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Abstract

Although Adam is a very popular algorithm for optimizing the weights of neural networks,
it has been recently shown that it can diverge even in simple convex optimization examples.
Several variants of Adam have been proposed to circumvent this convergence issue. In
this work, we study the Adam algorithm for smooth nonconvex optimization under a
boundedness assumption on the adaptive learning rate. The bound on the adaptive step size
depends on the Lipschitz constant of the gradient of the objective function and provides safe
theoretical adaptive step sizes. Under this boundedness assumption, we show a novel first
order convergence rate result in both deterministic and stochastic contexts. Furthermore,
we establish convergence rates of the function value sequence using the Kurdyka- Lojasiewicz
property.

Keywords: Nonconvex optimization, Adaptive gradient methods, Kurdyka- Lojasiewicz
inequality.

1. Introduction

Consider the unconstrained optimization problem minx∈Rd f(x), where f : Rd → R is a
differentiable map and d is an integer. Gradient descent is one of the most classical algorithms
to solve this problem. Since the seminal work Robbins and Monro (1951), its stochastic
counterpart became one of the most popular algorithms to solve machine learning problems
(see Bottou et al. (2018) for a recent survey). Recently, a class of algorithms called adaptive
algorithms which are variants of stochastic gradient descent became very popular in machine
learning applications (Duchi et al., 2011). Using a coordinate-wise step size computed
using past gradient information, the step size is adapted to the function to optimize and
does not follow a predetermined step size schedule. Among these adaptive algorithms,
Adam (Kingma and Ba, 2015) is very popular for optimizing the weights of neural networks.
However, recently, Reddi et al. (2018) exhibited a simple convex stochastic optimization
problem over a compact set where Adam fails to converge because of its short-term gradient
memory. Moreover, they proposed an algorithm called Amsgrad to fix the convergence
issue of Adam . This work opened the way to the emergence of other variants of Adam to
overcome its convergence issues (see Section 3 for a detailed review). In this work, under a
bounded step size assumption, we propose a theoretical analysis of Adam for nonconvex
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optimization.

Contributions.

• We establish a convergence rate for Adam in the deterministic case for nonconvex
optimization under a bounded step size. This algorithm can be seen as a deterministic
clipped version of Adam which guarantees safe theoretical step sizes. More precisely,
if n is the number of iterations of the algorithm, we show a O(1/n) convergence rate
of the minimum of the squared gradients norms by introducing a suitable Lyapunov
function.

• We show a similar convergence result for nonconvex stochastic optimization up to the
limit of the variance of stochastic gradients under an almost surely bounded step size.
In comparison to the literature, the hypothesis of the boundedness of the gradients is
relaxed and the convergence result is independent of the dimension d of the parameters.

• We propose a convergence rate analysis of the objective function of the algorithm
using the Kurdyka- Lojasiewicz (K L) property. To the best of our knowledge, this is
the first time such a result is established for an adaptive optimization algorithm.

The rest of the paper is organized as follows. Section 2 introduces the algorithm we
analyze. Section 3 considers some related works. Section 4 establishes first order convergence
rates in terms of the minimum of the gradients norms in both deterministic and stochastic
settings. Finally, Section 5 derives function value convergence rates under the K L property.
All the proofs are deferred to the Appendix in the supplementary material.

2. A Momentum Algorithm with Adaptive Step Size

Notations. All operations between vectors of Rd are to read coordinatewise. In particular,
for two vectors x, y in Rd and α ∈ Z, we denote by xy, x/y, xα the vectors on Rd whose k-th
coordinates are respectively given by xkyk, xk/yk, xαk . The vector of ones of Rd is denoted by
1. When a scalar is added to a vector, it is added to each one of its coordinates. Inequalities
are also to be read coordinatewise. If x ∈ Rd, x ≤ λ ∈ R means that each coordinate of x is
smaller than λ.

We investigate the following algorithm defined by two sequences (xn) and (pn) in Rd:{
xn+1 = xn − an+1pn+1

pn+1 = pn + b (∇f(xn)− pn)
(1)

where ∇f(x) is the gradient of f at point x, (an) is a sequence of vectors in Rd with positive
coordinates, b is a positive real constant and x0, p0 ∈ Rd.

