.uni-heidelberg.de/index.html

16

3.7. Recent Challenges and Future Trends
Previous subsections have been underlined that SNNs are biologically more

realistic than traditional ANNs, and computationally more powerful. The question
that arises here is why community still works with continuous neural networks
instead of the theoretically superior SNNs. Now, we present some of the most
relevant challenges for the wide use of SNNs:

Which model to apply?: there is no unified framework or an agreed upon base
neuron model of SNNs yet. Different models are often applied, which
makes tough the task of carrying out insightful comparisons. Besides, it
is well known the trade-off between the biological plausibility and the com-
putational cost of the model: the model choice ranges from LIF (simple
but efficient, they are usually chosen by computer scientists and engineers)
to the Hodgkin-Huxley (sophisticated but slow, they are usually chosen by
neuroscience researchers).

Information encoding: Although it is already known that brains do not work
with real numbers but with timed spikes, the crux of the issue is how infor-
mation is encoded with such spikes, being one of the big unresolved chal-
lenges of neuroscience. Here we find again a lack of agreement on what
constitutes a good encoding scheme.

Learning based on spike timing: how to achieve a good learning algorithm is
still one of the biggest challenges of SNNs, mainly motivated by two rea-
sons. On the one hand, the biological learning method of brains is not still
well understood, so it is hard to imitate it with artificial learning methods.
On the other hand, the discontinuous nature of spikes makes difficult the
design of calculus based approaches.

4. SNNs in Online Learning Scenarios

Data streams may exhibit temporal dependencies between class labels, which
formally occur whenever the current sample label yt is influenced by previous
sample labels (yt−1, yt−2,...). Temporal dependence can help to determine how
the input features relate with each other over time. SNNs leverage spike infor-
mation representation so as to build spike-time learning rules that have shown the
ability to capture temporal associations between temporal variables in streaming
data. Additionally, STDP and Hebbian learning are biologically plausible local
learning rules in SNN models; the use of some SNNs (e.g. eSNNs) in OL al-
lows for a very fast real-time and reducing the computational complexity of the

17

learning process, given its locality which lends itself well for parallel implemen-
tation. In terms of adaptation to the drift, most off-the-shelf classification models
need to be retrained if they are used in changing environments, and fail to scale
properly. Some SNNs can overcome this drawback, e.g. the evolving nature of
eSNNs (based on the merging process of similar neurons) makes possible the ac-
cumulation of knowledge as data become available, without the requirement of
storing and retraining the model with past samples. Finally, they have also shown
to be very competitive as concept drift detectors (Lobo, Del Ser, Laña, Bilbao &
Kasabov, 2018a).

4.1. Existing SNN Approaches for Online Learning: Drawbacks and Trade-offs
SpikeProp (Bohte, Kok & La Poutre, 2002) is a learning rule based on gradient

descent for training SNNs, and it is able to solve complex classification problems.
However it presents several drawbacks: it tends to be trapped in local minima, its
convergence is not guaranteed because depends on fine parameter tuning before
starting, it is too slow to be used in an online setting, and the large number of
synaptic connections makes difficult to scale up when a high dimensional dataset
is considered.

The SHL rule, already mentioned in Section 3.4, exhibits two main draw-
backs. On the one hand, as during training “teaching” signal currents suppress all
undesired fires, the only correlations of pre-synaptic and post-synaptic activities
happen around the target firing times. In other occasions, this correlation is not
present, and there is no mechanism to weaken these synaptic weights that make
the neuron to fire at undesired times during the testing phase. On the other hand,
synapses change their weights even when the neuron fires already exactly at the
desired times. Therefore, SHL can achieve stable solutions only by adding addi-
tional constraints or more learning rules. These problems are resolved in ReSuMe
(Ponulak, 2005), where an instructive signal modulates synaptic plasticity not to
have a marginal direct effect on the post-synaptic somatic membrane potential.
Despite this method was claimed to be suitable for OL, the network structure used
is fixed and does not adapt to incoming stimuli. Finally, SHL and ReSuMe are
suitable for training in single-layer networks, and it is more recommendable the
use of multi-layer feedforward or recurrent neural networks for many other tasks
because they are capable of performing more complex computation than single-
layer networks (Ponulak & Kasinski, 2011).

