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ABSTRACT

We present a Bayesian filter for state space models with Laplace-
distributed observation noise that is robust to heavy-tailed and
outlier-ridden univariate time-series data. We analytically derive a
closed-form expression of the exact posterior for a Laplace likeli-
hood conditioned on a Gaussian prior. Posterior statistics are prop-
agated forward in time by a proxy Gaussian density. The forward
Kullback-Leibler divergence from the posterior to the Gaussian
is minimized by matching their moments. The proposed method
supports both linear and non-linear systems, and has a fast recur-
sive structure analogous to the Kalman filter that enables online
inference. Results show that the new method outperforms existing
approximate inference methods, especially in challenging scenarios
where the system’s parameters are uncertain.

Index Terms— heavy-tailed noise, Kalman filter, state estima-
tion, Laplace distribution, Bayesian inference

1. INTRODUCTION

State space models are probabilistic time-series models that have
proven beneficial in a wide range of disciplines including control
systems, audio processing, target tracking, finance, autonomous nav-
igation, and neuroscience [1]. The Kalman filter is an efficient and
numerically accurate algorithm for exactly inferring the latent state
sequence of a model with Gaussian state and observation noise [2].
However, time-series data often exhibit non-Gaussian noise, consist-
ing of outliers, glint noise [3], sensor failure, and extended periods
of drastically increased noise levels [4]. The Kalman filter’s per-
formance severely degrades in all of these cases because the Gaus-
sian assumption does not hold. A model with heavy-tailed observa-
tion noise is better at representing outliers [5], but does not admit
a closed-form recursive filtering solution, rendering exact inference
intractable. Although sequential Monte Carlo methods like parti-
cle filtering can estimate posterior statistics for arbitrary state space
models [6], there is no limit to the number of samples needed to
attain a certain degree of estimation quality, they are subject to the
curse of dimensionality, and the reliability of their estimates are hard
to assess.

Recently, there has been much interest in fast and reliable de-
terministic estimators for state space models with heavy-tailed ob-
servation noise. Deterministic methods typically exploit a recursive
structure akin to the Kalman filter for speed and use alternative cost
functions, heuristics, or approximate inference at each time step for
robust state estimation. Examples include the maximum correntropy
filter [7], minimax-based filters [5, 8], or variational inference-based
filters [9–12]. In particular, recent research on estimating models
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with Laplace-distributed observation noise demonstrated that the
model is robust to extreme outliers and a variety of heavy-tailed-
distributed noises. The Laplace distribution has many applications
including glint noise modeling and differential privacy [13]. Exist-
ing methods rely on iterative optimization algorithms to approximate
the posterior, including convex optimization [14], majorization-
minimization [15, 16], Huber cubature filtering [17], and variational
inference with Gaussian scale mixtures [10].

In this paper, we propose a new Bayesian filter for state space
models with Laplace observation noise that provides fast, high qual-
ity estimation. Unlike previous methods, we analytically derive the
exact posterior moments for the Laplace state space model and prop-
agate them forward in time through a Gaussian density. Minimizing
the forward Kullback-Leibler (KL) divergence between the posterior
and the Gaussian is achieved by simply matching their moments.
Converting the exact posterior into a Gaussian enables a fast and
numerically stable recursive algorithm, analogous to the Kalman fil-
ter. The proposed filter is robust to impulsive outliers, heavy-tailed
noise, and extended periods of increased noise. Using these locally-
exact posterior statistics provides superior results over other approx-
imate inference methods such as particle filtering and variational
Bayes. Moreover, the filter elegantly extends to models with non-
linear dynamics.

This paper is organized as follows. Section 2 defines the Laplace
state space model. Section 3 details the new filtering method. Sec-
tion 4 extends the method to non-linear dynamics. Results are pre-
sented in Section 5. Finally, Section 6 concludes the paper and pro-
poses future research.