Algorithm (1) includes the classical Heavy-ball method as a special case, but is much
more general. Indeed, we allow the sequence of step sizes (an) to be adaptive : an ∈ Rd may
depend on the past gradients gk := ∇f(xk) and the iterates xk for k ≤ n. We stress that the
step size an is a vector of Rd and that the product an+1pn+1 in (1) is read componentwise
(this is equivalent to the formulation with a diagonal matrix preconditioner applied to the
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Table 1: Some famous algorithms.
Algorithm Effective step size an+1 Momentum

SGD
(Robbins and Monro, 1951)

an+1 ≡ a b = 1
(no momentum)

Adagrad
(Duchi et al., 2011)

an+1 = a
(∑n

i=0 g
2
i

)−1/2
b = 1

Rmsprop
(Tieleman and Hinton, 2012)

an+1 = a
[
ε+

(
c
∑n

i=0(1− c)n−ig2
i

)1/2]−1
b = 1

Adam
(Kingma and Ba, 2015)

an+1 = a
[
ε+

(
c
∑n

i=0(1− c)n−ig2
i

)1/2]−1 0 ≤ b ≤ 1
(close to 0)

gradient (McMahan and Streeter, 2010; Gupta et al., 2017; Agarwal et al., 2019; Staib et al.,
2019)).

We present in Table 1 how to recover some of the famous algorithms with a vector step
size formulation. In particular, adam (Kingma and Ba, 2015) defined by the iterates :

xn+1 = xn − a
ε+
√
vn+1

pn+1

pn+1 = pn + b (∇f(xn)− pn)

vn+1 = vn + c (∇f(xn)2 − vn)

(2)

for constants a ∈ R+, b, c ∈ [0, 1], can be seen as an instance of this algorithm by setting
an = a

ε+
√
vn

where the vector vn, as defined above, is an exponential moving average of the

gradient squared. For simplification, we omit bias correction steps for pn+1 and vn+1. Their
effect vanishes quickly along the iterations.

We introduce the main assumption on the objective function which is standard in
gradient-based algorithms analysis.

Assumption 1 The mapping f : Rd → R is:
(i) continuously differentiable and its gradient ∇f is L−Lipschitz continuous,
(ii) bounded from below, i.e., infx∈Rd f(x) > −∞ .

3. Related Works

3.1. The Heavy-Ball Algorithm.

Adaptive algorithms as Heavy Ball. Thanks to its small per-iteration cost and its
acceleration properties (at least in the strongly convex case), the Heavy-ball method,
also called gradient descent with momentum, recently regained popularity in large-scale
optimization (Sutskever et al., 2013). This speeding up idea dates back to the sixties with
the seminal work of Polyak (1964). In order to tackle nonconvex optimization problems,
Ochs et al. (2014) proposed iPiano, a generalization of the well known heavy-ball in the form
of a forward-backward splitting algorithm with an inertial force for the sum of a smooth
possibly nonconvex and a convex function. In the particular case of the Heavy-ball method,
this algorithm writes for two sequences of reals (αn) and (βn):

xn+1 = xn − αn∇f(xn) + βn(xn − xn−1) . (3)

We remark that Algorithm (1) can be written in a similar fashion by choosing step
sizes αn = ban+1 and inertial parameters βn = (1 − b)an+1/an. Ochs et al. (2014) only
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consider the case where αn and βn are real-valued. Moreover, the latter does not consider
adaptive step sizes, i.e step sizes depending on past gradient information. We can show some
improvement with respect to Ochs et al. (2014) with weaker convergence conditions in terms
of the step size of the algorithm (see Appendix A.6) while allowing adaptive vector-valued
step sizes an (see Proposition 14).

It is shown in Ochs et al. (2014) that the sequence of function values converges and that
every limit point is a critical point of the objective function. Moreover, supposing that the
Lyapunov function has the K L property at a cluster point, they show the finite length of the
sequence of iterates and its global convergence to a critical point of the objective function.
Similar results are shown in Wu and Li (2019) for a more general version than iPiano (Ochs
et al., 2014) computing gradients at an extrapolated iterate like in Nesterov’s acceleration.

Convergence rate. Ochs et al. (2014) determines a O(1/n) convergence rate (where n is
the number of iterations of the algorithm) with respect to the proximal residual which boils
down to the gradient for noncomposite optimization. Furthermore, a recent work introduces
a generalization of the Heavy-ball method (and Nesterov’s acceleration) to constrained
convex optimization in Banach spaces and provides a non-asymptotic hamiltonian based
analysis with O(1/n) convergence rate (Diakonikolas and Jordan, 2019). In the same vein,
in Section 4, we establish a similar convergence result for an adaptive step size instead of a
fixed predetermined step size policy like in the Heavy-ball algorithm (see Theorem 2).

