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ABSTRACT

Speech separation quality can be improved by exploiting textual
information. However, this usually requires text-to-speech align-
ment at phoneme level. Classical alignment methods are made for
rather clean speech and do not work as well on corrupted speech.
We propose to perform text-informed speech-music separation and
phoneme alignment jointly using recurrent neural networks and the
attention mechanism. We show that it leads to benefits for both
tasks. In experiments, phoneme transcripts are used to improve the
perceived quality of separated speech over a non-informed baseline.
Moreover, our novel phoneme alignment method based on the at-
tention mechanism achieves state-of-the-art alignment accuracy on
clean and on heavily corrupted speech.

Index Terms— Speech separation, phoneme alignment, atten-
tion, informed source separation

1. INTRODUCTION

Speech separation research focuses mainly on noise as interfering
source [1] which is highly relevant for applications such as telecom-
munication, hearing aids, or Automatic Speech Recognition (ASR)
systems. Musical sound sources also often corrupt speech signals,
which is relevant for separating speech in movies, radio shows, or
home speaker speech recognition. The speech-music separation task
has mainly been studied in simplified settings so far [2, 3].

State-of-the-art speech separation methods learn the task on
large databases using deep learning [1]. A main challenge of purely
data-driven approaches is the generalization to unseen data [4].
Therefore, it can be beneficial to exploit prior knowledge about the
target speech source which is called informed source separation [5].
For example, a text transcript of the utterance in an observed mix-
ture contains prior information about which sounds appear in which
order in the speech source. It is often available for movies in the
form of subtitles or scripts. Text transcripts have successfully been
employed to improve speech separation [3, 6] but the methods have
an important shortcoming: they rely on the availability of text that
is aligned with the audio which is usually not the case. Thus, they
perform automatic alignment as a pre-processing step, which comes
with its own challenges. For example, methods for text-to-speech
alignment are developed for rather clean speech and do not perform
as well on corrupted speech as they are based on ASR [7, 8].

This results in a chicken and egg problem: alignment is required
for text-informed speech separation and clean speech signals are re-
quired for high quality automatic alignment. Our hypothesis is that
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performing both tasks jointly leads to mutual benefits. The separa-
tion component facilitates alignment on corrupted speech while the
alignment makes the text information more usable for the separa-
tion task. Apart from the separation task, aligning phonemes on cor-
rupted speech has interesting applications such as generating training
data for robust speech recognition systems or subtitles for movies.

We previously proposed a model for weakly informed source
separation that can jointly exploit and align side information [9].
In this paper, we adapt the model for the text-informed speech-
music separation task. We show that the perceived quality of the
separated speech can be improved through text information without
pre-alignment. Beyond, we propose a novel method for phoneme
level text-to-audio alignment which achieves state-of-the-art perfor-
mance on clean speech as well as on strongly corrupted speech with
a Signal-to-Noise Ratio (SNR) of -5 dB. The alignment is derived
from attention weights learned by the model in an unsupervised
fashion when it is trained for the separation task.

2. RELATED WORK

Several deep learning approaches such as Long Short-Term Mem-
ory (LSTM) cells [4, 10], convolutional neural networks [11], and
generative adversarial networks [12] have been applied to speech
separation. LSTM networks have been shown to generalize well to
unseen noises and speakers [4]. Text-informed speech separation
has been studied first in [13]. An example speech signal is syn-
thesized from the text and then aligned with the observed mixture
using Dynamic Time Warping (DTW). The separation is done with
a variant of non-negative matrix factorization exploiting similarities
between the target speech and the example speech signal. The au-
thors report that better alignment would have improved the results
further. In [6], a sequence of phonemes is forced-aligned with noisy
speech and then fed to a deep neural network together with the au-
dio features. The authors show that the text information improves
separation in terms of cepstral distance to clean speech. Informa-
tion about phoneme identities is exploited for speech separation in
[14] and [15] without using text-transcript as additional input. In-
stead, the phonemes are recognized using ASR techniques. Then,
pre-trained phoneme-specific networks perform the separation. Ad-
ditional effort is required to compensate for the limited performance
of ASR on corrupted speech [14, 15].

Text-to-speech alignment faces two challenges: very long audio
signals and corrupted speech. While some approaches cope with the
former [7, 8], the latter is far from being solved for low SNRs. The
method based on probabilistic kernels in [8] can align text with long
audio signals but performance decreases when the speech is mixed
with music. The approach in [16] applies ASR on a long speech sig-
nal and aligns a given text transcript with the recognized text. The
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process is iterated with an updated vocabulary and language model
for regions that have not been aligned with high confidence in previ-
ous iterations. It can deal with noisy speech with an SNR of 15 dB.
In [7], this approach is further improved by also updating the acous-
tic model on non-aligned regions leading to good alignment results
up to an SNR of 10 dB.

