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ABSTRACT

We tackle the problem of audio-visual scene analysis for weakly-
labeled data. To this end, we build upon our previous audio-visual
representation learning framework to perform object classification
in noisy acoustic environments and integrate audio source enhance-
ment capability. This is made possible by a novel use of non-
negative matrix factorization for the audio modality. Our approach
is founded on the multiple instance learning paradigm. Its effective-
ness is established through experiments over a challenging dataset
of music instrument performance videos. We also show encourag-
ing visual object localization results.

Index Terms— Audio-visual event detection, source separa-
tion, non-negative matrix factorization, multiple instance learning

1. INTRODUCTION

Extracting information from audio-visual (AV) data about events,
objects, and scenes finds important application in several areas such
as video surveillance, multimedia indexing and robotics. Among
other tasks, automatic analysis of AV scenes entails: (i) identify-
ing events or objects, (ii) localizing them in space and time, and
(iii) extracting the audio source of interest from the background. In
our efforts to build a unified framework to deal with these challeng-
ing problems, we presented a first system tackling event identifica-
tion and AV localization in an arXiv technical report earlier [11.!
Continuing to build upon that study, in this paper we focus on mak-
ing event/object classification robust to noisy acoustic environments
and incorporating the ability to enhance or separate the object in the
audio modality.

There is a long history of works on supervised event detection
[2, 3, 4, 5]. However, scaling supervision to large video collections
and obtaining precise annotations for multiple tasks is both time
consuming and error prone [6, 7]. Hence, in our previous work [1]
we resort to training with weak labels i.e. global video-level object
labels without any timing information. Multiple instance learning
(MIL) is a well-known learning paradigm central to most studies
using weak supervision [8]. MIL is typically applied to cases where
labels are available over bags (sets of instances) instead of individ-
ual instances. The task then amounts to jointly selecting appropriate
instances and estimating classifier parameters. For applying this to
our case, let us begin by viewing a video as a labeled bag, containing
a collection of image regions (also referred to as image proposals)
and audio segments (also referred to as audio proposals) obtained
by chunking the audio temporally. While such a formulation yields
promising results using deep MIL [1, 9], its audio proposal design

Technical report [1] has not been published in any official proceedings.
It was only presented as an extended abstract at a CVPR 2018 workshop.
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has two limitations with respect to our goals: it is (i) prone to er-
roneous classification in noisy acoustic conditions and (ii) limited
to temporal localization of the audio event or object, thus does not
allow for time-frequency segmentation in order to extract the audio
source of interest. To address these, we propose to generate au-
dio proposals using non-negative matrix factorization (NMF) [10].
Note that the term proposal refers to image or audio “parts” that
may potentially contain the object of interest. For the audio modal-
ity these “parts” can be obtained through uniform chunking of the
signal, as we did previously, or more sophisticated methods.

NMF is a popular unsupervised audio decomposition method
that has been successfully utilized in various source separation sys-
tems [11] and as a front-end for audio event detection systems
[12, 13]. It factorizes an audio spectrogram into two nonnegative
matrices namely, so-called spectral patterns and their activations.
Such a part-based decomposition is analogous to breaking up an
image into constituent object regions. This motivates its use in our
system. It makes it possible not only to de-noise the audio, but
also to appropriately combine the parts for separation. An interest-
ing work which has appeared recently uses NMF basis vectors with
weak supervision from visual modality to perform audio source sep-
aration [14]. There are three key differences with our proposed ap-
proach: (i) The authors of that proposal use the NMF basis vectors
and not their activations for training the system. Hence no tem-
poral information is utilized. (ii) Unlike us, they perform a super-
vised dictionary construction step after training to decompose a test
signal (iii) Finally, they do not consider the task of visual localiza-
tion. Other recent approaches for deep learning based vision-guided
audio source separation methods utilize ground-truth source masks
for training [15, 16]. It is worth noting that our proposed enhance-
ment technique is significantly different as we do not use separated
ground truth sources at any stage and only rely on weak labels. This
makes the problem considerably more challenging.