The following notation is used throughout the paper: bold up-
percase denotes a matrix; bold lowercase denotes a vector; x1:n

denotes the set (x1, . . . ,xn); E [x] is the expected value of x;
cov[x,y] = E

[
xyT

]
− E [x]E [y]T is the covariance of x and y;

I is the identity matrix; |.| is the absolute value; N (x|µ,Σ) is a
multivariate Gaussian density with mean µ and covariance matrix
Σ; L(x|a, b) is a Laplace density with mean a and scale b [18].

2. PROBABILISTIC MODEL

State space models assume that a sequence of observable M -
dimensional data Y = (y1, . . . ,yN ) are generated from a latent
variable sequence of D-dimensional states X = (x1, . . . ,xN )
whose probabilistic dynamics are governed by a first-order Markov
chain. The joint probability for a state space model is

p(Y,X) = p(y1|x1)p(x1)
∏N

n=2p(yn|xn)p(xn|xn−1) , (1)

where p(yn|xn) is the emission probability, p(xn|xn−1) is the tran-
sition probability, and p(x1) is the initial state’s prior probability.

State space models can assume either linear or non-linear dy-
namics. For linear models, states are transformed over adjacent



times by D ×D system dynamics matrix A, and to the observable
space by M × D output matrix C. For non-linear models, states
are transformed over adjacent times by function h(xn) and to the
observable space by function g(xn).

The Laplace state space model assumes that univariate (M = 1)
observation yn is corrupted by zero-mean Laplace-distributed noise
with scale R, while state xn is corrupted by zero-mean Gaussian
noise with D ×D covariance matrix Q. Output vector c is 1 ×D.
The initial state hasD×1 mean m0 andD×D covariance P0. The
initial, transition, and emission probabilities for the linear model are,
respectively,

p(x1) = N (x1|m0,P0) , (2)
p(xn|xn−1) = N (xn|Axn−1,Q) , (3)
p(yn|xn) = L(yn|cxn, R) (4)

=
1

2R
exp

(
−|yn − cxn|

R

)
. (5)

The Laplace distribution’s variance is 2R2 [18]. The linear model is
addressed first, then extended to support non-linear dynamics.

3. PROPOSED METHOD

Filtering in state space models refers to inferring the marginal pos-
terior probability of state xn given every observation up to time n,

p(xn|y1:n) =
p(yn|xn)p(xn|y1:n−1)

p(yn|y1:n−1)
. (6)

This involves computing the predictive distribution p(xn|y1:n−1)
and the marginal likelihood p(yn|y1:n−1), then updating the pos-
terior p(xn|y1:n). For linear Gaussian state space models this is an
exact inference algorithm, called the Kalman filter [1, 2, 19]. How-
ever, for any model with non-Gaussian noise exact inference over all
times is not analytically tractable and thus requires approximations.

Remarkably, we can analytically derive the exact marginal pos-
terior for the Laplace state space model at time n per equation (6)
given that the posterior from time n− 1 is approximated by a Gaus-
sian p̃ with mean µn−1 and covariance Vn−1. Our exposition of the
proposed filter begins with the predictive distribution.

3.1. Predictive distribution

The predictive distribution is given by

p(xn|y1:n−1) =
∫
p(xn|xn−1)p̃(xn−1|y1:n−1)dxn−1

= N (xn|mn−1,Pn−1) , (7)

where the predictive mean and covariance matrix are, respectively,

mn−1 = Aµn−1 , (8)

Pn−1 = AVn−1A
T + Q . (9)

3.2. Marginal likelihood

The marginal likelihood is the normalizing factor in the denominator
of equation (6). It is found by integrating out xn from the joint dis-
tribution. Crucially, we can actually solve the integral analytically.
In doing so, we get the following closed-form expression.

p(yn|y1:n−1) =
∫
p(yn|xn)p(xn|y1:n−1)dxn

=
∫
L(yn|cxn, R)N (xn|mn−1,Pn−1)dxn

=
Φ

(−)
n + Φ

(+)
n

4R
exp

(
− ỹ2n

2Sn

)
, (10)

where the residual is ỹn = yn − ŷn and

ŷn = cmn−1 , (11)

