
HAL Id: hal-02369435
https://telecom-paris.hal.science/hal-02369435v1

Submitted on 19 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional Isolation Forest
Guillaume Staerman, Pavlo Mozharovskyi, Stéphan Clémençon, Florence

d’Alché-Buc

To cite this version:
Guillaume Staerman, Pavlo Mozharovskyi, Stéphan Clémençon, Florence d’Alché-Buc. Functional
Isolation Forest. The 11th Asian Conference on Machine Learning 2019, Nov 2019, Nagoya, Japan.
�hal-02369435�

https://telecom-paris.hal.science/hal-02369435v1
https://hal.archives-ouvertes.fr


Proceedings of Machine Learning Research 101:332–347, 2019 ACML 2019

Functional Isolation Forest

Guillaume Staerman guillaume.staerman@telecom-paris.fr

Pavlo Mozharovskyi pavlo.mozharovskyi@telecom-paris.fr
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Florence d’Alché-Buc florence.dalche@telecom-paris.fr
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Abstract

For the purpose of monitoring the behavior of complex infrastructures (e.g. aircrafts,
transport or energy networks), high-rate sensors are deployed to capture multivariate data,
generally unlabeled, in quasi continuous-time to detect quickly the occurrence of anoma-
lies that may jeopardize the smooth operation of the system of interest. The statistical
analysis of such massive data of functional nature raises many challenging methodological
questions. The primary goal of this paper is to extend the popular Isolation Forest (IF)
approach to Anomaly Detection, originally dedicated to finite dimensional observations, to
functional data. The major difficulty lies in the wide variety of topological structures that
may equip a space of functions and the great variety of patterns that may characterize
abnormal curves. We address the issue of (randomly) splitting the functional space in
a flexible manner in order to isolate progressively any trajectory from the others, a key
ingredient to the efficiency of the algorithm. Beyond a detailed description of the algo-
rithm, computational complexity and stability issues are investigated at length. From the
scoring function measuring the degree of abnormality of an observation provided by the
proposed variant of the IF algorithm, a Functional Statistical Depth function is defined and
discussed, as well as a multivariate functional extension. Numerical experiments provide
strong empirical evidence of the accuracy of the extension proposed.

Keywords: Anomaly detection, functional data analysis, isolation forest, unsupervised
learning

1. Introduction

The digital information boom, that goes hand in hand with the recent technological ad-
vances in data collection and management (e.g. IoT, distributed platforms), offers new per-
spectives in many areas of human activity (e.g. transportation, energy, health, commerce,
insurance), and confronts these domains with major scientific challenges for exploiting these
observations. The ever growing availability of massive data, often collected in quasi-real
time, engendered high expectations, in particular the need of increased automation and
computational efficiency, with the goal to design more and more ‘intelligent’ systems. In
particular, modern high-rate sensors enabling the continuous observation of the behavior
of complex systems pave the way for the design of efficient unsupervised machine-learning
approaches to anomaly detection, that may find applications in various domains ranging
from fraud surveillance to distributed fleet monitoring through predictive maintenance or
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health monitoring of complex systems. However, although many unsupervised learning pro-
cedures for anomaly detection (AD in abbreviated form) have been proposed, analyzed and
applied in a variety of practical situations (see, e.g., Chandola et al. (2009)), the case of
functional data, though of crucial importance in practice (refer to Ramsay and Silverman
(2005); Ferraty and Vieu (2006) for an account of Functional Data Analysis) has received
much less attention in the literature, the vast majority of methods that are documented
in the literature being generally model-based. The main barrier to the design of nonpara-
metric anomaly detection techniques tailored to the functional framework lies in the huge
diversity of patterns that may carry the information that is relevant to discriminate between
abnormal and normal observations, see Hubert et al. (2015).

It seems indeed far from straightforward to extend machine-learning methods for anomaly
detection in the finite-dimensional case such as Scott and Nowak (2006); Schölkopf et al.
(2001); Steinwart et al. (2005); Vert and Vert (2006); Park et al. (2010), unless preliminary
filtering techniques are used. The filtering approach consists in projecting the functional
data onto an adequate finite dimensional function subspace and using then the coefficients
describing the latter to ”feed” next some AD algorithm for multivariate data (Ramsay and
Silverman, 2005). The basis functions are either selected through Principal Component
Analysis (they correspond in this case to elements of the Karhunen-Loeve basis related to
the process under study, supposedly of second order), or else are chosen among a dictionary
of ”time-frequency atoms” according to their capacity to represent efficiently the data. The
representation a priori chosen, which can either enhance artificially certain accessory pat-
terns or else make totally disappear some crucial features, critically determines performance
of such an approach, the type of anomalies that can be recovered being essentially shaped
by this choice.

