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Abstract

We present the first accelerated randomized algorithm for solving linear systems
in Euclidean spaces. One essential problem of this type is the matrix inversion
problem. In particular, our algorithm can be specialized to invert positive definite
matrices in such a way that all iterates (approximate solutions) generated by the
algorithm are positive definite matrices themselves. This opens the way for many
applications in the field of optimization and machine learning. As an application of
our general theory, we develop the first accelerated (deterministic and stochastic)

quasi-Newton updates. Our updates lead to provably more aggressive approxima-
tions of the inverse Hessian, and lead to speed-ups over classical non-accelerated
rules in numerical experiments. Experiments with empirical risk minimization
show that our rules can accelerate training of machine learning models.

1 Introduction

Consider the optimization problem
min
w2Rn

f(w), (1)

and assume f is sufficiently smooth. A new wave of second order stochastic methods are being
developed with the aim of solving large scale optimization problems. In particular, many of these
new methods are based on stochastic BFGS updates [29, 35, 20, 21, 6, 8, 3]. Here we develop a new
stochastic accelerated BFGS update that can form the basis of new stochastic quasi-Newton methods.

Another approach to scaling up second order methods is to use randomized sketching to reduce the
dimension, and hence the complexity of the Hessian and the updates involving the Hessian [26, 38], or
subsampled Hessian matrices when the objective function is a sum of many loss functions [5, 2, 1, 37].

The starting point for developing second order methods is arguably Newton’s method, which performs
the iterative process

wk+1 = wk � (r2f(wk))
�1

rf(wk), (2)

⇤University of Edinburgh, Moscow Institute of Physics and Technology

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



where r2f(wk) and rf(wk) are the Hessian and gradient of f , respectively. However, it is inefficient
for solving large scale problems as it requires the computation of the Hessian and then solving a
linear system at each iteration. Several methods have been developed to address this issue, based on
the idea of approximating the exact update.

Quasi-Newton methods, in particular BFGS [4, 10, 11, 30], have been the leading optimization
algorithm in various fields since the late 60’s until the rise of big data, which brought a need for
simpler first order algorithms. It is well known that Nesterov’s acceleration [22] is a reliable way
to speed up first order methods. However until now, acceleration techniques have been applied
exclusively to speeding up gradient updates. In this paper we present an accelerated BFGS algorithm,
opening up new applications for acceleration. The acceleration in fact comes from an accelerated
algorithm for inverting the Hessian matrix.

To be more specific, recall that quasi-Newton rules aim to maintain an estimate of the inverse Hessian
Xk, adjusting it every iteration so that the inverse Hessian acts appropriately in a particular direction,
while enforcing symmetry:

Xk(rf(wk)�rf(wk�1)) = wk � wk�1, Xk = X>
k . (3)

A notable research direction is the development of stochastic quasi-Newton methods [15], where the
estimated inverse is equal to the true inverse over a subspace:

Xkr
2f(wk)Sk = Sk, Xk = X>

k , (4)
where Sk 2 Rn⇥⌧ is a randomly generated matrix.

In fact, (4) can be seen as the so called sketch-and-project iteration for inverting r
2f(wk). In this

paper we first develop the accelerated algorithm for inverting positive definite matrices. As a direct
application, our algorithm can be used as a primitive in quasi-Newton methods which results in a
novel accelerated (stochastic) quasi-Newton method of the type (4). In addition, our acceleration
technique can also be incorporated in the classical (non stochastic) BFGS method. This results in
the accelerated BFGS method. Whereas the matrix inversion contribution is accompanied by strong
theoretical justifications, this does not apply to the latter. Rather, we verify the effectiveness of this
new accelerated BFGS method through numerical experiments.

1.1 Sketch-and-project for linear systems

Our accelerated algorithm can be applied to more general tasks than only inverting matrices. In
its most general form, it can be seen as an accelerated version of a sketch-and-project method in
Euclidean spaces which we present now. Consider a linear system Ax = b such that b 2 Range (A).
One step of the sketch-and-project algorithm reads as:

xk+1 = argminx kxk � xk2B subject to S>
k Ax = S>

k b, (5)
where kxk2B = hBx, xi for some B � 0 and Sk is a random sketching matrix sampled i.i.d at each
iteration from a fixed distribution.