More recently, SpikeTemp method proposed in (Wang, Belatreche, Maguire &
McGinnity, 2017) offers an enhanced rank-order-based learning method for SNNs
with an adaptive structure where the precise times of incoming spikes are used to
determine the required change in synaptic weights.

18

However, most of them are unable to predict inputs after just one presenta-
tion of the training samples, and then other studies have tackled OL in a more
realistic approach. One of the most promising SNNs for OL is the Evolving Spik-
ing Neural Networks (eSNNs) (Schliebs & Kasabov, 2013), based on the Thorpe
model (Thorpe, Delorme & Van Rullen, 2001) which is a simplified version of
LIF model (it simplifies the leaky operation of the computational neuron), and
where its neural model allows for a very fast real-time simulation of large net-
works and a low computational cost. These properties make them suitable for
these scenarios, where stringent constraints on computational cost and processing
time prevail. In addition, their evolving nature (spiking neurons evolves incre-
mentally over time to infer temporal patterns from data) allows to accumulate
knowledge as data arrive, without storing and retraining the model with past data.
They are also recommendable for non-stationary environments, because changes
in the input stream data are encoded immediately as binary events or spikes, which
is one of the most suitable data encoding strategies for adapting to drifts. Recently,
eSNN was modified in (Lobo, Laña, Del Ser, Bilbao & Kasabov, 2018b) to im-
prove their adaptation to the drift, and to consider OL in a more realistic form by
limiting the size of the neuron repository, avoiding its incremental growing, which
is unfeasible in OL scenarios. They were also used for first time as drift detector
in (Lobo, Del Ser, Laña, Bilbao & Kasabov, 2018a), where it takes advantage of
their neurons merging mechanism by using it as detector. To date, with these few
exceptions, there is a lack of efficient and scalable SNN-based algorithms for OL
scenarios.

4.2. Topics of Future Interest
Next, we summarize some of the most interesting topics for the future in the

field of SNNs and OL:

Lifelong Machine Learning (LML): it involves the capability of the model to
smoothly update its captured knowledge to take simultaneously into ac-
count different tasks and data distributions, yet still being able to reuse and
retain captured knowledge and skills recurrently occurring over time (Chen
& Liu, 2016). Hence, LML is a paradigm requiring notably higher time
scales where data (and tasks) become available only during certain periods
time and probably with no access to previously seen data. Thereby, it is
imperative to build on top of previously learned knowledge, from where the
connection between LML and OL emerges.

Deep SNN learning: future research should addresses deep learning of spatio-
temporal patterns from streaming data, deep knowledge representation and
its online adaptation (Kasabov, 2018).

19

Human-computer interaction: a particularly interesting field for future appli-
cation of SNNs in OL is of human-computer interaction where biological
spiking neurons need to communicate with software in a potentially very
rapid manner.

Others: parameter optimization in evolving scenarios, visualization of SNN mod-
els, spatial mapping of input variables into a SNN architecture, neuromor-
phic hardware systems for real-time applications, etc., should be tackled in
a near future.

5. Conclusions

In this work we have analyzed the OL and SNNs fields from an introductory
perspective to serve as an entry point for the application of SNNs to OL, which is
a very hot topic in the research community due to the large number of real appli-
cations based on stream data, even more in those scenarios where data is affected
by non-stationary events, provoking the so-called concept drift. SNNs are consid-
ered the third generation of neural networks, and have revealed themselves as one
of the most successful approaches to model the behavior and learning potential
of the brain, allowing for a very fast real-time simulation of large networks and
a low computational cost. They have also shown a very good behavior in drift
detection and drift adaptation situations, often present in OL scenarios. All of
this leads us to consider both fields in an incredibly interesting intersection. Still,
much progress has to be made in both fields for tackling their respective open
challenges, but we should be aware of the importance of merging OL and SNNs
in order to solve real problems with the computational power of these bio-inspired
systems.