The angle embraced in the present article is very different, the goal pursued being
to extend the popular Isolation Forest methodology (Liu et al., 2008, 2012) to the
functional setup. This ensemble learning algorithm builds a collection of isolation trees
based on a recursive and randomized tree-structured partitioning procedure. An isolation
tree is a binary tree, representing a nested collection of partitions of the finite dimensional
feature space, grown iteratively in a top-down fashion, where the cuts are axis perpendicular
and random (uniformly, w.r.t. the splitting direction and the splitting value both at the same
time). Incidentally, a variant referred to as Extended Isolation Forest (Hariri et al.,
2018), has recently been proposed in the purpose of bias reduction: rather than randomly
selecting a perpendicular split, a splitting direction is randomly chosen in the unit ball. An
anomaly score is assigned to any observation, depending on the length of the path necessary
to isolate it from the rest of the data points, the rationale behind this approach being that
anomalies should be easier to isolate in a random manner than normal (in the sense of ’non-
abnormal’) data. Beyond obvious advantages regarding computational cost, scalability (e.g.
isolation trees can be built from subsamples) and interpretability, the great flexibility offered
by Isolation Forest regarding the splitting procedure called recursively makes it appealing
when it comes to isolate (multivariate) functions/curves, possibly exhibiting a wide variety
of geometrical shapes. It is precisely the goal of this paper to introduce a new generic
algorithm, Functional Isolation Forest (FIF) that generalizes (Extended) Isolation
Forest to the infinite dimensional context. Avoiding dimensionality reduction steps, this
extension is shown to preserve the assets of the original algorithm concerning computational
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cost and interpretability. Its efficiency is supported by strong empirical evidence through a
variety of numerical results.

The paper is organized as follows. Section 2 recalls the principles under the Isolation
Forest algorithm for AD in the multivariate case and introduces the framework we consider
for AD based on functional data. In Section 3, the extension to the functional case is
presented and its properties are discussed at length. In Section 4, we study the behavior
of the new algorithm and compare its performance to alternative methods standing as
natural competitors in the functional setup through experiments. In Section 5, extension
to multivariate functional data is considered, as well as relation to the data depth function
and an application to the supervised classification setting. Eventually, several concluding
remarks are collected in Section 6.

2. Background and Preliminaries

Here we briefly recall the Isolation Forest algorithm and its advantages (Section 2.1) and
next introduce the framework for functional anomaly detection we consider throughout the
paper (Section 2.2).

2.1. Isolation Forest

As a first go, we describe the Isolation Forest algorithm for AD in the multivariate context
in a formalized manner for clarity’s sake, as well as the Extended Isolation Forest version,
see Liu et al. (2008, 2012) and Hariri et al. (2018) respectively. These two unsupervised
algorithms can be viewed as Ensemble Learning methods insofar as they build a collection
of binary trees and an anomaly scoring function based on the aggregation of the latter.
Let Sn = {x1, . . . , xn} be a training sample composed of n independent realizations of a
generic random variable, X, that takes its value in a finite dimensional Euclidian space, Rd
say, X = (X(1), . . . , X(d)).

An isolation tree (itree in abbreviated form) T of depth J ≥ 1 is a proper binary
tree that represents a nested sequence of partitions of the feature space Rd. The root
node corresponds to the whole space C0,0 = Rd, while any node of the tree, indexed by
the pair (j, k) where j denotes the depth of the node with 0 ≤ j < J and k, the node
index with 0 ≤ k ≤ 2j − 1, is associated to a subset Cj,k ⊂ Rd. A non terminal node
(j, k) has two children, corresponding to disjoint subsets Cj+1,2k and Cj+1,2k+1 such that
Cj,k = Cj+1,2k ∪ Cj+1,2k+1. A node (j, k) is said to be terminal if it has no children.

Each itree is obtained by recursively filtering a subsample of training data of size ψ in
a top-down fashion, by means of the following procedure. The dataset composed of the
training observations present at a node (j, k) is denoted by Sj,k. At iteration k + 2j of the
itree growing stage, a direction m in {1, . . . , d}, or equivalently a split variable X(m), is
selected uniformly at random (and independently from the previous draws) as well as a split
value κ in the interval [minx∈Sj,k x

(m), maxx∈Sj,k x
(m)] corresponding to the range of the

projections of the points in Sj,k onto the m-th axis. The children subsets are then defined by
Cj+1,2k = Cj,k∩{x ∈ Rd : x(m) ≤ κ} and Cj+1,2k+1 = Cj,k∩{x ∈ Rd : x(m) > κ}, the children
training datasets being defined as Sj+1,2k = Sj,k ∩ Cj+1,2k and Sj+1,2k+1 = Sj,k ∩ Cj+1,2k+1.