Contributions. We show how a deep MIL framework can be
flexibly used to robustly perform several AV scene understanding
tasks using just weak labels. In particular, in addition to temporal
audio proposals as in our earlier study [1], we propose to use NMF
components as audio proposals for improved classification and to
allow source enhancement. We demonstrate the usefulness of such
an approach on a large dataset of unconstrained musical instrument
performance videos. As the data is noisy, we expect NMF decom-
position to provide additional, possibly “cleaner” information about
the source of interest. Moreover, scores assigned to each component
by the MIL module to indicate their relevance for classification can
be reliably used to enhance or separate multiple sources.

We begin with a discussion of various modules of the proposed
approach from proposal generation to classification in Sec. 2. This
is followed by qualitative and quantitative results on classification,
audio source enhancement and visual localization tasks in Sec. 3.
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Figure 1: Proposed approach: Given a video, we consider the depicted pipeline to go from audio and visual proposals to localization and
classification. For the visual modality box proposals are considered, while for audio temporal segments and/or NMF component proposals
are utilized. Weights for each module are either trained from scratch (in yellow), fine-tuned (in green) or frozen (in blue) during training.

2. PROPOSED APPROACH

The proposed approach is depicted in Fig. 1. We formulate the
problem within a deep MIL framework. Each video is considered
as a bag of visual and audio proposals. These proposals are fed to
their respective feature extraction and scoring networks. The scores
indicate relevance of each region or segment for a particular class.
Their aggregation, as depicted in Fig. 1, allows video-level classi-
fication. In the following section we discuss proposal generation,
feature extraction, scoring and training procedures in detail.

2.1. System Details

Visual Proposals. As our goal is to localize spatially and tempo-
rally the most discriminative image region pertaining to a class, we
choose to generate proposals over video frames sub-sampled at a
rate of 1 frame per second. Class-agnostic bounding-box proposals
are obtained using the well-known EdgeBoxes [17] algorithm. To
reduce the computational load and redundancy, the confidence score
generated by this method is used to select top Mimg proposals from
each sampled image. Hence, for a 10 sec. video, such a procedure
would generate a list of M = 10 X M;ng region proposals.

A fixed-length feature vector, T, (rm;V) € R is obtained
from each image region proposal, r,, in a video V, using a
convolutional neural network altered with a region-of-interest (Rol)
pooling layer. In practice, feature vectors @, (-) are passed through
two fully connected layers, which are fine-tuned during training.
Typically, standard CNN architectures pre-trained on ImageNet
[18] classification are used for the purpose of initializing network
weights (see Sec. 3 for implementation details).

Audio Proposals. We study two kinds of proposals:

1. Temporal Segment Proposals (TSP): Herein the audio
is simply decomposed into 7" temporal segments of equal
length, S = {s1,82,...,s7}. These proposals are ob-
tained by transforming the raw audio waveform into log-Mel
spectrogram and subsequently chunking it by sliding a fixed-
length window along the temporal axis. The dimensions of
this window are chosen to be compatible with base audio
network (see Sec. 3).

NMF Component Proposals (NCP): Using NMF we de-
compose audio magnitude spectrogram Q € ]RfXN consist-
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ing of F' frequency bins and N short-time Fourier transform
(STFT) frames, such that,

Q~ WH, (D

where W € RfXK and H € Rf *Nare interpreted as the
nonnegative audio spectral patterns and their temporal acti-
vation matrices respectively. Here K is the total number of
spectral patterns. To estimate W and H we minimize the
Kullback-Leibler (KL) divergence using multiplicative up-
date rules [10] where W and H are initialized randomly.
We now apply NMF-based Wiener filtering, as in [19], to
an audio recording to decompose it into K tracks (also re-
ferred to as NMF components) each obtained from Wy, Hy,
for k € [1, K], where W}, and Hy, denote spectral patterns
and activations corresponding to the k‘" component, respec-
tively. They can now be considered as proposals that may
or may not belong to the class of interest. Specifically, we
chunk each NMF component into temporal segments, which
we call NMF Component proposals or NCPs. We denote
the set of NCPs by D = {dy,}, where each element is
indexed by the component, k¥ € [1, K| and temporal seg-
ment ¢ € [1,T] number. As the same audio network is used
for both kinds of audio proposals, for each NMF component
or track we follow the TSP computation procedure. How-
ever, this is done with a non-overlapping window for reduc-
ing computational load.