Acknowledgements

This work was supported by the EU project iDev40. This project has re-
ceived funding from the ECSEL Joint Undertaking (JU) under grant agreement
No 783163. The JU receives support from the European Union’s Horizon 2020
research and innovation programme and Austria, Germany, Belgium, Italy, Spain,
Romania. It has also been supported by the Basque Government (Spain) through
the project VIRTUAL (KK-2018/00096).

20

Bibliography

References

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes,
A. B., Lester, D. R., Diesmann, M., & Furber, S. B. (2018). Performance com-
parison of the digital neuromorphic hardware spinnaker and the neural network
simulation software nest for a full-scale cortical microcircuit model. Frontiers
in neuroscience, 12, 291.

Benczúr, A. A., Kocsis, L., & Pálovics, R. (2018). Online machine learning in big
data streams. CoRR, abs/1802.05872.

Bi, G.-q., & Poo, M.-m. (2001). Synaptic modification by correlated activity:
Hebb’s postulate revisited. Annual review of neuroscience, 24, 139–166.

Bifet, A., Gavaldà, R., Holmes, G., & Pfahringer, B. (2018). Machine Learning
for Data Streams with Practical Examples in MOA. MIT Press. https://
moa.cms.waikato.ac.nz/book/.

Bing, Z., Meschede, C., Röhrbein, F., Huang, K., & Knoll, A. C. (2018). A
survey of robotics control based on learning-inspired spiking neural networks.
Frontiers in neurorobotics, 12, 35.

Bohte, S. M., Kok, J. N., & La Poutre, H. (2002). Error-backpropagation in
temporally encoded networks of spiking neurons. Neurocomputing, 48, 17–37.

Carnevale, N. T., & Hines, M. L. (2006). The NEURON book. Cambridge Uni-
versity Press.

Chen, Z., & Liu, B. (2016). Lifelong machine learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 10, 1–145.

De Francisci Morales, G., Bifet, A., Khan, L., Gama, J., & Fan, W. (2016). Iot big
data stream mining. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM.

DeWolf, T., Stewart, T. C., Slotine, J.-J., & Eliasmith, C. (2016). A spiking neural
model of adaptive arm control. Proc. R. Soc. B, 283, 20162134.

Furber, S. B., Galluppi, F., Temple, S., & Plana, L. A. (2014). The spinnaker
project. Proceedings of the IEEE, 102, 652–665.

21

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A
survey on concept drift adaptation. ACM computing surveys (CSUR), 46, 44.

Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press.

Gomes, H. M., Barddal, J. P., Enembreck, F., & Bifet, A. (2017). A survey
on ensemble learning for data stream classification. ACM Computing Surveys
(CSUR), 50, 23.

Goodman, D. F., & Brette, R. (2008). Brian: a simulator for spiking neural net-
works in python. Frontiers in neuroinformatics, 2, 5.

Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. The Journal
of physiology, 117, 500–544.

Izhikevich, E. M. (2007). Dynamical systems in neuroscience. MIT press.

Kasabov, N. (2010). To spike or not to spike: A probabilistic spiking neuron
model. Neural Networks, 23, 16–19.

Kasabov, N. (2018). Time-space, Spiking neural networks and brain-inspired
artificial intelligence. Springer.

Kasabov, N. (2019). Deep learning of multisensory streaming data for predictive
modelling with applications in finance, ecology, transport and environment. In
Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence
(pp. 619–658). Springer Berlin Heidelberg.

Kasabov, N. K. (2014). Neucube: A spiking neural network architecture for map-
ping, learning and understanding of spatio-temporal brain data. Neural Net-
works, 52, 62–76.

Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., & Ghédira, K. (2018). Dis-
cussion and review on evolving data streams and concept drift adapting. Evolv-
ing Systems, 9, 1–23.

Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., & Woźniak, M. (2017).
Ensemble learning for data stream analysis: A survey. Information Fusion, 37,
132–156.

22

Lobo, J. L., Del Ser, J., Laña, I., Bilbao, M. N., & Kasabov, N. (2018a). Drift
detection over non-stationary data streams using evolving spiking neural net-
works. In International Symposium on Intelligent and Distributed Computing
(pp. 82–94). Springer.

