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ABSTRACT

Variational inference of the Bayesian linear dynamical system
is a powerful method for estimating latent variable sequences and
learning sparse dynamic models in domains ranging from neuro-
science to audio processing. The hardest part of the method is in-
ferring the model’s latent variable sequence. Here, we propose a so-
lution using matrix inversion lemmas to derive what may be consid-
ered as the Bayesian counterparts to the Kalman filter and smoother,
which are particular forms of the forward-backward algorithm that
have known properties of numerical stability and efficiency. Op-
posed to existing methods, we do not augment the model dimension-
ality, use Cholesky decompositions or inaccurate numerical matrix
inversions. We provide mathematical proof and empirical evidence
that the new algorithm respects parameter expected values to more
accurately infer hidden state statistics. An application to Bayesian
frequency estimation of a stochastic sum of sinusoids model is pre-
sented and compared with state-of-the-art estimators.

Index Terms— Time-series, Kalman filter, Variational infer-
ence

1. INTRODUCTION

Bayesian linear dynamical systems [1] are central to probabilistic
machine learning of sequential data and have proven beneficial in
a wide range of disciplines including control systems, audio pro-
cessing, target tracking, finance, autonomous navigation, and neu-
roscience [2—8]. The system assumes that the linear dynamical sys-
tem’s parameters are stochastic with prior probabilities. Inferring
the model with Bayes’ theorem provides not only an estimate of
the latent state sequence but also of the model structure itself [9].
While exact inference in the Bayesian linear dynamical system is
intractable, variational inference has been successful in inferring an
approximation to the posterior, employing a structured mean-field
factorization of the latent variable sequence from the parameters.
The most challenging aspect of the variational approach is infer-
ring the statistics of the latent variable sequence. For non-Bayesian
models, this is completed through the Kalman filter [10] and Rauch-
Tung-Striebel (RTS) smoother [11], being particularly efficient, nu-
merically accurate, and well-studied forms of the forward-backward
algorithm for state space models [12]. However, in the Bayesian
model the parameters are stochastic and summarized by statistical
moments, complicating the forward-backward algorithm. Several
approaches have been proposed to infer the sufficient statistics of
the hidden state sequence. Originally, [1] developed a specialized
routine based on belief propagation that avoided the use of matrix
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inversion lemmas as such operations appeared to violate parameter
expectations. Later, [2] found that Kalman filtering equations could
be used at the cost of using Cholesky decompositions of the param-
eter covariances and augmenting the state space. Lastly, [13] used
a Cholesky decomposition of a block-banded matrix akin to [14],
departing from the forward-backward algorithm.

In this paper, we use matrix inversion principles to derive a
Bayesian Kalman filter and RTS smoother, a numerically stable and
efficient form of the forward-backward algorithm for inferring the
state sequence of fully Bayesian linear dynamical systems. Opposed
to existing methods, we do not rely on augmenting the dimension-
ality of the state space, Cholesky decompositions, or undesirable
numerical matrix inversions, while enjoying a cost that only grows
linearly with the sequence length. Crucially, we incorporate uncer-
tainty about parameter values intuitively and respect all the param-
eter covariances and expectations as in the original belief propaga-
tion formulation. Overall, the resulting algorithm is faster and more
numerically accurate than the original. An application to Bayesian
frequency estimation in a sum of sinusoids model is presented and
compared to state-of-the-art deterministic estimators.

The paper is organized as follows. Section 2 details the proba-
bilistic model for the Bayesian linear dynamical system. The pro-
posed inference routine is described in Section 3, then validated
along with existing methods in Section 4. The variational approach
is applied to the problem of frequency estimation in Section 5. Fi-
nally, Section 6 concludes the paper and proposes future work.

