CageR: From 3D Performance Capture to Cage-based Representation
Jean-Marc Thiery, Julien Tierny, Tamy Boubekeur

To cite this version:
Jean-Marc Thiery, Julien Tierny, Tamy Boubekeur. CageR: From 3D Performance Capture to Cage-based Representation. ACM SIGGRAPH 2012, Aug 2012, Los Angeles, United States. 10.1145/2343045.2343066. hal-02411892

HAL Id: hal-02411892
https://telecom-paris.hal.science/hal-02411892
Submitted on 27 Dec 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
CageR: From 3D Performance Capture to Cage-based Representation
Jean-Marc Thiery Julien Tierny Tamy Boubekeur
Telecom ParisTech – CNRS *

Keywords: cage coordinates, spectral, maxvol, GPU, linear algebra, reverse engineering

1 Introduction
Modern performance capture systems [de Aguiar et al. 2008] provide high resolution 3D mesh sequences which are becoming critical components for today’s special effects. Unfortunately, such raw sequences have a large memory footprint and are difficult to edit. We propose CageR, a framework based on spatial deformation with cages to construct automatically a compact and editable high level representation of these raw sequences, resulting in high compression factors and allowing easier post processing. In particular, we formulate an automatic cage fitting algorithm embedding a new relaxation strategy based on Maximum Volume and a new regularization method based on sub-spectral analysis. As a result, we use the CageR representation in various applications, including compression, motion transfer and shape space modeling.

2 Reverse Engineering
Given a mesh \(\mathcal{M} \) and a closed triangle cage mesh \(\mathcal{C} \), cage coordinate techniques, e.g. Mean Value Coordinates [Ju et al. 2005], allow to encode each vertex position \(p_i \) of \(\mathcal{M} \) w.r.t. vertex positions \(c_j \) of \(\mathcal{C} \) by: \(p_i = \sum \phi_j(t) \cdot c_j \), or \(\mathcal{M} = \Phi \cdot \mathcal{C} \). Given a set of poses \(\mathcal{M}^k \) of the model (i.e., typical performance capture output), we want to generate a set of cages \(\mathcal{C}^k \) such that \(\Phi \cdot \mathcal{C}^k \simeq \mathcal{M}^k \). The \(L^2 \)-projection of \(\mathcal{M}_k \) onto the space of admissible deformations is \(\mathcal{M}_k = \Phi \cdot \Phi^\dagger \mathcal{M}_k \), which involves the pseudo-inverse \(\Phi^\dagger \) of \(\Phi \). Unfortunately, as nowadays cage coordinate systems are unstable to inversion (large condition number of the system, from \(10^{10} \) to \(10^{10} \) in the results we present), the resulting cage has very large instabilities. This set of cages is not suited for compression or any other application, as the scheme becomes sensitive to numerical errors. To overcome this issue, we first propose to relax the system by taking only the minimum number of positions as constraints, i.e. the dimension of the problem. The selection of the so-called handles (green spheres in Fig. 2) is performed by looking for the maximum volume square submatrix \(\Phi_{\circ \circ} \) of \(\Phi \) (known as maxvol problem). We use the maxvol approximation model by Goreinov et al. [2010], for which we propose a GPU implementation. The inversion is first performed by computing the pseudo-inverse of \(\Phi_{\circ \circ} \). Then, we add a geometrical regularity term on the cage geometry (e.g. minimization of the cage Laplacian) on a sub-part of the spectrum of \(\Phi_{\circ \circ} \). This strategy automatically focuses the regularization on the cage vertices for which the inversion is the most unstable, leaving the other vertices unaffected. Then, the output cages evolve smoothly along the sequence and their initial shape features are preserved. Interestingly, our relaxation and our regularization strategies are highly compatible, as the use of MaxVol lowers cage instabilities and improves the spectral properties of the system to invert.

3 Results & Applications.
Some examples of CageR reconstructions are presented in Fig. 2. Many others are provided as additional material and in the accompanying video. Before applying any subsequent data compression scheme (e.g. wavelets), our representation already offers a high compression ratio (up to 97.76%), with high numerical stability. We implemented the iterative maxvol approximation algorithm on GPU with CUDA, to accelerate the pre-process. Beyond compression, CageR representations allow to transfer shape motion from captured model to synthetic ones (Fig. 2, bottom-left) and speed-up by several orders of magnitude complex geometry interpolation techniques (Fig. 2, bottom-right).

References

*Email: {thiery.tierny,boubekeur}@telecom-paristech.fr

Figure 1: CageR Processing Pipeline. From left to right: given a raw 3D+time sequence and an initial cage, we first extract an optimal subset of positional constraints for the cage coordinate inversion. Then, the cage coordinates are inverted for each frame of the input sequence. A selective enforcement of regularization terms is defined to affect the cage vertices where the inversion is the most unstable. The resulting smoothly varying cage sequence faithfully reconstructs the input sequence when applied to a single mesh frame.

Figure 2: Top: Results of our reverse engineering method on two performance capture data sets. Bottom-left: motion transfer. Bottom-right: interactive shape space modeling.