Convergence rates under the K L property. The K L property is a powerful tool to
analyze gradient-like methods. We elaborate on this property in Section 5. Assuming that the
objective function satisfies this geometric property, it is possible to derive convergence rates.
Indeed, some recent progress has been made to study convergence rates of the Heavy-ball
algorithm in the nonconvex setting. Ochs (2018) establishes local convergence rates for the
iterates and the function values sequences under the K L property. The convergence proof
follows a general method that is often used in non-convex optimization convergence theory.
This framework was used for gradient descent (Absil et al., 2005), for proximal gradient
descent (see Attouch and Bolte (2009) for an analysis with the  Lojasiewicz inequality) and
further generalized to a class of descent methods called gradient-like descent algorithms.

K L-based asymptotic convergence rates were established for constant Heavy-ball pa-
rameters (Ochs, 2018). Asymptotic convergence rates based on the K L property were also
shown (Johnstone and Moulin, 2017) for a general algorithm solving nonconvex nonsmooth
optimization problems called Multi-step Inertial Forward-Backward splitting (Liang et al.,
2016) which has iPiano and Heavy-ball methods as special cases. In this work, step sizes and
momentum parameter vary along the algorithm run and are not supposed constant. However,
specific values are chosen and consequently, their analysis does not encompass adaptive step
sizes i.e. stepsizes that can possibly depend on past gradient information. In the present
work, we establish similar convergence rates for methods such as adam under a bounded
step size assumption (see Theorem 10). We also mention Li et al. (2017) which analyzes the
accelerated proximal gradient method for nonconvex programming (APGnc) and establishes
convergence rates of the function value sequence by exploiting the K L property. This
algorithm is a descent method i.e. the function value sequence is shown to decrease over
time. In the present work, we analyze adaptive algorithms which are not descent methods.
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Note that even Heavy-ball is not a descent method. Hence, our analysis requires additional
treatments to exploit the K L property : we introduce a suitable Lyapunov function which
is not the objective function. We also point out the recent work Xie et al. (2019) which
analyzes the AdaGrad-Norm algorithm under the global Polyak- Lojasiewicz condition.
This condition is a particular case of the K L property (see Section 5).

Theoretical guarantees for Adam-like algorithms. The recent literature on adaptive
optimization algorithms is vast. For instance, for AdaGrad-like algorithms, several works
cover the nonconvex setting (Wu et al., 2018; Ward et al., 2019; Xie et al., 2019; Li and
Orabona, 2019). In the following, we almost exclusively focus on Adam-like algorithms
which are different because of the momentum. The first type of convergence results uses the
online optimization framework which controls the convergence rate of the average regret.
This framework was adopted for AmsGrad, AdamNC (Reddi et al., 2018), AdaBound and
AmsBound (Luo et al., 2019). In this setting, it is assumed that the feasible set containing
the iterates is bounded by adding a projection step to the algorithm if needed. We do not
make such an assumption in our analysis. (Reddi et al., 2018) establishes a regret bound in
the convex setting.

The second type of theoretical results is based on the control of the norm of the (stochastic)
gradients. We remark that some of these results depend on the dimension of the parameters.
Zhou et al. (2018) improves this dependency in comparison to Chen et al. (2019). The
convergence result in De et al. (2018) is established under quite specific values of an+1, bn
and ε. Zaheer et al. (2018) show a O(1/n) convergence rate for an increasing mini-batch
size. However, the proof is provided for RMSprop and seems difficult to adapt to Adam
which involves a momentum term. Indeed, unlike RMSProp, Adam does not admit the
objective function as a Lyapunov function.

We also remark that all the available theoretical results assume boundedness of the
(stochastic) gradients. We do not make such an assumption. Furthermore, we do not add
any decreasing 1/

√
n factor in front of the adaptive step size as it is considered in Reddi

et al. (2018); Luo et al. (2019) and Chen et al. (2019). Although constant hyperparameters
b and c are used in practice, theoretical results are often established for non constant bn
and cn (Reddi et al., 2018; Luo et al., 2019). We also mention that most of the theoretical
bounds depend on the dimension of the parameter (Reddi et al., 2018; Zhou et al., 2018;
Chen et al., 2018; Zou et al., 2019; Chen et al., 2019; Luo et al., 2019).