Proposals generated by both the aforementioned methods are
passed through a VGG-style deep network known as vggish [20]
for base audio feature extraction. Hershey et al. introduced this
state-of-the-art audio feature extractor as an audio counterpart to
networks pre-trained on ImageNet for classification. vggish has
been pre-trained on a preliminary version of YouTube-8M [21] for
audio classification based on video tags. It generates a 128 dimen-
sional embedding @, (s¢; V') € R'?® for each input log-Mel spec-
trogram segment s; € R%*%? with 64 Mel-bands and 96 temporal
frames. We fine-tune all the layers of vggish during training.

Proposal Scoring and Fusion. Having obtained representa-
tions for each proposal in both the modalities, we now score them
with respect to classes using the two-stream architecture put forth
by Bilen ef al. [22]. This module consists of parallel classification
and localization streams. Generically denoting audio or visual pro-
posals by P and their [—dimensional input representations to the



scoring module by Z € RIPIX! the following sequence of opera-
tions is carried out: First, Z is passed through linear fully-connected
layers of both classification and localization streams (shown with
yellow in Fig. 1) giving transformed matrices A € RIPIXC and
B e RIPIXC, respectively. This is followed by a softmax operation
on B in the localization stream, written as:

Pl b
I ebee

This allows the localization layer to choose most relevant proposals
for each of the C' classes. Subsequently, the classification stream
output A is weighted by o(B) through element-wise multiplication:
E = A ® o(B) . Class scores over the video are obtained by
summing the resulting weighted scores in £ over all the proposals.

The same set of operations is carried out for both audio and
visual proposals. Before addition of global level scores from both
the modalities, they are />-normalized to ensure similar score range.

Classification Loss and Training.  Given a set of N train-
ing videos and labels, {(V (™, y™)}_, we solve a multi-label
classification problem. Here y € J = {—1, 41} with the class
presence denoted by +1 and absence by —1. To recall, for each
video V (™), the network takes as input a set of image regions R™M
along with audio TSP 8™, NCP D™ or both. After performing
the described operations on each modality separately, the #> normal-
ized scores are added and represented by ¢(V™);w) € RS, with
all network weights and biases denoted by w. Both sub-modules
are trained jointly using the multi-label hinge loss:

ebre
|

[0(B)]pe = » V(po) € (LIP)) x (1,C). ()

N C
L(w) = C'LN Z Z max (07 1-— yén)qﬁc(V("); 'w)) 3)

n=1ec=1

2.2. Source Enhancement

As noted earlier, a by-product of training with NCPs is the ability to
perform source enhancement. This can be done by aggregating the
NMEF component proposal relevance scores as follows:

e Denoting by S, the score for E*" component’s ¢t temporal

segment, we compute a global score for each component as
O = max POk t.
teT B,

Note that other temporal aggregation methods such as global
average or weighted rank pooling [23] may also be considered.
However, our preliminary experiments showed no significant
difference in the results while using any of these methods.

Then we apply min-max scaling between [0,1]. This allows
using the aggregated component scores as weights for masking.
, oy — min(a)

Qp = —— V., -
max () — min(a)

This is followed by soft mask based source and noise spec-
trogram reconstruction using complex-valued mixture spectro-
gram X. Note that we can optionally apply a hard thresh-
old 7 on aj, to choose the top ranked components for the
source. This amounts to replacing «j, by the indicator func-
tion 1[c), > 7] in the following reconstruction equations:

2 o, Wi Hj, > (1 — ap )WL H,
o WH ‘WH

Here S and N are the estimates of source of interest and of
background noise, respectively.