The following notation is used throughout the paper: bold low-
ercase denotes vectors and bold uppercase denotes matrices; Xi:n
denotes the set (X1, ...,Xn); I is the identity matrix; |A| is the de-
terminant and Tr(A) is the trace of matrix A; diag(a) denotes a
diagonal matrix formed from the elements of a; column vector a;)
denotes the transposed ith row of A; (x) denotes the expected value
of x and covariance cov[x,y] = (xy') — (x){(y)"; N(x|u, T) is
a multivariate Normal distribution with mean p and covariance X;
Gam(z|a, b) is a Gamma distribution with shape a and rate b [15].

2. PROBABILISTIC MODEL

Linear dynamical systems assume that H x 1 hidden state x,, evolves
linearly according to a first-order Markov process and emitsa V' x 1
observation y,, at each time n € (1, N). A state is linearly trans-
formed over adjacent times by H x H system matrix A, and to the
observable space by V' x H output matrix C. An optional U X 1
input u,, is transformed by H x U input matrix B to drive the state
and by V' x U feedforward matrix D to drive the observation. Ad-
ditive Gaussian noise is assumed for both the state 7 ~ AN (0, Q)
and observation n¥ ~ N(0,R), where positive semi-definite co-
variance matrix Q is H x H and R is V' x V. The linear dynamical



system has the following state space representation:
Xn = Axp—1 + Bu, + 1), (1)
¥, = Cxn + Du, + 0¥ 2

Initial state x; is Gaussian-distributed with H X 1 mean mg and
H x H covariance Pg. The joint probability of the linear dynamical
system is

p(Y,X) = p(y, |x1)p(x1)[1N_op (¥, [%n)p(Xn|xn-1)  (3)

where the probability of transition p(xy|x,—1), emission p(y,, |xn ).
and initial state p(x1) are Gaussian (due to additive Gaussian noise):

p(x1) = N(x1|mo, Po) “4)
P(Xn|Xn-1) = N(xn|Axn_1 + Bu,, Q) (5)

Bayesian linear dynamical systems assume that the parameters
of the model & = (A,B,C,D,R,Q) are also stochastic and
prescribed with a prior distribution p(@). While the prior can take
any form, placing Normal-Gamma conditional distributions over
the rows of dynamics matrices and elements of diagonal noise co-
variances is a logical choice motivated by conjugacy, reducing the
number of induced factorizations needed to make the variational
approach analytically feasible. Moreover, scaling the variance of
each element of A, B, C,D with automatic relevance determina-
tion (ARD) hyperparameters o, 3,~, d, respectively, has proven
beneficial for pruning superfluous parameters and learning sparser
models [1]. Here, we do not explicitly define p(@) because the
new method generally supports any prior. An example of parameter
priors is detailed in Section 5.

2.1. Posterior Approximation

Exact inference in the fully Bayesian model is intractable; how-
ever, structured mean-field variational inference has been success-
fully used to infer an approximate posterior distribution ¢ that as-
sumes a single factorization between variables and parameters:

P(X,0]Y) = ¢(X,0) = ¢x(X)qe(0) ©)

Variational inference circumvents the intractable integral involved
in minimizing the Kullback-Leibler (KL) divergence from ¢ to p by
instead maximizing the lower bound

L(q) = Inp(Y) - KL(q(X, 0)|Ip(X, 0]Y)) ®)
= <1np(Y7 X7 0)>q - <1nq(X7 0)>q (9)

From the calculus of variations, the log optimal distributions are

Inge(0) = (Inp(Y, X, 0)),, (x) + const. (10)
In ¢x(X) = (Inp(Y, X, 0)) 4, (6) + const. (11)

Each distribution is thus updated in turn to maximize £(q) [9].

As a consequence of the model’s first-order latent structure, up-
dating ¢e (@) does not require statistics from the full gx(X) but only
from the marginal ¢x(X») and cross-time posterior gx(Xn,Xn+1)-
Such statistics can be computed efficiently with the forward-
backward algorithm [9]. Given deterministic parameters, the
Kalman filter and smoother can compute such statistics. How-
ever, in our case parameters are stochastic and described by their
sufficient statistics under gg (6), complicating the problem.

