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Abstract

We propose a general yet simple theorem describ-
ing the convergence of SGD under the arbitrary
sampling paradigm. Our theorem describes the
convergence of an infinite array of variants of
SGD, each of which is associated with a specific
probability law governing the data selection rule
used to form minibatches. This is the first time
such an analysis is performed, and most of our
variants of SGD were never explicitly considered
in the literature before. Our analysis relies on the
recently introduced notion of expected smooth-
ness and does not rely on a uniform bound on the
variance of the stochastic gradients. By specializ-
ing our theorem to different mini-batching strate-
gies, such as sampling with replacement and inde-
pendent sampling, we derive exact expressions for
the stepsize as a function of the mini-batch size.
With this we can also determine the mini-batch
size that optimizes the total complexity, and show
explicitly that as the variance of the stochastic
gradient evaluated at the minimum grows, so does
the optimal mini-batch size. For zero variance,
the optimal mini-batch size is one. Moreover, we
prove insightful stepsize-switching rules which
describe when one should switch from a constant
to a decreasing stepsize regime.

1. Introduction
We consider the optimization problem

x∗ = arg minx∈Rd
[
f(x) = 1

n

∑n
i=1 fi(x)

]
, (1)
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where each fi : Rd → R is smooth (but not necessarily
convex). Further, we assume that f has a unique1 global
minimizer x∗ and is µ–strongly quasi-convex (Karimi et al.,
2016; Necoara et al., 2018):

f(x∗) ≥ f(x) + 〈∇f(x), x∗ − x〉+ µ
2 ‖x∗ − x‖

2 (2)

for all x ∈ Rd.

1.1. Background and contributions

Stochastic gradient descent (SGD) (Robbins & Monro,
1951; Nemirovski & Yudin, 1978; 1983; Shalev-Shwartz
et al., 2007; Nemirovski et al., 2009; Hardt et al., 2016),
has become the workhorse for training supervised machine
learning problems which have the generic form (1).

Linear convergence of SGD. Moulines & Bach (2011) pro-
vided a non-asymptotic analyses of SGD showing linear con-
vergence for strongly convex f up to a certain noise level.
Needell et al. (2016) improved upon these results by remov-
ing the quadratic dependency on the condition number in
the iteration complexity results, and considered importance
sampling. The analysis of Needell et al. (2016) was later
extended to a mini-batch variant where the mini-batches are
formed by partitioning the data (Needell & Ward, 2017).
These works are the main starting point for ours.

Contributions: We further tighten and generalize these re-
sults to virtually all forms of sampling. We introduce an
expected smoothness assumption (Assumption 2.1), first in-
troduced in (Gower et al., 2018) in the context of a certain
class of variance-reduced methods. This assumption is a
joint property of f and the sampling scheme D utilized by
an SGD method, and allows us prove a generic complex-
ity result (Theorem 3.1) that holds for arbitrary sampling
schemes D. Our work is the first time SGD is analysed
under this assumption. We obtain linear convergence rates
without strong convexity; in particular, assuming strong
quasi-convexity (this class includes some non-convex func-
tions as well). Furthermore, we do not require the functions
fi to be convex.

Gradient noise assumptions. Shamir & Zhang (2013) ex-
tended the analysis of SGD to convex non-smooth optimiza-

1This assumption can be relaxed; but for simplicity of exposi-
tion we enforce it.
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tion (including the strongly convex case). However, their
proofs still rely on the assumption that the variance of the
stochastic gradient is bounded for all iterates of the algo-
rithm: there exists c ∈ R such that Ei‖∇fi(xk)‖2 ≤ c for
all k. The same assumption was used in the analysis of sev-
eral recent papers (Recht et al., 2011; Hazan & Kale, 2014;
Rakhlin et al., 2012). A much more relaxed weak growth
assumption Ei‖∇fi(xk)‖2 ≤ c1+c2E‖∇f(xk)‖2 for all k,
was apparently first used in the later 90’s to prove the asymp-
totic convergence of SGD (see Proposition 4.2 of Bertsekas
& Tsitsiklis (1996)). Bottou et al. (2018) establish a linear
convergence of SGD under this weak growth assumption.
Recently, Nguyen et al. (2018) turn this assumption into
a theorem by establishing formulas c1 and c2 under some
reasonable conditions, and provide further insights into the
workings of SGD and its parallel asynchronous cousin, Hog-
wild!. Similar conditions have been also proved and used
in the analysis of decentralized variants of SGD (Lian et al.,
2017; Assran et al., 2018). Based on a strong growth con-
dition (c1 = 0), Schmidt & Roux (2013) were the first to
establish linear convergence of SGD, with Cevher & Vu
(2017) later giving sufficient and necessary conditions for
the linear convergence of SGD under this condition.

Contributions: Our analysis does not directly assume a
growth condition. Instead, we make use of the remarkably
weak expected smoothness assumption.

Optimal mini-batch size. Recently it was experimentally
shown by Goyal et al. (2017) that using larger mini-batches
sizes is key to efficient training of large scale non-convex
problems, leading to the training of ImageNet in under 1
hour. The authors conjectured that the stepsize should grow
linearly with the mini-batch size.

Contributions: We prove (see Section 4) that this is the
case, upto a certain optimal mini-batch size, and provide
exact formulas for the dependency of the stepsizes on the
mini-batch sizes.