Randomized Kaczmarz [16, 33] was the first algorithm of this type. In [13], this sketch-and-project
algorithm was analyzed in its full generality. Note that the dual problem of (5) takes the form of a
quadratic minimization problem [14], and randomized methods such as coordinate descent [23, 36],
random pursuit [31, 32] or stochastic dual ascent [14] can thus also be captured as special instances
of this method. Richtárik and Takáč [28] adopt a new point of view through a theory of stochastic
reformulations of linear systems. In addition, they consider the addition of a relaxation parameter,
as well as mini-batch and accelerated variants. Acceleration was only achieved for the expected
iterates, and not in the L2 sense as we do here. We refer to Richtárik and Takáč [28] for interpretation
of sketch-and-project as stochastic gradient descent, stochastic Newton, stochastic proximal point
method, and stochastic fixed point method.

Gower [15] observed that the procedure (5) can also be applied to find the inverse of a matrix. Assume
the optimization variable itself is a matrix, x = X , b = I , the identity matrix, then sketch-and-
project converges (under mild assumptions) to a solution of AX = I . Even the symmetry constraint
X = X> can be incorporated into the sketch-and-project framework since it is a linear constraint.

There has been recent development in speeding up the sketch-and-project method using the idea of
Nesterov’s acceleration [22]. In [18] an accelerated Kaczmarz algorithm was presented for special
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sketches of rank one. Arbitrary sketches of rank one where considered in [31], block sketches in [24]
and recently, Tu and coathors [34] developed acceleration for special sketching matrices, assuming
the matrix A is square. This assumption, along with any assumptions on A, was later dropped
in [27]. Another notable way to accelerate the sketch-and-project algorithm is by using momentum
or stochastic momentum [19].

We build on recent work of Richtárik and Takáč [27] and further extend their analysis by studying
accelerated sketch-and-project in general Euclidean spaces. This allows us to deduce the result for
matrix inversion as a special case. However, there is one additional caveat that has to be considered
for the intended application in quasi-Newton methods: ideally, all iterates of the algorithm should be
symmetric positive definite matrices. This is not the case in general, but we address this problem by
constructing special sketch operators that preserve symmetry and positive definiteness.

2 Contributions

We now present our main contributions.

Accelerated Sketch and Project in Euclidean Spaces. We generalize the analysis of an accelerated
version of the sketch-and-project algorithm [27] to linear operator systems in Euclidean spaces. We
provide a self-contained convergence analysis, recovering the original results in a more general
setting.

Faster Algorithms for Matrix Inversion. We develop an accelerated algorithm for inverting positive
definite matrices. This algorithm can be seen as a special case of the accelerated sketch-and-project
in Euclidean space, thus its convergence follows from the main theorem. However, we also provide a
different formulation of the proof that is specialized to this setting. Similarly to [34], the performance
of the algorithm depends on two parameters µ and ⌫ that capture spectral properties of the input
matrix and the sketches that are used. Whilst for the non-accelerated sketch-and-project algorithm
for matrix inversion [15] the knowledge of these parameters is not necessary, they need to be given
as input to the accelerated scheme. When employed with the correct choice of parameters, the
accelerated algorithm is always faster than the non-accelerated one. We also provide a theoretical
rate for sub-optimal parameters µ, ⌫, and we perform numerical experiments to argue the choice of
µ, ⌫ in practice.

Randomized Accelerated Quasi-Newton. The proposed iterative algorithm for matrix inversion is
designed in such a way that each iterate is a symmetric matrix. This means, we can use the generated
approximate solutions as estimators for the inverse Hessian in quasi-Newton methods, which is a
direct extension of stochastic quasi-Newton methods. To the best of our knowledge, this yields the
first accelerated (stochastic) quasi-Newton method.