An itree T is thus built by iterating this procedure until all training data points are
isolated (or the depth limit J set by the user is attained). A preliminary subsampling stage
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can be performed in order to avoid swamping and masking effects, when the size of the
dataset is too large. When it isolates any training data point, the itree contains exactly
ψ − 1 internal nodes and ψ terminal nodes. An itree constructed accordingly to a training
subsample allows to assign to each training datapoint xi a path length hT (xi), namely the
depth at which it is isolated from the others, i.e. the number of edges xi traverses from the
root node to the terminal node that contains the sole training data xi. More generally, it
can be used to define an anomaly score for any point x ∈ Rd.

Anomaly Score prediction. As the terminal nodes of the itree T form a partition of
the feature space, one may then define the piecewise constant function hτ : Rd → N by:
∀x ∈ Rd,

hτ (x) = j if and only if x ∈ Cj,k and (j, k) is a terminal node.

This random path length is viewed as an indication for its degree of abnormality in a natural
manner: ideally, the more abnormal the point x, the higher the probability that the quantity
hτ (x) is small. Hence, the algorithm above can be repeated N ≥ 1 times in order to produce
a collection of itrees T1, . . . , TN , referred to as an i forest, that defines the scoring function

sn(x) = 2
− 1
Nc(ψ)

∑N
l=1 hτl (x)

, (1)

where c(ψ) is the average path length of unsuccessful searches in a binary search tree, see
Liu et al. (2008) for further details.

Extended Isolation Forest. Observing that the geometry of the abnormal regions of
the feature space is not necessarily well-described by perpendicular splits (i.e. by unions of
hypercubes of the cartesian product Rd), a more flexible variant of the procedure recalled
above has been proposed in Hariri et al. (2018), in the purpose of bias reduction. Rather
than selecting a direction in {1, . . . , d}, one may choose a direction u ∈ Sd−1, denoting by
Sd−1 the unit sphere of the euclidian space Rd. A node is then cut by choosing randomly
and uniformly a threshold value in the range of the projections onto this direction of the
training data points lying in the corresponding region. In the case where X’s ditribution
has a density f(x) w.r.t. a σ-finite measure λ of reference, the goal of anomaly detection
can be formulated as the recovery of sublevel sets {x ∈ Rd : f(x) ≥ q}, q ≥ 0, (under
mild assumptions, they are minimum volume sets or quantile regions, see Polonik (1997);
Scott and Nowak (2006), when measuring the volume by λ), which may be not accurately
approximated by unions of hyperrectangles (in the Gaussian situation for instance, such
regions are the complementary sets of ellipsöıds, λ being Lebesgue measure on Rd).

2.2. Functional Data Analysis and Anomaly Detection

A functional random variable X is a r.v. that takes its values in a space of functions,
see, e.g., Ferraty and Vieu (2006). To be more specific, let I ⊂ R+ be a time interval
and consider a r.v. taking its values in the Hilbert space L2(I) of real valued and square
integrable (w.r.t. Lebesgue measure) functions x : I → R:

X : Ω −→ L2(I)
ω 7−→ X(ω) = (Xt(ω))t∈I

.
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Without any loss of generality, we restrict ourselves with functions defined on [0, 1] through-
out the paper. In practice, only a finite dimensional marginal (Xt1 , . . . , Xtp), t1 < . . . < tp,
p ≥ 1 and (t1, . . . , tp) ∈ [0, 1]p can be observed. However, considering (Xt1 , . . . , Xtp) as
a discretized curve rather than a simple random vector of dimension p permits to take into
account the dependence structure between the measurements over time, especially when
the time points ti are not equispaced. To come back to a function from discrete values, in-
terpolation procedures or approximation schemes based on appropriate dictionaries can be
used, combined with a preliminary smoothing step when the observations are noisy. From
a statistical perspective, the analysis is based on a functional dataset Sn = {x1, . . . , xn}
composed of n ≥ 1 independent realizations of finite-dimensional marginals of the stochas-
tic process X, that may be very heterogeneous in the sense that these marginals may
correspond to different time points and be of different dimensionality. One may refer to
Ramsay and Silverman (2005)’s book for a deep view on Functional Data Analysis (FDA
in short). For simplicity, the functional data considered throughout the paper correspond
to the observations of independent realizations of X at the same points.

In this particular context, functional anomaly detection aims at detecting the curves
that significantly differ from the others among the dataset available. Given the richness
of spaces of functions, the major difficulty lies in the huge diversity in the nature of the
observed differences, which may not only depend on the locations of the curves. Following in
the footsteps of Hubert et al. (2015), one may distinguish between three types of anomalies:
shift (the observed curve has the same shape as the majority of the sample except that
it is shifted away), amplitude or shape anomalies. All these three types of anomalies can
be isolated/transient or persistent, depending on their duration with respect to that of the
observations. One may easily admit that certain types of anomalies are harder to detect
than others: for instance, an isolated anomaly in shape compared to an isolated anomaly
in amplitude (i.e. change point). Although FDA has been the subject of much attention in
recent years, very few generic and flexible methods tailored to functional anomaly detection
are documented in the machine-learning literature to the best of our knowledge, except for
specific types of anomalies (e.g. change-points).