The Montreal Forced Aligner (MFA) [17] goes even further. It
uses a Gaussian Mixture Model (GMM) Hidden Markow Model
ASR system and is trained in three iterative steps. First monophone,
then triphone GMMs are trained iteratively, as in [7], to generate
alignments on which acoustic feature transforms for speaker adapta-
tion are learned as a third step.

The alignment capabilities of the attention mechanism have been
already observed in [18] on a speech recognition task but have not
been evaluated properly for alignment. Attention has been recently
used to cope with non-aligned training data for a singing voice tran-
scription task in [19].

3. METHOD

Let x(t) be a linear mixture of speech and music with discrete time t.
Let Y = {y0, y1, ..., yM−1} be a sequence of M phonemes repre-
sented as one-hot vectors which is a precise transcription of the ut-
terance contained in x(t). Our goal is to separate x(t) into a clean
speech signal s(t) and background music b(t) as well as predict on-
set times for each phoneme in the audio. Let |X| ∈ RF×N be the
magnitude of the Short-Time Fourier Transform (STFT) of x(t) with
F frequency bands andN time frames. Given |X| and Y , our model
produces an estimate of the STFT magnitude for the clean speech
source |Ŝ| ∈ RF×N . Considering that we will apply our model on
low SNRs and given the results in [10], we directly output |Ŝ| in-
stead of a mask. An inverse STFT of |Ŝ| combined with the mixture
phase is performed to obtain the clean speech estimate in the time
domain ŝ(t).

As a starting point, we apply the model proposed in [9] for
weakly informed audio source separation which is reviewed in Sec-
tion 3.1. Adaptations for text-informed speech-music separation are
detailed in Section 3.2. Further, we retrieve phoneme alignment in-
formation from the attention weights with the DTW algorithm as
explained in section 3.3. A sketch of the workflow of our method is
presented in Figure 1.

3.1. Weakly informed audio source separation

The model in [9] has two encoders which are two-layer bidirec-
tional LSTM Recurrent Neural Networks (LSTM-RNN). The first
encodes the side information sequence Y , the other encodes |X|,
which can be seen as a sequence of N spectrogram time frames.
The respective encoder outputs are the side information encoding
H = {h0, ..., hM−1} and the mixture encodingG = {g0, ..., gN−1}.
An attention mechanism [20] is applied betweenH andG to find the
relevant elements in the side information for each mixture encoding
frame gn. This allows the model to exploit side information without
given alignment information. Specifically, a score is computed for
all hm with the learnable weight matrix W as

scoren,m = g>nWhm. (1)

Attention weights αn,m are then obtained by a softmax operation
over the scores of all hm:

αn,m =
exp(scoren,m)∑M−1

m=0 exp(scoren,m)
. (2)

Fig. 1: Workflow of joint speech separation and phoneme alignment.

The attention weights reflect the relevance of the side information
encoding element m for the mixture encoding at time step n. The
side information is then summarized in a context vector cn for each
frame gn individually as

cn =

M−1∑
m=0

hmαn,m. (3)

The concatenation [cn, gn] along the feature dimension is given to
the target source decoder to compute the estimation |Ŝ|. The de-
coder consists of a linear layer with tanh activation followed by a
two-layer bidirectional LSTM-RNN and a linear layer with ReLU
activation [9].

3.2. Adaption for text-informed speech-music separation

We derive three versions of the base model introduced above by
modifying the way the phoneme sequence Y is processed, which
we identified as a crucial point for the tasks at hand. It is worth
mentioning that the phoneme encoding H serves two distinct pur-
poses: (1) being an input to the attention mechanism identifying
which phoneme is relevant at which mixture time frame and (2) be-
ing an input to the target source decoder in the form of cn to inform
the separation process.

For Version 1 (V1) we reduce the number of LSTM-RNN layers
in the side information encoder to one and thereby limit its capacity.
This leads to a more general representation of phonemes in H mak-
ing it more applicable to fulfill its two purposes at once. Moreover,
it reduces overfitting in limited data settings. Version 2 (V2) is iden-
tical to V1 except for an unidirectional LSTM-RNN in the phoneme
encoder. This further reduces the number of learnable parameters
and forces the model to process the phonemes strictly from left to
right. Version 3 (V3) is equal to V1 but hm is processed by a linear
layer l before going into cn. This changes equation (3) to

cn =

M−1∑
m=0

l(hm)αn,m (4)

and means the model can learn two different representations of
phonemes for their two purposes.
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Attention matrix ! Optimal path

Fig. 2: Attention matrix (left) and DTW optimal path (right). Darker
color represents higher values.