Lobo, J. L., Laña, I., Del Ser, J., Bilbao, M. N., & Kasabov, N. (2018b). Evolving
spiking neural networks for online learning over drifting data streams. Neural
Networks, 108, 1–19.

Losing, V., Hammer, B., & Wersing, H. (2018). Incremental on-line learning: A
review and comparison of state of the art algorithms. Neurocomputing, 275,
1261–1274.

Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., & Aharon,
D. (2015). Unlocking the potential of the internet of things. McKinsey, .

Markram, H. (2012). The human brain project. Scientific American, 306, 50–55.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman,
J., Tsai, D., Amde, M., Owen, S. et al. (2016). Mllib: Machine learning in
apache spark. The Journal of Machine Learning Research, 17, 1235–1241.

Middleton, P., Tsai, T., Yamaji, M., Gupta, A., & Rueb, D. (2017). Forecast: In-
ternet of things endpoints and associated services, worldwide, 2017. Gartner,
.

Minku, L. L. (2011). Online ensemble learning in the presence of concept drift.
Ph.D. thesis University of Birmingham.

Montiel, J., Read, J., Bifet, A., & Abdessalem, T. (2018). Scikit-multiflow: A
multi-output streaming framework. Journal of Machine Learning Research,
19, 1–5. URL: http://jmlr.org/papers/v19/18-251.html.

Morales, G. D. F., & Bifet, A. (2015). Samoa: scalable advanced massive online
analysis. Journal of Machine Learning Research, 16, 149–153.

Pecevski, D., Natschläger, T., & Schuch, K. (2009). Pcsim: a parallel simula-
tion environment for neural circuits fully integrated with python. Frontiers in
neuroinformatics, 3, 11.

Ponulak, F. (2005). Resume-new supervised learning method for spiking neural
networks. Institute of Control and Information Engineering, Poznan University
of Technology, 42.

23

Ponulak, F., & Kasinski, A. (2011). Introduction to spiking neural networks:
Information processing, learning and applications. Acta neurobiologiae exper-
imentalis, 71, 409–433.

Ramı́rez-Gallego, S., Krawczyk, B., Garcı́a, S., Woźniak, M., & Herrera, F.
(2017). A survey on data preprocessing for data stream mining: Current status
and future directions. Neurocomputing, 239, 39–57.

Schliebs, S., & Kasabov, N. (2013). Evolving spiking neural network – a survey.
Evolving Systems, 4, 87–98.

Soltic, S., & Kasabov, N. (2010). Knowledge extraction from evolving spiking
neural networks with rank order population coding. International Journal of
Neural Systems, 20, 437–445.

Thorpe, S., Delorme, A., & Van Rullen, R. (2001). Spike-based strategies for
rapid processing. Neural networks, 14, 715–725.

Villani, C., Bonnet, Y., Rondepierre, B. et al. (2018). For a meaningful artificial
intelligence: towards a French and European strategy. Conseil national du
numérique.

Vitay, J., Dinkelbach, H. Ü., & Hamker, F. H. (2015). Annarchy: a code genera-
tion approach to neural simulations on parallel hardware. Frontiers in neuroin-
formatics, 9, 19.

Wang, J., Belatreche, A., Maguire, L. P., & McGinnity, T. M. (2017). Spiketemp:
An enhanced rank-order-based learning approach for spiking neural networks
with adaptive structure. IEEE transactions on neural networks and learning
systems, 28, 30–43.

Wang, S., Minku, L. L., & Yao, X. (2018). A systematic study of online class
imbalance learning with concept drift. IEEE transactions on neural networks
and learning systems, (pp. 1–20).

Webb, G. I., Hyde, R., Cao, H., Nguyen, H. L., & Petitjean, F. (2016). Character-
izing concept drift. Data Mining and Knowledge Discovery, 30, 964–994.

Žliobaitė, I., Pechenizkiy, M., & Gama, J. (2016). An overview of concept drift
applications. In Big Data Analysis: New Algorithms for a New Society (pp.
91–114). Springer.

24