Other variants of Adam . Recently, several other algorithms were proposed in the litera-
ture to enhance Adam . Although these algorithms lack theoretical guarantees, they present
interesting ideas and show good practical performance. For instance, AdaShift (Zhou et al.,
2019) argues that the convergence issue of Adam is due to its unbalanced step sizes. To solve
this issue, they propose to use temporally shifted gradients to compute the second moment
estimate in order to decorrelate it from the first moment estimate. Nadam (Dozat, 2016)
incorporates Nesterov’s acceleration into Adam in order to improve its speed of convergence.
Moreover, originally motivated by variance reduction, QHAdam (Ma and Yarats, 2019)
replaces both Adam’s moment estimates by quasi-hyperbolic terms and recovers Adam ,
Rmsprop and Nadam as particular cases (modulo the bias correction). Guided by the same
variance reduction principle, Radam (Liu et al., 2019) estimates the variance of the effective
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step size of the algorithm and proposes a multiplicative variance correction to the update rule.

Step size bound. Perhaps, the closest idea to our algorithm is the recent AdaBound (Luo
et al., 2019) which considers a dynamic learning rate bound. Luo et al. (2019) show that
extremely small and large learning rates can cause convergence issues to adam and exhibit
empirical situations where such an issue shows up. Inspired by the gradient clipping strategy
proposed in Pascanu et al. (2013) to tackle the problem of vanishing and exploding gradients
in training recurrent neural networks (see Zhang et al. (2019) for recent progress), Luo et al.
(2019) apply clipping to the effective step size of the algorithm in order to circumvent step
size instability. More precisely, authors propose dynamic bounds on the learning rate of
adaptive methods such as Adam or AmsGrad to solve the problem of extreme learning
rates which can lead to poor performance. Initialized respectively at 0 and ∞, lower and
upper bounds both converge smoothly to a constant final step size following a predetermined
formula defined by the user. Consequently, the algorithm resembles an adaptive algorithm
in the first iterations and becomes progressively similar to a standard SGD algorithm. Our
approach is different : we propose a static bound on the adaptive learning rate which depends
on the Lipschitz constant of the objective function. This bound stems naturally from our
theoretical derivations.

4. First Order Convergence Rate

4.1. Deterministic setting

Let (Hn)n≥0 be a sequence defined for all n ∈ N by Hn := f(xn) + 1
2b〈an, p2

n〉 .
We further assume the following step size growth condition.

Assumption 2 There exists α > 0 s.t. an+1 ≤ an
α .

Note that this assumption is satisfied for adam with α =
√

1− c where c is the parameter
in (2). Unlike in AmsGrad (Reddi et al., 2018), the step size an is not necessarily
nonincreasing. Indeed, α can be strictly smaller than 1 in Assumption 2 as it is the case for
Adam .

We provide a proof of the following key lemma in Appendix A.2.

Lemma 1 Let Assumptions 1 and 2 hold true. Then, for all n ∈ N, for all u ∈ R+,

Hn+1 ≤ Hn − 〈an+1p
2
n+1, An+1〉 −

b

2
〈an+1(∇f(xn)− pn)2, B1〉 , (4)

where An+1 := 1− an+1L

2
− |b− (1− α)|

2u
− 1− α

2b
, and B := 1− |b− (1− α)|u

b
− (1− α) .

We now state one of the principal convergence results about Algorithm 1. In particular, we
establish a sublinear convergence rate for the minimum of the gradients norms until time n.

Theorem 2 Let Assumptions 1 and 2 hold true. Suppose that 1− α < b ≤ 1. Let ε > 0 s.t.

asup := 2
L

(
1− (b−(1−α))2

2bα − 1−α
2b − ε

)
is nonnegative. Let δ > 0 s.t. for all n ∈ N,

δ ≤ an+1 ≤ min
(
asup,

an
α

)
. (5)
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Then, the sequence (Hn) is nonincreasing and
∑

n ‖pn‖2 <∞. In particular, limxn+1−xn →
0 and lim∇f(xn)→ 0 as n→ +∞. Moreover, for all n ≥ 1,

min
0≤k≤n−1

‖∇f(xk)‖2 ≤
4

nb2

(
H0 − inf f

δε
+ ‖p0‖2

)
.

Sketch of the proof. The key element of the proof is Lemma 1 which is a descent lemma
on the function H. Indeed, the assumptions of the theorem guarantee that An+1 ≥ ε and
B ≥ 0. Then, the result stems from summing the inequalities of Lemma 1. The proof can
be found in Appendix A.4.

We provide some comments on this result.
Dimension dependence. Unlike most of the theoretical results for variants of Adam as
gathered in Appendix A.1, we remark that the bound does not depend on the dimension d
of the parameter xk.

Comparison to gradient descent. A similar result holds for deterministic gradient
descent (see Nesterov (2004, p.28)). If γ is a fix step size for gradient descent and there exist
δ > 0, ε > 0 s.t. γ > δ and 1− γL

2 > ε, then (see Appendix A.7) for all n ≥ 1:

min
0≤k≤n−1

‖∇f(xk)‖2 ≤
f(x0)− inf f

nγ(1− γL
2 )
≤ f(x0)− inf f

nδε
.