3. PROPOSED METHOD

This section describes the new algorithm for inferring the Bayesian
linear dynamical system’s latent statistics. It involves a forward and
backward pass that may be considered as the Bayesian counterparts
to the Kalman filter and RTS smoother. A full derivation of the new
filter and smoother is provided in the supplemental material [16].

We propose a solution by decomposing problematic second mo-
ment terms like (AT Q™' B) into sums of first moments and covari-
ances, for example (A)T(Q™1)(B) + X ap where

H H —
Bas =20 X (Q5 ) ae@cov[an byl e (12)

This general expression applies to 344, 3ap, Xcc and Xcp.
These covariances encode parameter uncertainty. In practice this ex-
pression simplifies. For example, a common assumption is that rows
are independent and the noise covariance is diagonal [1,13,17]. This
decomposition holds for arbitrary priors, since non-conjugate priors
will require an induced variational factorization g¢ (A, B)qe(Q),
and conjugate priors require that Q is diagonal, each element scal-
ing arow of A and B. In the following, we drop the subscript go (0)
from the parameter expectations for notational convenience.

3.1. Forward Pass (Filtering)

The forward pass calculates the mean pt,, and covariance V, of the
marginal probability, Vn € (1, N):

_ p(yn|x'ﬂ)qx(x"|y1n—l)

qx(xnly :n) - (13)
! qx(yn|y1:n—1)
= N(xnlpn, Vn) (14)
The predictive distribution is given by
qx(Xn|y1:n—1) = N(X”‘mn*h P"*I) (15)

with mean and covariance

m,_1 = (A, _, + (B)u, — (A)V,,_1Zapu, (16)

P.1=(A)V.1(A) +(Q) a7
The filtered output probability is given by
qx(yn‘yln—l) :N(yn|ﬂzy,2y) (18)

with mean and covariance

y = (C)a 1 + (D)un — (C) P 1 Zopun  (19)

2, = (C)P,_1(C)" + (R) (20)

Finally, the updated state mean and covariance are as follows:
K=P,(C)'xs," 1)
p, =m, 1 +K(y, —p,) —P.1Zcpu, (22)
V,=(I-K(C)P,_1 (23)

where K is called the Kalman gain and

G=1-V, 1 (I+ZaaVyu_1) 'Zaa (24)
L=1-P, i (I+3ccPn1) ' Bcc (25)
By =Gpp s, Vi1 =GV (26)

P,-1=LP,1 e

my,_1 = Lmn_l,

Ihe forward pass is initialized at time n = 1 with m,,—; = mg and
P.,_1 = Py. Pleasingly, when the parameter covariances are zero
(344 = 0, etc.), these equations exactly match the Kalman filter.



3.2. Backward Pass (Smoothing)

The backward pass calculates the mean fi,, and covariance V. of
the marginal posterior

P(Xn41[Xn)Gx(Xn+1)
x(Xn) = @x(Xn n dx” (28
q ( ) q ( ‘yl )/ qx(X’ﬂ“rllyl:n) o )

= N (xulf,, Vi) 29)
After initializing the statistics at time n = N with iy, = pp and

VN =V ~, the mean and covariance are propagated analytically
from time n = N — 1 back to n = 1 with the following equations

J, =V, (AP} (30)
b, =0, +Jn (Bpyy —mp) — ViZapunr (3B
Vi =V + 30 (Vass =P 30 (32)

When the covariances of the parameters are zero, these equations
exactly match the RTS smoother. Finally, the following expected
sufficient statistics are required for updating ge (0):

(%0} = i, (33)
<an;rt> = ﬁnﬁz + v" (34
<XnXI+1> = ﬁnﬁ1+1 + Jnvn+l (35)

3.3. Lower bound evaluation

The log partition function In ¢x(Y') is an optional quantity to com-
pute during the forward pass that is useful for evaluating £(q) [1].