3.3. Retrieving phoneme onsets from attention weights

Given a sequence of phonemes Y and a corresponding audio signal
x(t) containing speech, the goal of phoneme-to-audio alignment is
to estimate the onset times of each phoneme in the audio signal. We
retrieve onsets from the attention weights using the DTW algorithm
[21].

The attention weights can be represented collectively as atten-
tion matrix α with shape (M,N) as shown in Figure 2. With DTW,
we find the optimal path through α from (0, 0) to (M − 1, N − 1)
indicating which phoneme is active in which spectrogram frame. It
maximizes the sum of attention weights it passes being restricted to
only two possible moves, namely (m,n + 1) and (m + 1, n + 1).
This means we assume that all phonemes are pronounced and given
in the correct order. An optimal path obtained this way is shown in
Figure 2.

Knowing the hop length of the STFT that has been performed on
x(t) we know the exact position in time of each time frame n. The
estimated onset time of a phoneme is the mid-point of the first time
frame it has been assigned to by the optimal path.

Since our approach learns the alignment as a side outcome of
learning speech separation, it can cope with much lower SNRs than
other alignment methods which learn acoustic models from data di-
rectly. Training data with annotated phoneme onsets are not re-
quired.

4. EXPERIMENTS

We perform speech-music separation with joint phoneme alignment
with the models V1, V2, V3 described in section 3.2. As baseline
(BL) for the separation task, we use a model with the same configu-
ration as V1. It resembles the speech separation model in [4] which
is a four-layer LSTM-RNN with a linear output layer. Compared to
[4], the BL has more expressive power through the attention mech-
anism and the phoneme encoder. It gets, instead of phonemes, a
sequence of ones as side information, which does not convey any
additional information about the speech signal to be separated. At
the same time, BL has the same computational capacity as the mod-
els under test. This allows us to observe the exact effect of text as
side information. We share the code of all models and experiments
at https://github.com/schufo/tisms.

SDR SAR SIR STOI PESQ

BL 8.81 10.60 14.53 0.87 2.66

V1 8.64 10.39 14.44 0.87 2.72
V2 8.86 10.57 14.55 0.88 2.74
V3 8.76 10.47 14.53 0.88 2.74

OA 8.93 10.70 14.58 0.88 2.84

Table 1: Separation quality evaluation results, all values are medians
over the test set. SDR, SAR, SIR are shown in dB. BL: Baseline,
V1-3: Version 1-3, OA: Optimal Attention weights.

4.1. Data set

We use the instrumental accompaniments of the MUSDB18 data set
[22] as music signals and mix them with the TIMIT [23] speech sig-
nals. All music signals are converted to mono, downsampled to 16
kHz, and cut into snippets of 8.2 seconds, which is longer than all
speech signals. For training, we mix snippets of 80 MUSDB tracks
with 4320 utterances. The validation set contains 20 music tracks
and 240 utterances and the test set 50 music tracks and 1344 utter-
ances. The start time of the utterance within the 8.2 seconds of music
is chosen randomly and differs for every example and every epoch.
During training, we mix speech and music with a SNR uniformly
drawn from [-8, 0] dB. For the validation and test set, we mix with
SNR = -5 dB. The SNR is calculated only on the signal parts where
the speech is active. There is no sentence or speaker overlap be-
tween the data sets. The STFT is computed with Fast Fourier Trans-
form length 512, Hamming window, and hop length of 256 leading
to magnitude spectrograms of size (F × N) = (257 × 512). Each
magnitude spectrogram is divided by its maximum value to normal-
ize it to the range [0; 1].

As text information, we use the phoneme level transcripts that
come with the TIMIT speech recordings. They comprise a vocab-
ulary of 60 different phoneme symbols, to which we add a silence
token (<S>) and a padding token for batching. The silence token
is added to the start and end of each phoneme sequence because the
speech is not active at the beginning and end of the mixture signal.

4.2. Training

We use the L1 loss, batch size 32, and the ADAM optimizer [24]
with learning rate 0.0001, β1 = 0.9, β2 = 0.999, ε = 10−6. The
learning rate is reduced to 10−5 for the first 200 epochs. We stop
training after 200 consecutive epochs without a decrease in valida-
tion cost.

5. RESULTS AND DISCUSSION

We will show that it is in fact beneficial to derive two phoneme rep-
resentations as in V3 (cf. 3.2) if the model should produce good sep-
aration and alignment results at the same time. We will also show
that performance on one task can be improved when neglecting the
other task.