When p0 = 0 (this is the case for Adam ), the bound in Theorem 2 coincides with the
gradient descent bound, up to the constant 4/b2. We mention however that ε for Al-
gorithm (1) is defined by a slightly more restrictive condition than for gradient descent
: when b = 1, there is no momentum and asup = 1

L(1 − 2ε) < 2/L. Hence, under the
boundedness of the effective step size, the algorithm has a similar convergence guarantee to
gradient descent. Remark that the step size bound almost matches the classical 2/L upper-
bound on the step size of gradient descent (see for example Nesterov (2004, Theorem 2.1.14)).

Stepsize bound. Condition 5 should be seen as a clipping step of the algorithm. Indeed,
the lower bound on the effective stepsize has not to be verified a posteriori after running
the algorithm. Instead, a clipping of the learning rate would ensure that this boundedness
assumption holds. Furthermore, if we drop the lower bound assumption on the effective step
size an from Theorem 2, we still get the following result (see Theorem 14), for all n ≥ 1,

1

n

n−1∑
k=0

〈ak+1,∇f(xk)
2〉 ≤ 2(1 + α)

nb2α

(
H0 − inf f

ε
+ 〈a0, p

2
0〉
)
.

Influence of ε and δ. In the specific case of Adam, we obtain Lasup/2 + ε = 0.93 with
the recommended default parameters b = 0.1 and c = 0.001. Hence, we can choose ε of the
order of 0.1 without exceeding 0.93. In view of Equation (6), the smaller is ε and the larger
will be the stepsizes. However, a small ε deteriorates the bounds of Theorems 2 and 3. Once
b, c (and then α) are fixed, ε can be seen as a constant. The clipping parameter δ can also
be seen as constant once it is chosen.
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4.2. Stochastic setting

We establish a similar bound in the stochastic setting. Note that the control of the minimum
of the gradients norms is also standard in nonconvex stochastic optimization literature (see
for example Ghadimi and Lan (2013)). Let (Ξ,S) denote a measurable space and d ∈ N.
Consider the problem of finding a local minimizer of the expectation F (x) := E(f(x, ξ)) w.r.t.
x ∈ Rd, where f : Rd × Ξ → R is a measurable map and f( . , ξ) is a possibly nonconvex
function depending on some random variable ξ. The distribution of ξ is assumed to be
unknown, but revealed online by the observation of iid copies (ξn : n ≥ 1) of the r.v. ξ. For
a fixed value of ξ, the mapping x 7→ f(x, ξ) is supposed to be differentiable, and its gradient
w.r.t. x is denoted by ∇f(x, ξ). We study a stochastic version of Algorithm (1) by replacing
the deterministic gradient ∇f(xn) by ∇f(xn, ξn+1).

Theorem 3 Let Assumption 1 (for F ) and Assumption 2 hold true. Assume the following
bound on the variance in stochastic gradients: E‖∇f(x, ξ)−∇F (x)‖2 ≤ σ2 for all x ∈ Rd.
Suppose moreover that 1− α < b ≤ 1. Let ε > 0 s.t. āsup := 2

L

(
3
4 −

(b−(1−α))2

2bα − 1−α
2b − ε

)
is nonnegative. Let δ > 0 s.t. for all n ≥ 1, almost surely,

δ ≤ an+1 ≤ min
(
āsup,

an
α

)
. (6)

Then,

E[‖∇F (xτ )‖2] ≤ 4

nb2

(
H0 − inf f

δε
+ ‖p0‖2

)
+

4āsup

δεb2
σ2,

where xτ is an iterate uniformly randomly chosen from {x0, · · · , xn−1}.

Remark 4 We recover the deterministic bound of Theorem 2 when the gradients are noiseless
(σ = 0). The complete proof is deferred to Appendix A.5.

Before proceeding, a few remarks are in order.
SGD as a particular case. By setting b = 1 (no momentum) and an+1 = an for all n
which implies α = 1, we recover a known rate for nonconvex SGD (Ghadimi and Lan, 2013)
with a maximal stepsize here of āsup = 1

2L(1− 2ε) and note that the proof can be slightly
modified to make āsup as close as possible to 1/L. We highlight though that the Lyapunov
function H was especially tailored to handle a momentum algorithm and an analysis with f
as a Lyapunov function is largely satisfying for SGD.