S X, N= X
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3. EXPERIMENTS

3.1. Setup

Dataset. We use Kinetics-Instruments (KI), a subset of the Ki-
netics dataset [24] that contains 10s Youtube videos from 15 music
instrument classes. From a total of 10,267 videos, we create train-
ing and testing sets that contain 9199 and 1023 videos, respectively.
For source enhancement evaluation, we handpicked 45 “clean” in-
strument recordings, 3 per class. Due to their unconstrained nature,
the audio recordings are mostly noisy, i.e. videos are either shot
with accompanying music/instruments or in acoustic environments
containing other background events. In that context, “clean” refers
to solo instrument samples with minimal amount of such noise.

Systems. Based on the configuration depicted in Fig. 1, we
propose to evaluate audio-only, A, and audio-visual (multimodal),
V + A, systems with different audio proposal types, namely:

e A (TSP): temporal segment proposals,
e A (NCP): NMF component proposals,

e A (TSP, NCP): all TSPs and NCPs are put together into the
same bag and fed to the audio network.

Systems using only TSP already give state-of-the-art results [1], and
serve as a strong baseline for establishing the usefulness of NCPs
in classification. For source enhancement we compare with the fol-
lowing NMF related methods:

e Supervised NMF [25]: We use the class labels to train sep-
arate dictionaries of size 100 for each music instrument with
stochastic mini-batch updates. At test time, depending on the
label, the mixture is projected onto the appropriate dictionary
for source reconstruction.

NMF Mel-Clustering [26]: This blind audio-only method re-
constructs source and noise signals by clustering mel-spectra
of NMF components. We take help of the example code pro-
vided online for implementation in MATLAB [27].

Implementation Details. All proposed systems are imple-
mented in Tensorflow. They were trained for 10 epochs using Adam
optimizer with a learning rate of 10~° and a batch size of 1. We use
the MATLAB implementation of EdgeBoxes for generating image
region proposals, obtaining approximately 100 regions per video
with M;mg = 10. Base visual features x,, € R216 are extracted
using caffenet with pre-trained ImageNet weights and 6 x 6 Rol
pooling layer modification [28]. The fully connected layers, namely
fce and fc7, are fine-tuned with 50% dropout.

For audio, each recording is resampled to 16 kHz before pro-
cessing. We use the official Tensorflow implementation of vggish
[29]. The whole audio network is fine-tuned during training. For
TSP generation we first compute log-Mel spectrum over the whole
file with a window size of 25ms and 10ms hop length. The resulting
spectrum is chunked into segment proposals using a 960ms window
with a 480ms stride. For log-Mel spectrum computation we use
the accompanying vggish code implementation. For a 10 second
recording, this yields 20 segments of size 96 x 64. For NCP, we
consider K = 20 components with KL divergence and multiplica-
tive updates. As stated in Sec. 2.1, each NMF component is passed
through the TSP computation pipeline with a non-overlapping win-
dow, giving a total of 200 (20 x 10) NCPs for a 10s audio recording.

Classification at Test Time: Kinetics-Instruments is a multi-
class dataset. Hence, we consider argmax s, of the score vector to
be the predicted class and report the overall accuracy



Source Enhancement Evaluation Protocol: We corrupt the
original audio with background noise corresponding to recordings
of environments such as bus, busy street, park, etc. using one au-
dio file per scene from the DCASE 2013 scene classification dataset
[30]. The system can be utilized in two modes: label known and la-
bel unknown. For the former, where the source of interest is known,
we simply use the proposal ranking given by the corresponding clas-
sifier for reconstruction. For the latter, the system’s classification
output is used to infer the source.