I g (yalyzin-1) = 5 (— (m20R)) — (in[Q))

— |V, +In|E| + In|V, |+ & 1€,
- YIL<R71>Yn + 2Y£<R71D>un - N171V;111~"n71
—ul,((B'Q'B) + (D'R'D))u, + i V,i' ) (36)
where W =1 —J,,(A) and
£ 1 =W(,_1 — Va1Zapu,) — Jn(B)u, 37)
B, 1 =WV, , (38)

The log partition function is In gx(Y) = 25:1 In gx(Yn|y1:m-1)-

4. VALIDATION

Experiments were conducted to validate the accuracy of the pro-
posed and existing filtering and smoothing methods. The KL di-
vergence from the ground truth distribution g« (X) provided by be-
lief propagation [1] to gx(X) provided by the proposed and existing
methods was calculated for a range of parameter covariances, em-
bedded in the model through 3 4 = 3¢ = Io, where the variance o
took values in the range (107'°,10'%). The KL divergence was av-
eraged over 100 Monte Carlo runs for each variance setting. Figure
1 shows that the augmented and non-augmented versions that rely on
Cholesky factors are in fact not numerically equivalent to the original
belief propagation version once the parameter variance exceeds ap-
proximately 10~7. The KL divergence levels off for variances larger
than 10%, likely because the model is saturated with parameter uncer-
tainty. The proposed method proves to be mathematically consistent
with belief propagation, having a consistently small KL divergence
regardless of the amount of propagated parameter uncertainty.

5 T T T
o] Augmented
0 - Non-augmented D
/PZ e Propoged
& —10} .
X 15| .
%
= —20 —
3
M 925 1 N
=
730 -
,35(’ A | | | |
108  107* 100 10* 108
Variance (from ¥4 and X¢)
Fig. 1. Log KL divergence from g¢x(X) provided by belief

propagation [1] to gx(X) provided by the proposed and existing
augmented/non-augmented methods [18].

5. APPLICATION: BAYESIAN FREQUENCY ESTIMATION

In this section, variational inference of a Bayesian linear dynamical
system is applied to the problem of frequency estimation. System
matrices and initial conditions are designed to reflect a sum of si-
nusoids model. Inferring the fully Bayesian model provides high-
resolution frequency estimations that are accompanied by measures
of uncertainty about the inferred values. Moreover, the level of noise
present in the signal is estimated.

5.1. System structure

This section describes a linear dynamical system that generates a
univariate observation y, from a sum of K noisy sinusoids:

K

Yn = Z gk sin(2m fenT + o) + 13 (39)
k=1

where the kth sinusoid has amplitude g, frequency fr in Hz, and
initial phase ¢y, in radians.

The system matrix A is block diagonal. Each 2 x 2 block Ay
is parametrized by a scalar v, € (—2, 0) that controls the frequency
of the kth latent oscillation,

Ap=F +Euy (40)

where F and E are constants given by

1
F:<(1) 1>7 E:(; i) (41)

Indeed, the elements of the 2 x 1 state subvector x,; will oscillate
at fr = arccos(ar + 1)/(27T) Hz, where the sampling period
T = 1/F's seconds. The initial mean mg over initial state x1, sets
the amplitude gj, and initial phase ¢x:

B sin(¢x)
Mmox = gk (2 cos(¢r) tafl(ﬂfkT)) (42)

and the initial covariance is Py = Ir; . The output matrix C =
(1,0,1,0,...) sums the first dimension of each subvector. The latent
noise covariance Q is block diagonal. Each block is parametrized by
a scalar precision 7%, Q; = It~ . The output noise covariance is



parametrized by a scalar precision R = p~*. The prior distribution
p(6) = p(v, 7)p(p) where

p(v,7) = [Ty N (0, oy i) Gam (7 |eo, o) (43)
p(p) = Gam(plro, s0) (44)
Using the Normal-Gamma distribution is beneficial for reducing the
number of induced variational factorizations.
5.2. Variational M step

The variational M step computes the optimal factor ge(6) =
qv (V|T)q+(7)q,(p) Where

0 (V|T)qr (1) = [T N (k| D, o ) Gam(7i[6k, Gi)  (45)
4o (p) = Gam(p|7, 3) (46)

The moments of these optimal distributions are as follows.