Accelerated Quasi-Newton. In the standard BFGS method the updates to the Hessian estimate
are not chosen randomly, but deterministically. Based on the intuition gained from the accelerated
random method, we propose an accelerated scheme for BFGS. The main idea is that we replace the
random sketching of the Hessian with a deterministic update. The theoretical convergence rates do
not transfer to this scheme, but we demonstrate by numerical experiments that it is possible to choose
a parameter combination which yields a slightly faster convergence. We believe that the novel idea
of accelerating BFGS update is extremely valuable, as until now, acceleration techniques were only
considered to improve gradient updates.

2.1 Outline

Our accelerated sketch-and-project algorithm for solving linear systems in Euclidean spaces is
developed and analyzed in Section 3, and is used later in Section 4 to analyze an accelerated sketch-
and-project algorithm for matrix inversion. The accelerated sketch-and-project algorithm for matrix
inversion is then used to accelerate the BFGS update, which in turn leads to the development of an
accelerated BFGS optimization method. Lastly in Section 5, we perform numerical experiments to
gain different insights into the newly developed methods. Proofs of all results and additional insights
can be found in the appendix.
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3 Accelerated Stochastic Algorithm for Matrix Inversion

In this section we propose an accelerated randomized algorithm to solve linear systems in Euclidean
spaces. This is a very general problem class which comprises the matrix inversion problem as well.
Thus, we will use the result of this section later to analyze our newly proposed matrix inversion
algorithm, which we then use to estimate the inverse of the Hessian within a quasi-Newton method.2

Let X and Y be finite dimensional Euclidean spaces and let A : X 7! Y be a linear operator. Let
L(X ,Y) denote the space of linear operators that map from X to Y. Consider the linear system

Ax = b, (6)

where x 2 X and b 2 Range (A) . Consequently there exists a solution to the equation (6). In
particular, we aim to find the solution closest to a given initial point x0 2 X :

x⇤ def
= argmin

x2X
1
2kx� x0k

2 subject to Ax = b. (7)

Using the pseudoinverse and Lemma 22 item vi, the solution to (7) is given by

x⇤ = x0 �A
†(Ax0 � b) 2 x0 +Range (A⇤) , (8)

where A† and A⇤ denote the pseudoinverse and the adjoint of A, respectively.

3.1 The algorithm

Let Z be a Euclidean space and consider a random linear operator Sk 2 L(Y,Z) chosen from some
distribution D over L(Y,Z) at iteration k. Our method is given in Algorithm 1, where Zk 2 L(X ) is
a random linear operator given by the following compositions

Zk = Z(Sk)
def
= A

⇤
S
⇤
k(SkAA

⇤
S
⇤
k)

†
SkA. (9)

The updates of variables gk and xk+1 on lines 8 and 9, respectively, correspond to what is known as
the sketch-and-project update:

xk+1 = argmin
x2X

1
2kx� ykk

2 subject to SkAx = Skb, (10)

which can also be written as the following operation

xk+1 � x⇤ = (I � Zk)(yk � x⇤). (11)

This follows from the fact that b 2 Range (A), together with item i of Lemma 22. Furthermore,
note that the adjoint A⇤ and the pseudoinverse in Algorithm 1 are taken with respect to the norm
in (7).

Algorithm 1 Accelerated Sketch-and-Project for solving (10) [27]
1: Parameters: µ, ⌫ > 0, D = distribution over random linear operators.
2: Choose x0 2 X and set v0 = x0, � = 1�

pµ
⌫ , � =

q
1
µ⌫ , ↵ = 1

1+�⌫ .

3: for k = 0, 1, . . . do
4: yk = ↵vk + (1� ↵)xk

5: Sample an independent copy Sk ⇠ D

6: gk = A
⇤
S
⇤
k(SkAA

⇤
S
⇤
k)

†
Sk(Ayk � b) = Zk(yk � x⇤)

7: xk+1 = yk � gk
8: vk+1 = �vk + (1� �)yk � �gk
9: end for

Algorithm 1 was first proposed and analyzed by Richtárik and Takáč [27] for the special case when
X = Rn and Y = Rm. Our contribution here is in extending the algorithm and analysis to the more
abstract setting of Euclidean spaces. In addition, we provide some further extensions of this method
in Sections D and E, allowing for a non-unit stepsize and variable ↵, respectively.