Sn = cPn−1c
T , (12)

Φ(±)
n = erfcx

( √
Sn√
2R2

± ỹn√
2Sn

)
. (13)

The scaled complementary error function erfcx(x) = ex
2

erfc(x)
is available in many programming languages. It avoids underflow
or overflow errors associated with directly computing the product of
ex

2

and the complementary error function erfc(x) as defined in [20].
Observation yn has the following mean and covariance with re-

spect to the marginal likelihood p(yn|y1:n−1):

E [yn] = ŷn , (14)

cov[yn, yn] = Sn + 2R2. (15)

For the purpose of Bayesian model comparison, the model evidence
is approximately p(Y) ≈

∏N
n=1 p(yn|y1:n−1).

3.3. Marginal posterior

Substituting equations (5), (7), and (10) into (6) gives the marginal
posterior. Finally, state xn has the following mean and covariance
with respect to the marginal posterior p(xn|y1:n):

E [xn] = mn−1 + knδn , (16)

cov[xn,xn] = Pn−1 + knkT
n∆n , (17)

where we have defined

kn = Pn−1c
TR−1 , (18)

δn =
Φ

(−)
n − Φ

(+)
n

Φ
(−)
n + Φ

(+)
n

, (19)

∆n =
1

Φ
(−)
n + Φ

(+)
n

(
4Φ

(−)
n Φ

(+)
n

Φ
(−)
n + Φ

(+)
n

−
√

8R2

πSn

)
. (20)

Studying the behavior of δn and ∆n is helpful in understanding
how this model is robust to outliers and heavy-tailed noise. Figure 1
shows the values of δn and ∆n as functions of the residual, and for
different ratios of latent noise variance Pn−1 to observed noise scale
R. Since ∆n is proportional to R, the normalized value ∆nR

−1 is
shown. Both functions are symmetric about ỹn = 0, and non-linear.
The shape of δn and ∆n depends on c, Pn−1, and R, and generally
controls the model’s sensitivity to outliers.

The function δn is “S”-shaped, being approximately linear near
ỹn = 0, and being compressed to limits as the residual tends to pos-
itive or negative infinity. The function ∆n is bell-shaped for larger
variances (a loose model), and is approximately a box function for
variances close to zero (a tight model). As ỹn goes to +∞, δn = 1,
and ∆n = 0. As ỹn goes to −∞, δn = −1, and ∆n = 0. Consid-
ering equations (16) and (17), when the difference between the pre-
diction and the data is large (and thus tending the residual towards
positive or negative infinity), the expected latent state covariance re-
mains as the predicted value Pn−1, while the mean is mn−1 + kn

(when ỹn = +∞) or mn−1 − kn (when ỹn = −∞).
For the Kalman filter, δn is simply equal to the residual ỹn and

is thus a line with slope altered by the Kalman gain. Consequently,
outliers severely affect the Kalman filter because they pull the ex-
pected value of the state far from the prediction. Using the Laplace
observation density, there is a limit to an observation’s influence on
the state update (mn−1 ± kn).
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Fig. 1. Plots of δn and ∆nR
−1. The dotted, dashed, and solid lines correspond to Pn−1 = R/2, 2R, and 4R, respectively, and c = 1.

3.4. Moment matching

Now we turn to the problem of approximating the posterior with a
Gaussian density p̃ so that the filter can be implemented recursively.
To do so, we minimize the forward KL divergence [19, 21]

KL (p(xn|y1:n)‖p̃(xn|y1:n)) , (21)

where p̃(xn|y1:n) = N (xn|µn,Vn). The forward KL divergence
is minimized when the moments of p̃ match p. Therefore, we set the
mean and covariance of the Gaussian equal to the mean and covari-
ance of the posterior from equations (16) and (17):

µn = E [xn] , (22)
Vn = cov[xn,xn] . (23)

This completes the filter for time n. At time n + 1, the filter begins
again at the prediction step with equations (8) and (9).