In Statistics, although its applications are by no means restricted to AD, the concept of
functional depth that allows to define a notion of centrality in the path space and a center-
outward ordering of the curves of the functional dataset, see, e.g., Cuevas et al. (2007);
Claeskens et al. (2014); Hubert et al. (2015), has been used for this purpose. However, since
the vast majority of functional depth functions introduced only describe the relative location
properties of the sample curves, they generally fail to detect other types of anomalies.
Another popular approach, usually referred to as filtering, consists in bringing the AD
problem to the multivariate case by means of an adequate projection using Functional
Principal Component Analysis (FPCA) (Ramsay and Silverman, 2005) or a preliminary
selected basis of the function space considered (e.g. Fourier, wavelets) and apply next
an AD algorithm designed for the finite-dimensional setup to the resulting representation.
Such methods have obvious drawbacks. In FPCA, estimation of the Kahrunen-Loève basis
can be very challenging and lead to loose approximations, jeopardizing next the AD stage,
while the a priori representation offered by the ’atoms’ of a predefined basis or frame
may unsuccessfully capture the patterns carrying the relevant information to distinguish
abnormal curves from the others. Another approach is based on the notion of Minimum
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Volume sets (MV-sets in shortened version), originally introduced in Einmahl and Mason
(1992) and that generalizes the concept of quantile for multivariate distributions and offers
a nice nonparametric framework for anomaly detection in finite dimension, see Scott and
Nowak (2006)’s work. Given the fact that no analogue of Lebesgue measure on an infinite-
dimensional Banach space exists and since, considering a law λ of reference (e.g. the Wiener
or a Poisson measure) on the function space H of interest, the volume λ(C) of a measurable
subset C ⊂ H can be hardly computed in general, it is far from straightforward to extend
MV-set estimation to the functional setup.

The angle embraced in this paper is quite different. The direct approach we promote
here is free from any preliminary representation stage and can be straightforwardly applied
to a functional dataset. Precisely, in the subsequent section, we propose to extend the IF
algorithm to the functional data framework, in a very flexible way, so as to deal with a wide
variety of anomaly shapes.

3. Functional Isolation Forest

We consider the problem of learning a score function s : H → R that reflects the degree
of anomaly of elements in an infinite dimensional space H w.r.t. P . By H, we denote a
functional Hilbert space equipped with a scalar product 〈., .〉H such that any x ∈ H is a real
function defined on [0, 1]. In the following, we describe in detail the proposed Functional
Isolation Forest (FIF) algorithm and discuss its properties.

3.1. The FIF algorithm

A Functional Isolation Forest is a collection of Functional Isolation Trees (F-itrees) built
from S = {x1, . . . , xn}, a training sample composed of independent realizations of a func-
tional random variable, X, that takes its values in H. Given a functional observation x,
the score returned by FIF is a monotone transformation of the empirical mean of the path
lengths hτl(x) computed by the F-itrees Tl, for l = 1, . . . , N as defined in Eq. 1 in the
multivariate case. While the general construction principle depicted in Section 2.1 remains
the same for a F-itree, dealing with functional values raises the issue of finding an adequate
feature space to represent various properties of a function. A function may be considered
as abnormal according to various criteria of location and shape, and the features should
permit to measure such properties. Therefore four ingredients have been introduced to han-
dle functional data in a general and flexible way: (i) a set of candidate Split variables and
(ii) a scalar product both devoted to function representation, (iii) a probability distribution
to sample from this set and select a single Split variable, (iv) a probability distribution to
select a Split value. The entire construction procedure of a F-itree is described in Figure
1.

Function representation To define the set of candidate Split variables, a direct extension
of the original IF algorithm (Liu et al., 2008) would be to randomly draw an argument value
(e.g. time), and use functional evaluations at this point to split a node, but this boils down
to only rely on instantaneous observations of functional data to capture anomalies, which in
practice will be usually interpolated. Drawing a direction on a unit sphere as in Hariri et al.
(2018) is no longer possible due to the potentially excessive richness of H. To circumvent
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Input: A subsample {x1, . . . ,xψ}, a dictionary D, a probability measure ν and a scalar product
〈·, ·〉H.

(a) Initialization: The root node indexed by (0, 0) is associated with the whole input space
C0,0 = H. The construction starts with the training dataset S0,0 = {x1, . . . ,xψ} composed
of n i.i.d. realizations of the random variable X. Go to (b) with (j = 0, k = 0).

(b) Stopping criterion: Test if the node (j, k) is terminal: a node (j, k) is declared as
terminal if the intersection between the current set Cj,k and the current training set Sj,k
is reduced to a single data point or to a set of predefined cardinal. If the node is terminal,
then stop the construction for this node, otherwise go to (c).