2Quasi-Newton methods do not compute an exact matrix inverse, rather, they only compute an incremental
update. Thus, it suffices to apply one step of our proposed scheme per iteration. This will be detailed in Section 4.
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3.2 Key assumptions and quantities

Denote Z = Z(S) for S ⇠ D. Assume that the exactness property holds
Null (A) = Null (E [Z]) ; (12)

this is also equivalent to Range (A⇤) = Range (E [Z]). The exactness assumption is of key
importance in the sketch-and-project framework, and indeed it is not very strong. For example, it
holds for the matrix inversion problem with every sketching strategy we consider. We further assume
that A 6= 0 and E [Z] is finite. First we collect a few observation on the Z operator
Lemma 1. The Z operator (9) is a self-adjoint positive projection. Consequently E [Z] is a self-

adjoint positive operator.

The two parameters that govern the acceleration are

µ
def
= inf

x2Range(A⇤)

hE[Z]x,xi
hx,xi , ⌫

def
= sup

x2Range(A⇤)

hE[ZE[Z]†Z]x,xi
hE[Z]x,xi . (13)

The supremum in the definition of ⌫ is well defined due to the exactness assumption together with
A 6= 0.

Lemma 2. We have

1  ⌫ 
1
µ = kE [Z]†k. (14)

Moreover, if Range (A⇤) = X , we have

Rank(A⇤)
E[Rank(Z)]  ⌫. (15)

3.3 Convergence and change of the norm

For a positive self-adjoint G 2 L(X ) and x 2 X let kxkG
def
=

p
hx, xiG

def
=

p
hGx, xi. We now

informally state the convergence rate of Algorithm 1. Theorem 3 generalizes the main theorem from
[27] to linear systems in Euclidean spaces.
Theorem 3. Let xk, vk be the random iterates of Algorithm 1. Then

E
h
kvk � x⇤k

2
E[Z]†

+ 1
µkxk � x⇤k

2
i


⇣
1�

q
µ
⌫

⌘k

E
h
kv0 � x⇤k

2
E[Z]†

+ 1
µkx0 � x⇤k

2
i
.

This theorem shows the accelerated Sketch-and-Project algorithm converges linearly with a rate of�
1 �

pµ
⌫

�
, which translates to a total of O(

p
⌫/µ log (1/✏)) iterations to bring the given error in

Theorem 3 below ✏ > 0. This is in contrast with the non-accelerated Sketch-and-Project algorithm
which requires O((1/µ) log (1/✏)) iterations, as shown in [13] for solving linear systems. From (14),
we have the bounds 1/pµ 

p
⌫/µ  1/µ. On one extreme, this inequality shows that the iteration

complexity of the accelerated algorithm is at least as good as its non-accelerated counterpart. On the
other extreme, the accelerated algorithm might require as little as the square root of the number of
iterations of its non-accelerated counterpart. Since the cost of a single iteration of the accelerated
algorithm is of the same order as the non-accelerated algorithm, this theorem shows that acceleration
can offer a significant speed-up, which is verified numerically in Section 5. It is also possible to get
the convergence rate of accelerated sketch-and-project where projections are taken with respect to a
different weighted norm. For technical details, see Section B.4 of the Appendix.