-1
o = (Tr (EziV:Q(xn_lkxﬁ,lk)ET) n ak> @7
Up = o Tr (E (Zfﬂ(xn_u@xzk) - Zg:2<xn—lkxzz—lk>FT)>
(48)
er=eo+N—1 49)
-~ . 1 _ 1
1 = 10 — 57/,130’;C ! + iTr(FZ::]:2<Xn,1kX;I;_1k>FT
— 2PN (k- )+ 0 (i) (50)
7=r0+ N/2 (51)
=~ 1w T
s=s0t; (anlynyn
—2CE0 (xa)yh + CEN, (xax1)CT) (52)
The following statistics are needed for the E step: (vix) = U,

(") ='in/ex, and (p~ ') = 3/7.
The initial state’s prior mean and covariance are simply updated
to their maximum likelihood values: mo = p; and Py = Vj.

Alternatively, they can be given priors and included in gg.
5.3. Variational E step

The proposed algorithm in Section 3.1-3.2 is used to calculate the
sufficient statistics of gx(X). Using the results of the M step:

Qu)=Lr Y, (R)y=(p"") 3

Covariance 3 4 4 is block diagonal. The kth block is ETEak. Since
C is deterministic, X ¢ ¢ is zero.

(Ak) = F + E(v),

5.4. Results

The proposed Bayesian frequency estimator (BFE) was tested along-
side three existing sinusoidal model estimators: the Reassignment
method (RM) [19], the Derivative method (DM) [20], and a high-
resolution subspace method (ESPRIT) [21].

A test signal comprised of a sinusoid with additive zero-
mean Gaussian noise sampled at F's = 44100H z, sample length
N = 63, and the signal-to-noise ratio (SNR) expressed in dB as
101og,,(g*/R), and ranged from -20dB to +120dB by increments
of 20dB, with amplitude g = 1 of the sinusoid. For each SNR
and analysis method, we tested M/ = 1000 frequencies (f) linearly

distributed in the (F's/N, F's/4) range, with uniformly sampled
phases ¢ € (—m, ), and computed the variance of estimation error
2 ~

G- S (fo = )2

The performance of each estimator was compared to the Cramér-
Rao lower bound (CRLB) given in [22], defining the limit of the best
possible variance of estimation error achievable by an unbiased es-
timator for a particular sample length and noise level. Results are
shown in Figure 2. The Bayesian frequency estimator achieves close
to the same resolution as ESPRIT, outperforming the phase-based
RM and DM. The second test involved estimating two superimposed
sinusoids of the same amplitude with frequencies spaced randomly
within 2F's/N Hz of each other, for which ESPRIT has the best
accuracy and the Bayesian method is intermediate. While more
computationally intensive, the Bayesian frequency estimator quan-
tifies uncertainty about the frequency estimation, simultaneously es-
timates the observed noise variance, and can prune superfluous sinu-
soids from the model.
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Fig. 2. Estimation of one (above) and two (below) frequencies.

6. CONCLUSION

A new algorithm was presented for inferring the hidden state se-
quence of a variational Bayesian linear dynamical system, which can
be seen as the Bayesian extension to the Kalman filter and smoother.
It is more numerically stable than existing routines, respects the sta-
tistical moments of the parameters, and enjoys a cost that scales lin-
early with the data sequence length. This work is applicable to vari-
ational inference of Bayesian linear dynamical systems and its ex-
tensions, for example, recurrent switching linear dynamical systems
[23]. More generally, the proposed Bayesian filter and smoother is
useful for embedding uncertainty about parameters into a dynamical
model. In future work, we will extend the Bayesian frequency es-
timation to probabilistic time-frequency analysis and apply the new
algorithm to learn switching dynamical models.
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