(c) Children node construction: A non-terminal node (j, k) is split in three steps as
follows:

1. Choose a Split variable d according to the probability distribution ν on D.

2. Choose randomly and uniformly a Split value κ in the interval[
min

x∈Sj,k

〈x,d〉H, max
x∈Sj,k

〈x,d〉H
]
,

3. Form the children subsets

Cj+1,2k = Cj,k ∩ {x ∈ H : 〈x,d〉H ≤ κ},
Cj+1,2k+1 = Cj,k ∩ {x ∈ H : 〈x,d〉H > κ}.

as well as the children training datasets

Sj+1,2k = Sj,k ∩ Cj+1,2k and Sj+1,2k+1 = Sj,k ∩ Cj+1,2k+1.

(d) Recursion: Apply the building procedure starting from (a) to nodes (j + 1, 2k) and
(j + 1, 2k + 1)

Output: (C(0,0), C(1,1), . . .)

Figure 1: Construction procedure of a F-itree.

these difficulties, we propose to project the observations on elements of a dictionary D ⊂ H
that is chosen to be rich enough to explore different properties of data and well appropriate
to be sampled in a representative manner. More explicitly, given a function d ∈ D, the
projection of a function x ∈ H on D, 〈x,d〉H defines a feature that partially describes
x. When considering all the functions of dictionary D, one gets a set of candidate Split
variables that provides a rich representation of function X, depending on the nature of the
dictionary. Dictionaries have been throughly studied in the signal processing community to
achieve sparse coding of signals, see e.g. Mallat and Zhang (1993). They also provide a way
to incorporate a priori information about the nature of the data, a property very useful in
an industrial context in which functional data often come from the observation of a well
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known device and thus can benefit from expert knowledge.

Sampling a Split variable Once a dictionary is chosen, a probability distribution ν on
D is defined to draw a Split variable d. Note that the choice of the sampling distribution
ν gives an additional flexibility to orientate the algorithm towards the search for specific
properties of the functions.
Sampling a Split value Given a chosen Split variable d and a current training dataset
Sj,k, a Split value is uniformly drawn in the real interval defined by the smallest and largest
values of the projections on d when considering the observations present in the node.

Discussion on the dictionary The choice of a suited dictionary plays a key role in con-
struction of the FIF anomaly score. The dictionary can consist of deterministic functions,
incorporate stochastic elements, contain the observations from S, or be a mixture of several
mentioned options. In Computational Harmonic Analysis, a wide variety of bases or frames,
such as wavelets, ridgelets, cosine packets, brushlets and so on, have been developed in the
last decades in order to represent efficiently/parsimoniously functions, signals or images
exhibiting specific form of singularities (e.g. located at isolated points, along hyperplanes)
and may provide massive dictionaries. The following ones will be used throughout the ar-
ticle: mexican hat wavelet dictionary (MHW), Brownian motion dictionary (B), Brownian
bridge dictionary (BB), cosine dictionary (Cos), uniform indicator dictionary (UI), dyadic
indicator dictionary (DI), and the self-data dictionary (Self) containing the dataset itself.
See Section B and C of the Supplementary Materials for detailed definitions of these dic-
tionaries and further discussion on them, respectively.

Discussion on the scalar product Besides the dictionary, the scalar product defined
on H brings some additional flexibility to measure different type of anomaly. While L2

scalar product allows for detection of location anomalies, L2 scalar product of derivatives
(or slopes) would allow to detect anomalies regarding shape. This last type of anomalies can
be challenging; e.g. Hubert et al. (2015) mention that shape anomalies are more difficult to
detect, and Mosler and Mozharovskyi (2017) argue that one should consider both location
and slope simultaneously for distinguishing complex curves. Beyond these two, a wide
diversity of scalar products can be used, involving a variety of L2-scalar products related
to derivatives of certain orders, like in the definition of Banach spaces such as weighted
Sobolev spaces, see Maz’ya (2011).

3.2. Ability of FIF to detect a variety of anomalies

As discussed in Section 2.2, most of state-of-the-art methods have a focus on a certain type
of anomalies and are unable to detect various deviations from the normal behavior. The
flexibility of the FIF algorithm allows for choosing the scope of the detection by selecting
both the scalar product and the dictionary. Nevertheless, by choosing appropriate scalar
product and dictionary, FIF is able to detect a great diversity of deviations from normal
data. First, to account for both location and shape anomalies, we suggest the following
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scalar product that provides a compromise between the both