4. NON-LINEAR MODEL

The proposed method elegantly extends to non-linear models. In
this case, a state is transformed by a non-linear function h(xn−1)
then output to the observable space by a non-linear function g(xn).
Adopting a local linearization approach similar to [22], we linearize
h(.) around the previous state estimate µn−1 and g(.) around the
predicted mean mn−1. Considering the results of the previous sec-
tion, the predicted state, predicted observation, system dynamics ma-
trix, and output matrix are approximated by, respectively,

mn−1 = h(µn−1) , ŷn = g(mn−1) , (24)

An =
dh

dxn−1

∣∣∣
µn−1

, cn =
dg

dxn

∣∣∣
mn−1

, (25)

where An and cn are Jacobian matrices. On the contrary, varia-
tional inference-based approaches are violated by this kind of local
linearization and require the monitoring of convergence or iterative
optimization of the variational lower bound [23].

5. RESULTS

Experiments were conducted to test the performance of the proposed
method at estimating linear and non-linear models. Performance was

evaluated according to the root mean square error (RMSE),

RMSE =
√

(E [xn]− xn)T(E [xn]− xn) , (26)

where xn is the true state and E [xn] is the state estimate. In all
experiments, the RMSE was averaged over 1000 Monte Carlo runs.

5.1. Linear system results

Signals generated from linear systems were used as observations for
experiments designed to gage the performance of the proposed fil-
ter and how it compares to existing filters: a Kalman Filter (KF), a
variational Bayes (VB)-based filter that represents the Laplace dis-
tribution as a Gaussian scale mixture (e.g. [10]), and a bootstrap
particle filter (PF) [24] that assumes Laplace noise. PF used 100
samples from the Laplace state space model and was approximately
100 times slower than the other methods. More samples would im-
prove the estimation quality but further increase computation time.

Each observation was generated according to first-order linear
state space dynamics. The true latent state xn was two-dimensional
(D = 2) and oscillated according to the system dynamics matrix

A =

[
cos(2πfT ) − sin(2πfT )
sin(2πfT ) cos(2πfT )

]
, (27)

where the frequency was randomly set in the range f ∈ [0, 4Fs
N

] Hz,
the sampling rate was Fs = 8 kHz, and the sampling period was
T = 1/Fs seconds. Elements of the output matrix were indepen-
dently sampled from a zero-mean unit-variance Gaussian distribu-
tion: cj ∼ N (0, 1), for j ∈ [1. . D]. The rows of the output matrix
were normalized such that |

∑
j cj | = 1. The latent noise covariance

matrix was diagonal Q = Iσ2 with variance σ2 = 10−4.
The first experiment involved observations that were corrupted

by Laplace-distributed noise with a variance of 10−2. Each method
inferred the latent state sequence using the correct model parame-
ters, but assumed an initial state prior covariance matrix of P0 = I.
Figure 2a shows how the RMSE evolved for each method. The pro-
posed filter quickly settled to the lowest RMSE value.

The second experiment involved signals with severe outliers.
The outliers were sampled randomly from a Gaussian distribution
with a variance of 1, spaced over time at an average rate of 1 in 10
samples. Otherwise, the signal had light Gaussian noise with a vari-
ance of 10−5. Each filter assumed that the observed noise variance
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Fig. 2. Linear filtering results given a signal with: (a) Laplace noise,
(b) Gaussian outliers, and (c) Gaussian noise of variance 1 for 20 ≤
n ≤ 30, and 10−4 otherwise.

was 10−4. Figure 2b shows the results. As expected, the Kalman
filter is severely affected by outliers. The three filters that assume
Laplace noise are more robust to the outliers. Specifically, the pro-
posed method consistently exhibited the lowest RMSE.