RMSProp. In the particular case where there is no momentum in the algorithm (i.e.
RMSProp) and assuming that the gradients are bounded, a similar convergence rate is
obtained in Zaheer et al. (2018, Thm. 1) (see Appendix A.1). Furthermore, although we
assume boundedness of the step size by Condition (6), we do not suppose that a1 ≤ ε

2L (see
table in Appendix A.1). The latter assumption imposes a very small step size (ε = 10−8 in
Kingma and Ba (2015)) which may result in a slow convergence.

Stepsize lower bound. In the case of Adam (an = a
ε+
√
vn

), the uniform lower bound

an+1 ≥ δ prevents the exponential moving average vn of the squared gradients from exploding.
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This can be guaranteed on the fly by a clipping of an. If we drop the uniform lower bound
on the effective step size, we still obtain the following result (see Appendix. Theorem 15)

E

[
n−1∑
k=0

〈ak+1,∇f(xk, ξk+1)2〉
]
≤ 2(1 + α)

b2α

(
H0 − inf f

ε
+ 〈a0, p

2
0〉+

nāsupσ
2

ε

)
.

Influence of the momentum parameter. Note that ε depends on the momentum
parameter b and consequently the bound does not decrease with b. The influence of this
parameter is more complex.

5. Convergence Analysis under the K L Property

Historically introduced by the fundamental works of  Lojasiewicz (1963) and Kurdyka (1998),
the K L inequality is the key tool of our analysis. We refer to Bolte et al. (2010) for an
in-depth presentation of this property. The K L inequality is satisfied by a broad class of
functions including most nonsmooth deep neural networks. More precisely, as exposed
in Davis et al. (2019, Section 5.2, Corollary 5.11) and Castera et al. (2019, Section 2.2),
feedforward neural networks with arbitrary number of layers of arbitrary dimensions, with
activations such as sigmoid, ReLU, leaky ReLU, tanh, softplus (and many others), with a
loss function such as lp norm, hinge loss, logistic loss or cross entropy (and many others),
belong to this class of so-called definable functions in an o-minimal structure (Kurdyka, 1998;
Attouch et al., 2010; Davis et al., 2019). We refer the interested reader to Zeng et al. (2019,
Section 3, Section C) for general conditions for which K L inequality holds in the context of
deep neural networks training models. The class of definable functions is stable under all
the typical functional operations in optimization (e.g. sums, compositions, inf-projections)
and generalizes the class of semialgebraic functions including objective functions such as
‖ · ‖p for p rational, real polynomials, rank, etc. (see Bolte et al. (2014, Appendix)).

The K L inequality has been used to show the convergence of several first-order optimiza-
tion methods towards critical points (Attouch and Bolte, 2009; Attouch et al., 2010; Bolte
et al., 2014; Li et al., 2017). In this section, we use a methodology exposed in Bolte et al.
(2018, Appendix) to show convergence rates based on the K L property. Recently developed
in Bolte et al. (2014), this abstract convergence mechanism can be used for any descent
type algorithm. We modify it to encompass momentum methods. Note that although this
modification was initiated in Ochs et al. (2014); Ochs (2018), we use a different separable
Lyapunov function. The first part of the proof follows these approaches and the second part
follows the proof of Johnstone and Moulin (2017, Theorem 2).

Consider the function H : Rd × Rd → R defined for all z = (x, y) ∈ Rd × Rd by

H(z) = H(x, y) = f(x) +
1

2b
‖y‖2 . (7)

Notice that Hn = f(xn) + 1
2b〈an, p2

n〉 = H(xn, yn) where (yn)n∈N is defined for all n ∈ N by
yn =

√
anpn.

Notations and definitions. If (E, d) is a metric space, z ∈ E and A is a non-empty subset
of E, we use the notation d(z,A) := inf{d(z, z′) : z′ ∈ A} . The set of critical points of the
function H is defined by critH := {z ∈ R2d s.t.∇H(z) = 0} .
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Assumption 3 f is coercive, that is f(x)→ +∞ as ‖x‖ → +∞.
Assumption 3 will be particularly useful to ensure that the sequence of the iterates

(zk)k≥0 of Algorithm (1) is bounded. Indeed, a coercive function has compact level sets and
Lemma 1 will guarantee that the iterates lie in a level set of the function H.

We now introduce the limit point set of the sequence (zk)k≥0 and exhibit some of its
properties.