5.1. Speech-music separation results

We evaluate the predicted speech signals in terms of the BSS eval
metrics [25] Source-to-Distortion Ratio (SDR), Source-to-Artifacts
Ratio (SAR), and Source-to-Interference Ratio (SIR) expressed in
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Clean speech SNR = -5 dB
mean median mean median

MFA 16.3 15.7 38.4 26.0

V1 22.5 12.9 39.0 16.1
V2 326.2 75.4 355.0 120.2
V3 48.1 14.4 69.0 17.9

Table 2: Mean Absolute Error (MAE) of phoneme onset predictions
in ms averaged over the test set. MFA: Montreal Forced Aligner,
V1-3: Version 1-3.

dB. We also compute the Perceptual Evaluation of Speech Qual-
ity (PESQ) [26] and the Short-Time Objective Intelligibility (STOI)
measure [27]. SDR, SAR, SIR are computed on non-overlapping
frames of 1 second length and the median value is taken to represent
performance on one test example.

In Table 1, the median over the test set is presented for all met-
rics. Given the difficulty of the task (the SNR is -5 dB), BL performs
well. The median STOI and PESQ of the corrupted speech in the
test set are 0.64 and 1.48, respectively, which BL improves consid-
erably. V1, V2 and V3 improve the PESQ over BL. This indicates
that text information can improve the perceived quality of separated
speech signals. V1 decreases the BSS eval scores compared to BL,
V2 changes them insignificantly, and V3 adds only slightly more
artifacts than BL.

To test the upper bound of separation quality improvement
through phoneme information in our experiment setting, we take
our best model V2 and input the Optimal Attention (OA) weights
during training and testing instead of learning them. We set αn,m

to 1 if phoneme m is active in frame n and to 0 otherwise based on
true phoneme onsets. We can see in Table 1 that the SDR, SAR,
and PESQ improve considerably over BL. This result shows that
text information can improve speech separation even more when the
alignment is provided.

Since the evaluation metrics do not capture all fine signal charac-
teristics, we also provide some audio examples at
schufo.github.io/publications/2020-ICASSP. In
informal listening tests we observed that while some word endings
are not audible in baseline predictions, they are clearly audible in
the predictions of V2 and OA.

5.2. Phoneme-to-audio alignment results

As baseline for the phoneme alignment task, we use the MFA, which
we reviewed in Section 2. To train it, we follow closely the proce-
dure described in [17] which leads to advantageous conditions for
the MFA: It is trained on the entire data set (including training, vali-
dation and test data), it gets the speaker identity of each utterance to
perform speaker adaptation, and each example is cut at start and end
of the utterance for training and testing (no long silent speech parts).
We test all methods on the test set for two cases: clean speech and
SNR = -5 dB. The MFA is trained on clean and corrupted speech
respectively to learn appropriate acoustic models.

We evaluate the Mean Absolute Error (MAE) on each test exam-
ple. It is the mean of the absolute differences between the true and
predicted phoneme onsets in milliseconds (ms). The mean and me-
dian MAE over the test set are shown in Table 2. We see that V2 is
not suited for phoneme alignment, whereas it performed best on the
separation task. On clean speech, the MFA and V1 perform almost
equally well. V1’s median is better indicating that its alignments are

Clean speech SNR = -5 dB

%

Fig. 3: Percentage of correctly aligned phonemes with different tol-
erances. MFA: Montreal Forced Aligner, V1-3: Version 1-3.

more accurate when neglecting outliers. V1’s mean is worse indicat-
ing that it produces more severe outliers. This can be explained by
the dependence of our alignment method on somewhat sharp atten-
tion weights. When the model focuses on many phonemes at each
time step n, i.e. α is not sharp, an optimal path indicating accurate
phoneme onsets cannot be found.

On corrupted speech with SNR = -5 dB, V1 clearly outperforms
the MFA. The mean of both methods is very similar while V1’s me-
dian MAE is almost 10 ms lower. In general, V3 does not perform
as well as V1 but still gives accurate predictions and outperforms the
MFA regarding median MAE on clean and corrupted speech.

We also compute the percentage of correctly aligned phonemes
within a tolerance around the true onsets. The results are shown
in Figure 3. They confirm that V1’s and V3’s alignment accuracy
is not much affected by strong speech corruption while the MFA’s
accuracy decreases. Moreover, V1 and V3 estimate more than 50 %
of all phoneme onsets set with less than 10 ms error compared to the
true onsets on clean speech. Even for the case of SNR = -5 dB, V1
aligns 50 % of the phonemes within the 10 ms tolerance.

6. CONCLUSION

Performing text-informed speech separation and phoneme alignment
jointly leads to mutual benefits. After adapting a model for weakly
informed source separation to perform both tasks, we showed that
it can improve the perceived quality of separated speech with non-
aligned phonemes as prior information. A novel phoneme alignment
method based on attention arises from our joint approach. It achieves
state-of-the-art accuracy on clean and on heavily corrupted speech.
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