〈f ,g〉 := α× 〈f ,g〉L2

||f || ||g||
+ (1− α)× 〈f

′,g′〉L2

||f ′|| ||g′||
, α ∈ [0, 1] ,

and illustrate its use right below. Thus, setting α = 1 yields the classical L2 scalar product,
α = 0 corresponds to the L2 scalar product of derivative, and α = 0.5 is the Sobolev W1,2

scalar product. To illustrate the FIF’s ability to detect a wide variety of anomalies at a
time, we calculate the FIF anomaly scores with the Sobolev scalar product and the gaussian
wavelets dictionary for a sample consisting of 105 curves defined as follows (inspired by
Cuevas et al. (2007), see Fig. 2):

• 100 curves defined by x(t) = 30(1− t)qtq with q equispaced in [1, 1.4],

• 5 abnormal curves composed by one isolated anomaly x0(t) = 30(1− t)1.2t1.2 with a
jump in t = 0.7, one magnitude anomaly x1(t) = 30(1 − t)1.6t1.6 and three kind of
shape anomalies x2(t) = 30(1− t)1.2t1.2 + sin(2πt), x3(t) = 30(1− t)1.2t1.2 noised by
ε ∼ N (0, 0.32) on the interval [0.2, 0.8] and x4(t) = 30(1− t)1.2t1.2 + 1

2 sin(10πt).
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Figure 2: The simulated dataset with the five introduced anomalies (left). The scored
dataset (middle), the darker the color, the more the curves are considered anoma-
lies. The sorted anomaly score of the dataset (right).

One can see that the five anomalies, although very different, are all detected by FIF
with a significantly different score.

4. Numerical Results

In this section, we provide an empirical study of the proposed algorithm. First, in Sec-
tion 4.1 we explore the stability and consistency of the score function w.r.t. the probability
distribution of a r.v. X and the sample size. Furthermore, we examine the influence
of proposed dictionaries on the score function and bring performance comparisons with
benchmark methods. Second, in Section 4.2, we benchmark the performance of FIF on
several real labeled datasets by measuring its ability to recover an ”abnormal” class on the
test set. In all experiments, N the number of F-itrees is fixed to 100 and the height limit
is fixed to dlog2(ψ)e.
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4.1. Impact of the Hyperparameters on Stability

Since functional data are more complex than multivariate data, and the dictionary con-
stitutes an additional source of variance, a question of stability of the FIF anomaly score
estimates is of high interest. This issue is even more important because of the absence
of theoretical developments due to their challenging nature. The empirical study is con-
ducted on two simulated functional datasets presented in Fig. 3: Dataset (a) is the standard
Brownian motion being a classical stochastic process widely used in the literature. Dataset
(b) has been used by Claeskens et al. (2014) and has smooth paths. For each dataset, we
choose/add four observations for which the FIF anomaly score is computed after training:
a normal observation x0, two anomalies x1 and x2, and a more extreme anomaly x3. We
therefore expect the following ranking of the scores: sn(x0) < sn(x1) ≤ sn(x2) < sn(x3),
for both datasets.

Further, we provide an illustration of the empirical convergence of the score. All other
parameters being fixed, we increase the number of observations n when calculating the
scores of the four selected observations; the empirical median and the boxplots of the scores
computed over 100 random draws of the dataset are shown in Fig. 4. First, one observes
score convergence and variance decrease in n. Further, let us take a closer look at the score
tendencies on the example of x0 and x3. The score of x3 first increases (for dataset (a)) and
slightly decreases (for dataset (b)) with growing n until n reaches ψ = 64, which happens
because this abnormal observation is isolated quite fast (and thus has short path length) but
the c(ψ) in the denominator of the exponent of (1) increases in ψ. For n > 64, the score of x3

decreases in n since hi(x3) overestimates the real path length of x3 for subsamples in which
it is absent; frequency of such subsamples grows in n and equals, e.g., 0.872 for n = 500.
On the other hand, this phenomenon allows to unmask grouped anomalies as mentioned in
Liu et al. (2008). The behavior is reciprocal for the typical observation x0. Its FIF anomaly
score starts by decreasing in n since x0 tends to belong to the deepest branches of the trees
and is always selected while ψ < n. For larger n, the path length of x0 is underestimated
for subsamples where it is absent when growing the tree, which explains slight increase in
the score before it stabilizes. A second experiment illustrated in Fig. 5 is conducted to
measure the impact of various dictionaries shortly cited in Section 3 and more thoroughly
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Figure 3: Datasets (a) (left) and (b) (right) containing, respectively, 500 and 200 functional
paths with 4 selected observations.
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Figure 4: Boxplot (over 100 repetitions) of the FIF score for the observations x0,x1,x2,x3

for different sample sizes. The orange boxplots represent the dataset (a) while
the purple boxplots represent the dataset (b).