Definition 5 (Limit point set) The set of all limit points of (zk)k∈N initialized at z0 is
defined by

ω(z0) := {z̄ ∈ R2d : ∃ an increasing sequence of integers (kj)j∈N s.t zkj → z̄ as j →∞} .
Lemma 6 (Properties of the limit point set) Let (zk)k∈N be the sequence defined for
all k ∈ N by zk = (xk, yk) where yk =

√
akpk and (xk, pk) is generated by Algorithm (1) from

a starting point z0. Let Assumptions 1 to 3 hold true. Assume that Condition (5) holds.
Then,

(i) ω(z0) is a nonempty compact set.
(ii) ω(z0) ⊂ critH = critf × {0} .

(iii) lim
k→+∞

d(zk, ω(z0)) = 0.

(iv) H is finite and constant on ω(z0).

We introduce the K L inequality in the following. Define [α < H < β] := {z ∈ R2d : α <
H(z) < β} . Let η > 0 and define Φη as the set of continuous functions ϕ on [0, η) which are
also continuously differentiable on (0, η), concave and satisfy ϕ(0) = 0 and ϕ′ > 0.

Definition 7 (K L property, Bolte et al. (2018, Appendix)) A proper and lower
semicontinuous (l.s.c) function H : R2d → (−∞,+∞] has the K L property locally at
z̄ ∈ domH if there exist η > 0, ϕ ∈ Φη and a neighborhood U(z̄) s.t. for all z ∈ U(z̄) ∩
[H(z̄) < H < H(z̄) + η] :

ϕ′(H(z)−H(z̄)) ‖∇H(z)‖ ≥ 1 . (8)

When H(z̄) = 0, we can rewrite Equation (8) as : ‖∇(ϕ ◦ H)(z)‖ ≥ 1 for suitable z
points. This means that H becomes sharp under a reparameterization of its values through
the so-called desingularizing function ϕ.

The function H is said to be a K L function if it has the K L property at each point of
the domain of its gradient. Note that this property can be defined for nonsmooth functions
using the Clarke subdifferential in order to encompass nonsmooth neural networks. We limit
ourserlves to the simpler differentiable setting. K L inequality holds at any non critical point
(see Attouch et al. (2010, Remark 3.2 (b))). We introduce now a uniformized version of the
K L property which will be useful for our analysis.

Lemma 8 (Uniformized K L property, Bolte et al. (2014, Lemma 6, p 478)) Let
Ω be a compact set and let H : R2d → (−∞,+∞] be a proper l.s.c function. Assume that
H is constant on Ω and satisfies the K L property at each point of Ω. Then, there exist
ε > 0, η > 0 and ϕ ∈ Φη such that for all z̄ ∈ Ω, for all z ∈ {z ∈ Rd : d(z,Ω) < ε}∩ [H(z̄) <
H < H(z̄) + η], one has

ϕ′(H(z)−H(z̄))‖∇H(z)‖ ≥ 1 (9)
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Definition 9 (K L exponent) If ϕ can be chosen as ϕ(s) = c̄
θs
θ for some c̄ > 0 and

θ ∈ (0, 1] in Theorem 7, then we say that H has the K L property at z̄ with an exponent
of θ 1. We say that H is a K L function with an exponent θ if it has the same exponent θ at
any z̄.

In the particular case when θ = 1/2, we recover the Polyak- Lojasiewicz condition (see for
example Karimi et al. (2016)) satisfied for strongly convex functions. Furthermore, if H is
a proper closed semialgebraic function, then H is a K L function with a suitable exponent
θ ∈ (0, 1] . The slope of ϕ around the origin informs about the ”flatness” of a function
around a point. Hence, the K L exponent allows to obtain convergence rates. In the light of
this remark, we state one of the main results of this work.

Theorem 10 (Convergence rates) Let (zk)k∈N be the sequence defined for all k ∈ N by
zk = (xk, yk) where yk =

√
akpk and (xk, pk) is generated by Algorithm (1) from a starting

point z0. Let Assumptions 1 to 3 hold true. Assume that Condition (5) holds. Suppose
moreover that H is a K L function with K L exponent θ. Then, the sequence (H(zk))k∈N
converges to f(x∗) where x∗ is a critical point of f and the following convergence rates hold:

(i) If θ = 1, then f(xk) converges in a finite number of iterations.
(ii) If 1/2 ≤ θ < 1, then f(xk) converges to f(x∗) linearly i.e. there exist q ∈ (0, 1), C > 0

s.t. f(xk)− f(x∗) ≤ C qk .

(iii) If 0 < θ < 1/2 , then f(xk)− f(x∗) = O(k
1

2θ−1 ) .

The exact same rates hold for gradient descent by supposing that f (instead of H) is KL
with exponent θ. Assumption 2 and condition (5) are not needed in this case.