3.4 Coordinate sketches with convenient probabilities

Let us consider a simple example in the setting for Algorithm 1 where we can understand parameters
µ, ⌫. In particular, consider a linear system Ax = b in Rn where A is symmetric positive definite.
Corollary 4. Choose B = A and S = ei with probability proportional to Ai,i. Then

µ = �min(A)
Tr(A) =: µP

and ⌫ = Tr(A)
mini Ai,i

=: ⌫P (16)

and therefore the convergence rate given in Theorem 3 for the accelerated algorithm is

✓
1�

q
µ
⌫

◆k

=

✓
1�

p
�min(A)mini Ai,i

Tr(A)

◆k

. (17)
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Rate (17) of our accelerated method is to be contrasted with the rate of the non-accelerated method:
(1 � µ)k = (1 � �min(A)/Tr (A)))k. Clearly, we gain from acceleration if the smallest diagonal
element of A is significantly larger than the smallest eigenvalue.

In fact, parameters µP , ⌫P above are the correct choice for the matrix inversion algorithm, when
symmetry is not enforced, as we shall see later. Unfortunately, we are not able to estimate the
parameters while enforcing symmetry for different sketching strategies. We dedicate a section in
numerical experiments to test, if the parameter selection (16) performs well under enforced symmetry
and different sketching strategies, and also how one might safely choose µ, ⌫ in practice.

4 Accelerated Stochastic BFGS Update

The update of the inverse Hessian used in quasi-Newton methods (e.g., in BFGS) can be seen as
a sketch-and-project update applied to the linear system AX = I , while X = X> is enforced,
and where A denotes and approximation of the Hessian. In this section, we present an accelerated
version of these updates. We provide two different proofs: one based on Theorem 3 and one based on
vectorization. By mimicking the updates of the accelerated stochastic BFGS method for inverting
matrices, we determine a heuristic for accelerating the classic deterministic BFGS update. We then
incorporate this acceleration into the classic BFGS optimization method and show that the resulting
algorithm can offer a speed-up of the standard BFGS algorithm.

4.1 Accelerated matrix inversion

Consider the symmetric positive definite matrix A 2 Rn⇥n and the following projection problem
A�1 = argmin

X
kXk

2
F (A) subject to AX = I, X = X>, (18)

where kXkF (A)
def
= Tr

�
AX>AX

�
= kA1/2XA1/2

k
2
F . This projection problem can be cast as an

instantiation of the general projection problem (7). Indeed, we need only note that the constraint
in (18) is linear and equivalent to A(X)

def
=

⇣
AX

X�X>

⌘
= ( I0 ) . The matrix inversion problem can be

efficiently solved using sketch-and-project with a symmetric sketch [15]. The symmetric sketch is
given by SkA(X) =

⇣
S>
k AX

X�X>

⌘
, where Sk 2 Rn⇥⌧ is a random matrix drawn from a distribution D

and ⌧ 2 N. The resulting sketch-and-project method is as follows
Xk+1 = argmin

X
kX �Xkk

2
F (A) subject to S>

k AX = S>
k , X = X>, (19)

the closed form solution of which is
Xk+1 = Sk(S

>
k ASk)

�1S>
k +

�
I � Sk(S

>
k ASk)

�1S>
k A

�
Xk

�
I �ASk(S

>
k ASk)

�1S>
k

�
. (20)

By observing that (20) is the sketch-and-project algorithm applied to a linear operator equation, we
have constructed an accelerated version in Algorithm 2. We can also apply Theorem 3 to prove that
Algorithm 2 is indeed accelerated.

Theorem 5. Let Lk def

= kVk �A�1
k
2
M + 1

µkXk �A�1
k
2
F (A). The iterates of Algorithm 2 satisfy

E [Lk+1] 
⇣
1�

q
µ
⌫

⌘
E [Lk] , (21)

where kXk
2
M = Tr

⇣
A1/2X>A1/2E [Z]† A1/2XA1/2

⌘
. Furthermore,

µ
def

= inf
X2Rn⇥n

hE[Z]X,Xi
hX,Xi = �min(E [Z]), ⌫

def

= sup
X2Rn⇥n

hE[ZE[Z]†Z]X,Xi
hE[Z]X,Xi , (22)

where

Z
def

= I ⌦ I � (I � P )⌦ (I � P ), P
def

= A1/2S(S>AS)�1S>A1/2, (23)
and Z : X 2 Rn⇥n

! Rn⇥n
is given by Z(X) = X � (I � P )X (I � P ) = XP + PX(I � P ).