3.2. Classification Results

In Table 1 we show classification results on KI for all systems ex-
plained previously. For methods using NMF decomposition, the
accuracy is averaged over 5 runs to account for changes due to ran-
dom initialization. We observe that the accuracies are consistent
across runs i.e. the standard deviation does not exceed 0.5 for any
of the proposed systems.

System Accuracy (%)
(a)  V-only 63.0
(b)y A(TSP) 75.3
(c) A NCP) 71.1
(d) A (NCP, TSP) 76.7
(e ®+(@© 713
(f) V+A(TSP) 84.5
(gy V+A(NCP) 80.9
(h) V+ A (NCP, TSP) 84.6
» O+ 84.6

Table 1: Classification results on KI test set. Here, (e) adds the
scores of systems (b) and (c) at test time [resp. for (i)]

First, we note an evident increase in performance for all the AV
systems when contrasted with audio-only methods. Indeed, the im-
age sequence provides strong complementary information about an
instrument’s presence when audio is noisy. Also, observe that using
NCP in conjunction with TSP results in a noticeable improvement
for the audio-only systems. In comparison, this relative difference is
negligible for AV methods. A possible explanation is that NCPs are
expected to provide complementary information in noisy acoustic
conditions. Thus, their contribution in assisting TSP is visible for
audio-only classification. On the other hand, vision itself serves as
a strong supporting cue for classification, unaffected by noise in au-
dio and its presence limits the reliance on NCP. The accuracy drop
when using NCP alone is expected as whole audio segments could
often be easier to classify than individual components.

SNR (dB) V+A(TSP) V+ A (NCP, TSP)
5 78.7 79.3
0 73.9 75.6
-10 63.2 65.2
-20 58.7 59.2

Table 2: Classification accuracy on KI dataset for different levels of
noise in the test audio

To further test the usefulness of NCP, we corrupt the test
set audio with additional noise at different SNRs using samples
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Figure 2: Visual localization for different instruments (clockwise
from top left: accordion, bagpipes, trombone and saxophone) from
the test set. Max. scoring bounding box shown in green.

from DCASE 2013 scene classification data. Average classification
scores over this noisy test set are reported in Table 2. We observe a
clear improvement even for the AV system when used with NCPs.

3.3. Source Enhancement Results and Visual Localization

Following the testing protocol stated in Sec. 3.1, we report, in Ta-
ble 3, average Source to Distortion Ratio (SDR) [31] over 450 au-
dio mixtures created by mixing each of the 45 clean samples from
the dataset with 10 noisy audio scenes. The results look promising
but not state-of-the-art. This performance gap can be explained by
noting that the audio network is trained for the task of audio event
detection and thus does not yield optimal performance for source
enhancement. The network focuses on discriminative components,
failing to separate some source components from the noise by a
larger margin, possibly requiring manual thresholding for best re-
sults. Also, performance for the proposed systems does not degrade
when used in “Label Unknown” mode, indicating that despite in-
correct classification the system is able to cluster acoustically sim-
ilar sounds. Performance of supervised NMF seems to suffer due
to training on a noisy dataset. We present some visual localiza-
tion examples in Fig. 2. Examples and supplementary material are
available on our companion website.”

System Label Known  Label Unknown
Supervised NMF 2.32 -

NMF Mel-Clustering - 4.32

V + A (NCP), soft 3.29 3.29
V+ANCP), 7=0.1 3.77 3.85
V+A(NCP), 7=0.2 3.56 3.56

V + A (NCP, TSP), soft 2.11 2.15

Table 3: Average SDR over mixtures created by combining clean
instrument examples with environmental scenes.

4. CONCLUSION

We have presented a novel system for robust AV object extraction
under weak supervision. Unlike previous multimodal studies, we
only use weak labels for training. The central idea is to perform
MIL over a set of audio and visual proposals. In particular, we pro-
pose the use of NMF for generating audio proposals. Its advantage
for robust AV object classification in noisy acoustic conditions and
source enhancement capability is demonstrated over a large dataset
of musical instrument videos.

2http://bit.ly/2IV6XAs
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