described in Section B of the Supplementary Materials; L2 scalar product is used. One
observes that the variance of the score seems to be mostly stable across dictionaries, for
both datasets. Thus, random dictionaries like uniform indicator (UI) or Brownian motion
(B) do not introduce additional variance into the FIF score. Since we know the expected
ranking of the scores, we can observe that FIF relying on the Self, UI, and dyadic indicator
(DI) dictionaries fail to make a strong difference between x0 and x1. Since x1 differs only
slightly in the amplitude from the general pattern, these dictionaries seem insufficient to
capture this fine dissimilarity: while Self and DI dictionaries simply do not contain enough
elements, UI dictionary is to simple to capture this difference (it shares this feature with
DI dictionary). For the scalar product L2 on derivatives (see Fig. 18 in the Supplementary
Materials), distinguishing anomalies for the Brownian motion becomes difficult since they
differ mainly in location, while for a sine function the scores resemble those with the usual
L2 scalar product. Thus, even though—as seen in Section 3.2—capturing different types
of anomalies is one of the general strengths of the FIF algorithm, the dictionary may still
have an impact on detection of functional anomalies in particular cases.

More experiments were run regarding the stability of the algorithm, but for sake of
space, we describe them in Section C of the Supplementary Materials.
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Figure 5: Boxplot (over 100 repetitions) of the FIF score for the observations x0,x1,x2,x3

for different dictionaries using the L2 scalar product. The orange boxplots rep-
resent the dataset (a) while the purple boxplots represent the dataset (b).

4.2. Real Data Benchmarking

To explore the performance of the proposed FIF algorithm, we conduct a comparative study
using 13 classification datasets from the UCR repository (Chen et al., 2015). We consider
the larger class as normal and some of others as anomalies (see Table 1 for details). When
classes are balanced, i.e for 9 datasets out of 13, we keep only part of the anomaly class
to reduce its size, always taking the same observations (at the beginning of the table) for a
fair comparison. Since the datasets are already split into train/test sets, we use the train
part (without labels) to build the FIF and compute the score on the test set. We assess
the performance of the algorithm by measuring an Area Under the Receiver Operation
Characteristic curve (AUC) on the test set. Both train and test sets are rarely used during
learning in unsupervised setting since labels are unavailable when fitting the model. Thus,
when fitting the models on unlabeled training data, good performances on the test set show
a good generalization power.
Competitors FIF is considered with two finite size dictionaries dyadic indicator, the self-
data and the infinite size dictionary cosines (with α = 1 and α = 0); its parameters are
set N = 100, ψ = min(256, n) and the height limit to = dlog2(ψ)e). We contrast the FIF
method with three most used multivariate anomaly detection techniques and two functional
depths, with default settings. The multivariate methods—isolation forest (IF) (Liu et al.,
2008), local outlier factor (LOF) (Breunig et al., 2000), and one-class support vector machine
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(OCSVM) (Schölkopf et al., 2001)— are employed after dimension reduction by Functional
PCA keeping 20 principal components with largest eigenvalues after a preliminary step of
filtering using Haar basis. The depths are the random projection halfspace depth (Cuevas
et al., 2007) and the functional Stahel-Donoho outlyingness (Hubert et al., 2015).
Analysis of the results Taking into account the complexity of the functional data, as
expected there is no method performing generally best. Nevertheless, FIF performs well
in most of the cases, giving best results for 10 datasets and second best for 6 datasets.
It is worth to mention that the dictionary plays an important role in identifying anoma-
lies, while FIF seems to be rather robust w.r.t. other parameters: The “CinECGTorso”
dataset contains anomalies differing in location shift which are captured by the cosine dic-
tionary. Dyadic indicator dictionary allows to detect local anomalies in “TwoLeadECG”
and “Yoga” datasets. Self-data dictionary seems suited for Datasets “SonyRobotAI2” and
“StarlightCurves” whose challenge is to cope with many different types of anomalies.

p training : na/ n testing : na/n normal lab anomaly lab
Chinatown 24 4 / 14 (29%) 95 / 345 2 1

Coffee 286 5 / 19 (26%) 6 / 19 1 0
ECGFiveDays 136 2 / 16 (12%) 53 / 481 1 2

ECG200 96 31 / 100 (31%) 36 / 100 1 -1
Handoutlines 2709 362 / 1000 (36 %) 133 / 370 1 0

SonyRobotAI1 70 6 / 20 (30 %) 343 / 601 2 1
SonyRobotAI2 65 4 / 20 (20 %) 365 / 953 2 1

StarLightCurves 1024 100 / 673 (15 %) 3482 / 8236 3 1 and 2
TwoLeadECG 82 2 / 14 (14 %) 570 / 1139 1 2

Yoga 426 10 / 173 ( 06 %) 1393 / 3000 2 1
EOGHorizontal 1250 10 / 40 (25 %) 30 / 61 5 6
CinECGTorso 1639 4 / 16 (25 %) 345 / 688 3 4

ECG5000 140 31 / 323 (10 %) 283 / 2910 1 3,4 and 5

Table 1: Datasets considered in performance comparison: n is the number of instances, na
is the number of anomalies. p is the number of discretization points.