Moreover, 2�min(E [P ]) � �min(E [Z]) � �min(E [P ]).

Notice that preserving symmetry yields µ = �min(E [Z]) , which can be up to twice as large as
�min(E [P ]), which is the value of the µ parameter of the method without preserving symmetry. This
improved rate is new, and was not present in the algorithm’s debut publication [15]. In terms of
parameter estimation, once symmetry is not preserved, we fall back onto the setting from Section 3.4.
Unfortunately, we were not able to quantify the effect of enforcing symmetry on the parameter ⌫.
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Algorithm 2 Accelerated BFGS matrix inversion (solving (18))
1: Parameters: µ, ⌫ > 0, D = distribution over random linear operators.
2: Choose X0 2 X and set V0 = X0, � = 1�

pµ
⌫ , � =

q
1
µ⌫ , ↵ = 1

1+�⌫

3: for k = 0, 1, . . . do
4: Yk = ↵Vk + (1� ↵)Xk

5: Sample an independent copy S ⇠ D

6: Xk+1 = Yk + (YkA� I)S(S>AS)�1S>
� S(S>AS)�1S>AYk

7: +S(S>AS)�1S>AYkAS(S>AS)�1S>

8: Vk+1 = �Vk + (1� �)Yk � �(Yk �Xk+1)
9: end for

4.2 Vectorizing—a different insight

In the previous section we argued that Theorem 5 follows from the more general convergence result
established in Theorem 3 for Euclidean spaces. We now show an alternative way to prove Theorem 5.
Define Vec : Rn⇥n

! Rn2

to be a vectorization operator of column-wise stacking and denote
x

def
= Vec (X). It can be shown that the sketch-and-project operation for matrix inversion (4.2) is

equivalent to

xk+1 = argmin
x

kx� xkk
2
A⌦A subject to (I ⌦ S>

k )(I ⌦A)x = (I ⌦ S>
k )Vec (I) , Cx = 0,

where C is defined so that Cx = 0 if and only if X = X>. The above is a sketch-and-project
update for a linear system in Rn2

, which allows to obtain an alternative proof of Theorem 5, without
using our results from Euclidean spaces. The details are provided in Section H.2 of the Appendix.

4.3 Accelerated BFGS as an optimization algorithm

As a tweak in the stochastic BFGS allows for a faster estimation of Hessian inverse and therefore
more accurate steps of the method, one might wonder if a equivalent tweak might speed up the
standard, deterministic BFGS algorithm for solving (1). The mentioned tweaked version of standard
BFGS is proposed as Algorithm 3. We do not state a convergence theorem for this algorithm—due
to the deterministic updates the analysis is currently elusive—nor propose to use it as a default
solver, but we rather introduce it as a novel idea for accelerating optimization algorithms. We leave
theoretical analysis for the future work. For now, we perform several numerical experiments, in order
to understand the potential and limitations of this new method.

Algorithm 3 BFGS method with accelerated BFGS update for solving (1)
1: Parameters: µ, ⌫ > 0, stepsize ⌘.
2: Choose X0 2 X , w0 and set V0 = X0, � = 1�

pµ
⌫ , � =

q
1
µ⌫ , ↵ = 1

1+�⌫ .

3: for k = 0, 1, . . . do
4: wk+1 = wk � ⌘Xkrf(wk)
5: sk = wk+1 � wk, ⇣k = rf(wk+1)�rf(wk)
6: Yk = ↵Vk + (1� ↵)Xk

7: Xk+1 = �k�
>
k

�>k ⇣k
+
⇣
I � �k⇣

>
k

�>k ⇣k

⌘
Yk

⇣
I � ⇣k�

>
k

�>k ⇣k

⌘

8: Vk+1 = �Vk + (1� �)Yk � �(Yk �Xk+1)
9: end for

To better understand Algorithm 3, recall that the BFGS updates an estimate of the inverse Hessian via