The third experiment was designed to evaluate each filter’s re-
action to a sudden and lasting increase in the observation noise vari-
ance. Observations were corrupted by Gaussian noise with variance
of 1 for 20 ≤ n ≤ 30, and 10−4 otherwise. Each filter was given
the correct system dynamics and observed noise variance equal to
10−4. RMSE plots for this experiment are shown in Figure 2c. The
RSME for the Kalman filter was lowest until n = 20, since it is the
optimal estimator for signals corrupted by Gaussian noise, but grew
rapidly at n = 20 (out of view) because the Kalman filter closely
followed the increased noise. The three filters that assumed Laplace
noise were only lightly affected by the period of increased noise.
VB was least affected because the auxiliary variable of the Gaussian
scale mixture distribution acts as a time-varying weight on R. The
proposed filter exhibited an RMSE close to the Kalman filter before
the period of increased noise, good performance during it, and the
lowest RMSE afterwards.

5.2. Non-linear system results

A non-linear filtering problem was given to the proposed method
and compared with the extended Kalman filter (EKF) [1]. The prob-
lem involved the estimation of a sinusoid’s instantaneous amplitude
an, frequency fn in Hz, and phase φn in radians according to the
sinusoidal model, which assumes that a univariate observation yn is
given by

φn = φn−1 + 2πTfn , (28)
yn = an sin(φn) + εn , (29)

where εn is Gaussian noise.
While there are different ways to design a non-linear state

space model for amplitude and frequency estimation [25], we used
linear latent dynamics and transformed the state through a non-
linear function to coincide with equations (28) and (29). State
xn =

[
φn, fn, an

]T evolved linearly according to h(.) and
was transformed by a non-linear function g(.) to generate the uni-
variate observation yn:

h(xn−1) =
[
φn−1 + 2πTfn−1, fn−1, an−1

]T
, (30)

g(xn) = an sin(φn). (31)
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Fig. 3. Non-linear filtering (tracking) of sinusoidal model parame-
ters given a signal with: (a) increased noise in the range 100 ≤ n ≤
200, and (b) outliers.

Observations were generated from the model with initial values set
to φ0 = 0, f0 = 300 Hz, and a0 = 1, and with latent noise variances
set to 10−9 for φn, 10−1 for fn, and 10−5 for an. Each filter inferred
the latent state sequence using the aforementioned model. VB was
excluded from this experiment because it did not reliably extend to
the non-linear model. PF with 100 particles tracked similarly to the
proposed method, but took around 100 times longer.

The first test involved data that was corrupted by Gaussian noise
with a variance of 10−3 for 100 ≤ n ≤ 200, and 0 otherwise.
RMSE plots in Figure 3a show that EKF failed to estimate the latent
state accurately during and after the noise. The frequency and ampli-
tude estimates did not return to reasonable estimates after the noise
had vanished. Conversely, the proposed filter was stable through the
period of increased noise. Afterwards, it returned to more accurate
tracking of the frequency and amplitude.

The second test involved outlier-ridden data. The outliers were
sampled randomly from a Gaussian distribution with a variance of
1, and were spaced over time at an average rate of 1 in 20 samples.
Otherwise, the signal had light Gaussian noise with a variance of
10−5. RMSE plots in Figure 3b show that the impulsive outliers
degraded the tracking accuracy of EKF. On the other hand, the pro-
posed method filtered the outliers well, exhibiting a low RMSE for
both frequency and amplitude estimations.

6. CONCLUSION

In this paper, we introduced a new Bayesian filter for state space
models with Laplace-distributed univariate time-series data. We de-
rived the exact posterior moments for a joint distribution composed
of a Laplace likelihood and a Gaussian prior. Then, we showed how
these moments can be propagated forward in time by a proxy Gaus-
sian density. Our approach led to a filtering algorithm that is simple
to implement for both linear and non-linear dynamical systems and
has the same low computational complexity as the Kalman filter. Its
estimation quality is better than the variational Bayes approach and
particle filter. We illustrated this quality through a variety of experi-
ments. Regarding future work, we will first extend the new filter so
that it supports multivariate Laplace-distributed observations. Then
we will devise a smoother for approximating the marginal poste-
rior given the entire data sequence, which will enable the automatic
learning of the Laplace state space model’s parameters.
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