Methods : DIL2 CosSob CosL2 SelfL2 IF LOF OCSVM fHDRP fSDO
Chinatown 0.93 0.82 0.74 0.77 0.69 0.68 0.70 0.76 0.98

Coffee 0.76 0.87 0.73 0.77 0.60 0.51 0.59 0.74 0.67
ECGFiveDays 0.78 0.75 0.81 0.56 0.81 0.89 0.90 0.60 0.81

ECG200 0.86 0.88 0.88 0.87 0.80 0.80 0.79 0.85 0.86
Handoutlines 0.73 0.76 0.73 0.72 0.68 0.61 0.71 0.73 0.76

SonyRobotAI1 0.89 0.80 0.85 0.83 0.79 0.69 0.74 0.83 0.94
SonyRobotAI2 0.77 0.75 0.79 0.92 0.86 0.78 0.80 0.86 0.81

StarLightCurves 0.82 0.81 0.76 0.86 0.76 0.72 0.77 0.77 0.85
TwoLeadECG 0.71 0.61 0.61 0.56 0.71 0.63 0.71 0.65 0.69

Yoga 0.62 0.54 0.60 0.58 0.57 0.52 0.59 0.55 0.55
EOGHorizontal 0.72 0.76 0.81 0.74 0.70 0.69 0.74 0.73 0.75
CinECGTorso 0.70 0.92 0.86 0.43 0.51 0.46 0.41 0.64 0.80

ECG5000 0.93 0.98 0.98 0.95 0.96 0.93 0.95 0.91 0.93

Table 2: AUC of different anomaly detection methods calculated on the test set. Bold
numbers correspond to the best result while italics to the second best.
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5. Extensions of FIF

Extension to multivariate functions FIF can be easily extended to the multivariate
functional data, i.e. when the quantity of interest lies in Rd for each moment of time. For
this, the coordinate-wise sum of the d corresponding scalar products is used to project the
data onto a chosen dictionary element: 〈f ,g〉H⊗d :=

∑d
i=1〈f (i), g(i)〉H. The dictionary is

then defined in (H([0, 1]))⊗d, e.g., by componentwise application of one or several univari-
ate dictionaries, see Section 3. In the Supplementary Materials we give an illustration of
multivariate functional anomaly detection on the MNIST (Lecun et al., 1998) dataset, each
digit being seen as a 2D-curve.
Connection to data depth Regarding FIF score as an anomaly ranking yields a connec-
tion to the notion of the statistical depth function (see Mosler (2013) for an overview), which
has been successfully applied in outlier detection (see, e.g., Hubert et al. (2015)). Statistical
data depth has been introduced as a measure of centrality (or depth) of an arbitrary obser-
vation x ∈ (H([0, 1]))⊗d with respect to the data at hand S. A data depth measure based on
FIF score can be defined for (multivariate) functional data as: DFIF (x;S) = 1− sn(x;S).
Data depth proves to be a useful tool for a low-dimensional data representation called depth-
based map. Using this property, Li et al. (2012) and Mosler and Mozharovskyi (2017) define
a DD-plot classifier which consists in applying a multivariate classifier to the depth-based
map. Low-dimensional representation is of particular interest for functional data and a
DD-plot classifier can be defined using the FIF-based data depth. Let Strn = S1 ∪ ... ∪ Sq
be a training set for supervised classification containing q classes, each subset Sj standing
for class j. The depth map is defined as follows:

x 7→ φ(x) =
(
DFIF (x;S1), ..., DFIF (x;Sq)

)
∈ [0, 1]q .

As an illustration, we apply the depth map to 3 digits (1, 5 and 7, 100 observations
per digit for training and 100 testing) of the MNIST dataset after their transformation to
two-variate functions using skimage python library (see Figure 6 ). One observes appealing
geometrical interpretation (observe, e.g., the location of the abnormally distant—from their
corresponding classes—observations) and a clear separation of the classes. To illustrate
separability, we apply linear multiclass (one-against-all) SVM in the depth space, which
delivers the accuracy of 99% on the test data.

6. Conclusion

The Functional Isolation Forest algorithm has been proposed, which is an extension of Isola-
tion Forest to functional data. The combined choice of the dictionary itself, the probability
distribution used to pick a Split variable and the scalar product used for the projection
enables FIF to exhibit a great flexibility in detecting anomalies for a variety of tasks. FIF
is extendable to multivariate functional data. When transformed in a data depth defini-
tion, FIF can be used for supervised classification via a low-dimensional representation—the
depth space. The open-source implementation of the method, along with all reproducing
scripts, can be accessed at https://github.com/Gstaerman/FIF.
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Figure 6: Depth space embedding of the three digits (1, 5 and 7) of the MNIST dataset.
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