Xk+1 = argminX kX �Xkk
2
F (A) subject to X⇣k = �k, X = X>, (24)

where �k = wk+1 � wk and ⇣k = rf(wk+1)�rf(wk). The above has the following closed form
solution Xk+1 = �k�

>
k

�>k ⇣k
+
⇣
I � �k⇣

>
k

�>k ⇣k

⌘
Xk

⇣
I � ⇣k�

>
k

�>k ⇣k

⌘
. This update appears on line 7 of Algorithm 3

with the difference being that it is applied to a matrix Yk.
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5 Numerical Experiments

We perform extensive numerical experiments to bring additional insight to both the performance of
and to parameter selection for Algorithms 2 and 3. More numerical experiments can be found in
Section A of the appendix. We first test our accelerated matrix inversion algorithm, and subsequently
perform experiments related to Section 4.3.

5.1 Accelerated Matrix Inversion

We consider the problem of inverting a symmetric positive matrix A. We focus on a few particular
choices of matrices A (specified when describing each experiment), that differ in their eigenvalue
spectra. Three different sketching strategies are studied: Coordinate sketches with convenient
probabilities (S = ei with probability proportional to Ai,i), coordinate sketches with uniform
probabilities (S = ei with probability 1

n ) and Gaussian sketches (S ⇠ N (0, I)). As matrices to be
inverted, we use both artificially generated matrices with the access to the spectrum and also Hessians
of ridge regression problems from LIBSVM.

We have shown earlier that µ, ⌫ can be estimated as per (16) for coordinate sketches with convenient
probabilities without enforcing symmetry. We use the mentioned parameters for the other sketching
strategies while enforcing the symmetry. Since in practice one might not have an access to the exact
parameters µ, ⌫ for given sketching strategy, we test sensitivity of the algorithm to parameter choice .
We also test test for ⌫ chosen by (16), µ = 1

100⌫ and µ = 1
10000⌫ .
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Figure 1: From left to right: (i) Eigenvalues of A 2 R100⇥100 are 1, 103, 103, . . . , 103 and coordinate sketches
with convenient probabilities are used. (ii) Eigenvalues of A 2 R100⇥100 are 1, 2, . . . , n and Gaussian sketches
are used. Label “nsym” indicates non-enforcing symmetry and “-a” indicates acceleration. (iii) Epsilon dataset
(n = 2000), coordinate sketches with uniform probabilities. (iv) SVHN dataset (n = 3072), coordinate sketches
with convenient probabilities. Label “h” indicates that �min was not precomputed, but µ was chosen as described
in the text.

For more plots, see Section A in the appendix as here we provide only a tiny fraction of all plots.
The experiments suggest that once the parameters µ, ⌫ are estimated exactly, we get a speedup
comparing to the nonaccelerated method; and the amount of speedup depends on the structure of A
and the sketching strategy. We observe from Figure 1 that we gain a great speedup for ill conditioned
problems once the eigenvalues are concentrated around the largest eigenvalue. We also observe
from Figure 1 that enforcing symmetry combines well with µ, ⌫ computed by (16), which does
not consider the symmetry. On top of that, choice of µ, ⌫ per (16) seems to be robust to different
sketching strategies, and in worst case performs as fast as the nonaccelerated algorithm.

5.2 BFGS Optimization Method

We test Algorithm 3 on several logistic regression problems using data from LIBSVM [7]. In all
our tests we centered and normalized the data, included a bias term (a linear intercept), and choose
the regularization parameter as � = 1/m, where m is the number of data points. To keep things as
simple as possible, we also used a fixed stepsize which was determined using grid search. Since
our theory regarding the choice for the parameters µ and ⌫ does not apply in this setting, we simply
probed the space of parameters manually and reported the best found result, see Figure 2. In the
legend we use BFGS-a-µ-⌫ to denote the accelerated BFGS method (Alg 3) with parameters µ and ⌫.