Sketch of the proof. The proof consists of two main steps. The first one is to show that
the iterates enter and stay in a region where the K L inequality holds. This is achieved using
the properties of the limit set (Lemma 6) and the uniformized K L property (Lemma 8).
Then, the second step is to exploit this inequality to derive the sought convergence results.
We defer the complete proof to Appendix B.3.

We introduce a lemma in order to make the K L assumption on the objective function f
instead of the function H.

Lemma 11 Let f be a continuously differentiable function satisfying the KL property at x̄
with an exponent of θ ∈ (0, 1/2]. Then the function H defined in Equation (7) has also the
K L property at (x̄, 0) with an exponent of θ .

The following result derives a convergence rate on the objective function values under a
K L assumption on this same function instead of an assumption on the Lyapunov function H.
The result is an immediate consequence of Lemma 11 and Theorem 10.

Corollary 12 Let (zk)k∈N be the sequence defined for all k ∈ N by zk = (xk, yk) where
yk =

√
akpk and (xk, pk) is generated by Algorithm (1) from a starting point z0. Let

Assumptions 1 to 3 hold true. Assume that Condition (5) holds. Suppose moreover that f is
a K L function with K L exponent θ ∈ (0, 1/2). Then, the sequence (H(zk))k∈N converges to

f(x∗) where x∗ is a critical point of f and f(xk)− f(x∗) = O(k
1

2θ−1 ) .

1. α := 1 − θ is also defined as the K L exponent in other papers (Li and Pong, 2018).
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Figure 1: Illustration of K L rates for a simple objective function f(x) = xp. From left to
right : (i) curves of f(x) = xp, (ii) clipped version of Adam (see Algorithm (1)),
(iii) Adam ,(iv) Gradient Descent. Best seen in color.

5.1. Toy problem : K L rates for f(x) = xp.

K L rates are asymptotic rates in the sense that the constants cannot be explicited in the
convergence rates. As a consequence, the rates can be hardly observable in practice from
experiments. However, we can still illustrate these convergence results (Theorem 10) in a
simple toy example to give more insight. Consider the problem of minimizing the function
f(x) = xp for a real p ∈ [1, 7]. One can easily show that f is a K L function with K L exponent
θ = 1

p . Note that the K L exponent is difficult to compute in general. This justifies the choice
of this toy problem. Moreover, even if the function f is indeed convex, we recall the reader
that the K L property is a local geometric property of the function that is only interesting at
its critical points (since it is automatically verified at any non critical point). Notice that
the K L analysis is valid in the general nonconvex case. The present toy example remains
relevant if we modify the objective function f to be nonconvex and still keep a xp shape in
a neighborhood of the point zero which is the unique critical point in this example.

The K L exponent as shown in the first plot in Figure 1 encodes information about the
flatness of the function f . Indeed, as p increases, the function f gets flatter around the
origin x = 0. We run the clipped version of Adam (see Algorithm 1), the Adam algorithm
and gradient descent on the functions f corresponding to different values of the exponent
θ, from the same initialization point x = 1. As expected from Theorem 10 for the clipped
Adam , we observe in Figure 1 that f(xk) converges linearly or even in a finite number of
iterations for p ∈ {1, 1.3, 1.5, 2}. Notice that the linear rate is clearly observable for p = 2
corresponding to θ = 1

2 . Even if we did not establish K L rates for original Adam , Figure 1
shows that it presents a very similar behavior to the clipped version of Adam in terms of
K L convergence rates in this simple problem. We also represent gradient descent iterates for
comparison. Note that K L rates are known to hold for gradient descent. Moreover, for p > 2,
we also observe a slower rate corresponding to the sublinear rate of the function values.

6. Conclusion

In this paper, we provided convergence rates for a clipped version of Adam which stems from
a boundedness assumption on the effective stepsize of the original Adam . More precisely,
similarly to gradient descent, we established a O(1/n) convergence rate of the minimum of
the squared gradient norms in the deterministic case. Furthermore, we showed a similar
convergence result in the stochastic setting up to the variance of the noisy gradients. Finally,
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we established function value convergence rates under the same boundedness assumption on
the effective stepsizes together with the K L geometric property. This property is a powerful
tool allowing to address nonconvex nonsmooth optimization and covers most deep neural
networks.
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J. Liang, J. Fadili, and G. Peyré. A multi-step inertial forward-backward splitting method
for non-convex optimization. In Advances in Neural Information Processing Systems,
pages 4035–4043, 2016.

L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han. On the variance of the
adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265, 2019.
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