On all four datasets, our method outperforms the classic BFGS method, indicating that replacing
classic BFGS update rules for learning the inverse Hessian by our new accelerated rules can be
beneficial in practice. In A.4 in the appendix we also show the time plots for solving the problems in
Figure 2, and show that the accelerated BFGS method also converges faster in time.
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Figure 2: Algorithm 3 (BFGS with accelerated matrix inversion quasi-Newton update) vs standard
BFGS. From left to right: phishing, mushrooms, australian and splice dataset.

6 Conclusions and Extensions

We developed an accelerated sketch-and-project method for solving linear systems in Euclidean
spaces. The method was applied to invert positive definite matrices, while keeping their symmetric
structure for all iterates. Our accelerated matrix inversion algorithm was then incorporated into an
optimization framework to develop both accelerated stochastic and accelerated deterministic BFGS,
which to the best of our knowledge, are the first accelerated quasi-Newton updates.

We show that under a careful choice of the parameters of the method—depending on the problem
structure and conditioning—acceleration might result into significant speedups both for the matrix
inversion problem and for the stochastic BFGS algorithm. We confirm experimentally that our
accelerated methods can lead to speed-ups when compared to the classical BFGS algorithm.

As a future line of research it might be interesting to study the accelerated BFGS algorithm (either
deterministic or stochastic) further, and provide a convergence analysis on a suitable class of functions.
Another interesting area of research might be to combine accelerated BFGS with limited memory [17]
or engineer the method so that it can efficiently compete with first order algorithms for some empirical
risk minimization problems, such as, for example [12].

As we show in this work, Nesterov’s acceleration can be applied to quasi-Newton updates. We
believe this is a surprising fact, as quasi-Newton updates have not been understood as optimization
algorithms, which prevented the idea of applying acceleration in this context.

Since since second-order methods are becoming more and more ubiquitous in machine learning
and data science, we hope that our work will motivate further advances at the frontiers of big data
optimization.
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[28] Peter Richtárik and Martin Takáč. Stochastic reformulations of linear systems: algorithms and
convergence theory. arXiv:1706.01108, 2017.

10



[29] Nicol N Schraudolph, Jin Yu, and Simon Günter. A stochastic quasi-Newton method for online
convex optimization. In Artificial Intelligence and Statistics, pages 436–443, 2007.

[30] David F Shanno. Conditioning of quasi-Newton methods for function minimization. Mathemat-

ics of computation, 24(111):647–656, 1970.

[31] Sebastian U Stich. Convex Optimization with Random Pursuit. PhD thesis, ETH Zurich, 2014.
Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 22111.

[32] Sebastian U Stich, Christian L Müller, and Bernd Gärtner. Variable metric random pursuit.
Mathematical Programming, 156(1):549–579, Mar 2016.

[33] Thomas Strohmer and Roman Vershynin. A randomized Kaczmarz algorithm with exponential
convergence. Journal of Fourier Analysis and Applications, 15(2):262, 2009.

[34] Stephen Tu, Shivaram Venkataraman, Ashia C Wilson, Alex Gittens, Michael I Jordan, and
Benjamin Recht. Breaking locality accelerates block Gauss-Seidel. In Proceedings of the 34th

International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11

August 2017, pages 3482–3491, 2017.

[35] Xiao Wang, Shiqian Ma, Donald Goldfarb, and Wei Liu. Stochastic quasi-Newton methods for
nonconvex stochastic optimization. SIAM Journal on Optimization, 27(2):927–956, 2017.

[36] Stephen J Wright. Coordinate descent algorithms. Math. Program., 151(1):3–34, June 2015.

[37] Peng Xu, Farbod Roosta-Khorasani, and Michael W Mahoney. Newton-type methods for
non-convex optimization under inexact hessian information. arXiv preprint arXiv:1708.07164,
2017.

[38] Peng Xu, Jiyan Yang, Farbod Roosta-Khorasani, Christopher Ré, and Michael W Mahoney.
Sub-sampled newton methods with non-uniform sampling. In Advances in Neural Information

Processing Systems, pages 3000–3008, 2016.

11