Learning schedules. Chee & Toulis (2018) develop tech-
niques for detecting the convergence of SGD within a region
around the solution.

Contributions: We provide a closed-form formula for when
should SGD switch from a constant stepsize to a decreas-
ing stepsize (see Theorem 3.2). Further, we clearly show
how the optimal stepsize (learning rate) increases and the
iteration complexity decreases as the mini-batch size in-
creases for both independent sampling and sampling with
replacement. We also recover the well known L/µ log(1/ε)
convergence rate of gradient descent (GD) when the mini-
batch size is n; this is the first time a generic SGD analysis
recovers the correct rate of GD.

Over-parameterized models. There has been some recent
work in analysing SGD in the setting where the underlying

model being trained has more parameters than there is data
available. In this zero–noise setting, Ma et al. (2018) showed
that SGD converges linearly.

Contributions: In the case of over-parametrized models,
we extend the findings of Ma et al. (2018)2 to independent
sampling and sampling with replacement by showing that
the optimal mini-batch size is 1. Moreover, we provide
results in the more general setting where the model is not
necessarily over-parametrized.

Practical performance. We corroborate our theoretical
results with extensive experimental testing.

1.2. Stochastic reformulation

In this work we provide a single theorem through which we
can analyse all importance sampling and mini-batch variants
of SGD. To do this, we need to introduce a sampling vector
which we will use to re-write our problem (1).

Definition 1.1. We say that a random vector v ∈ Rn
drawn from some distribution D is a sampling vector if
its mean is the vector of all ones:

ED [vi] = 1, ∀i ∈ [n]. (3)

With each distribution D we now introduce a stochastic
reformulation of (1) as follows

minx∈Rd ED
[
fv(x) := 1

n

∑n
i=1 vifi(x)

]
. (4)

By the definition of the sampling vector, fv(x) and ∇fv(x)
are unbiased estimators of f(x) and ∇f(x), respectively,
and hence probem (4) is indeed equivalent (i.e., a reformula-
tion) of the original problem (1). In the case of the gradient,
for instance, we get

ED [∇fv(x)]
(4)
= 1

n

∑n
i=1 ED [vi]∇fi(x)

(3)
= ∇f(x). (5)

Similar but different stochastic reformulations were recently
proposed by Richtárik & Takáč (2017) and further used in
(Loizou & Richtárik, 2017; 2019) for the more special prob-
lem of solving linear systems, and by Gower et al. (2018) in
the context of variance-reduced methods. Reformulation (4)
can be solved using SGD in a natural way:

xk+1 = xk − γk∇fvk(xk) (6)

where vk ∼ D is sampled i.i.d. at each iteration and γk > 0
is a stepsize. However, for different distributions D, (6) has
a different interpretation as an SGD method for solving the
original problem (1). In our main result we will analyse (6)
for any D satisfying (3). By substituting specific choices of
D, we obtain specific variants of SGD for solving (1).

2Recently, the results of Ma et al. (2018) were extended to the
accelerated case by Vaswani et al. (2018); however, we do not
study accelerated methods in this work.
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2. Expected Smoothness and Gradient Noise
In our analysis of SGD (6) applied to the stochastic refor-
mulation (4) we rely on a generic and remarkably weak
assumption of expected smoothness, which we now define
and relate to existing growth conditions.

2.1. Expected smoothness

Expected smoothness (Gower et al., 2018) is an assumption
that combines both the properties of the distribution D and
the smoothness properties of function f .

Assumption 2.1 (Expected Smoothness). We say that f
is L–smooth in expectation with respect to a distribution
D if there exists L = L(f,D) > 0 such that

ED
[
‖∇fv(x)−∇fv(x∗)‖2

]
≤ 2L(f(x)− f(x∗)),

(7)
for all x ∈ Rd. For simplicity, we will write (f,D) ∼
ES(L) to say that (7) holds. When D is clear from the
context, we will often ignore mentioning it, and simply
state that the expected smoothness constant is L.

There are scenarios where the above inequality is tight. In-
deed, in the setting of stochastic reformulations of linear
systems considered in (Richtárik & Takáč, 2017), one has
fv(x) = 1

2‖∇fv(x)‖2, ∇fv(x∗) = 0 and fv(x
∗) = 0,

which means that (7) holds as an identity with L = 1.

In Section 3.3 we show how convexity and Li–smoothness
of fi implies expected smoothness. However, the opposite
implication does not hold. Indeed, the expected smooth-
ness assumption can hold even when the fi’s and f are not
convex, as we show in the next example.

Example 2.2 (Non-convexity and expected smoothness).
Let fi = φ for i = 1, . . . , n, where φ is a Lφ–smooth
and non-convex function which has a global minimum
x∗ ∈ Rd (such functions exista). Consequently f = φ

and fv =
∑
i vi
n φ. Letting θ := ED

[(∑
i vi
)2]

, we have

ED
[
‖∇fv(x)−∇fv(x∗)‖2

]
= θ

n2 ‖∇φ(x)−∇φ(x∗)‖2

≤ 2θLφ
n2 (f(x)− f(x∗)),

where the last inequality follows from Proposition A.1.
So, (f,D) ∼ ES(L) for L =

θLφ
n2 .

a
There exists invex functions that satisfy these conditions (Karimi et al., 2016). As an

exampleφ(x) = x2+3 sin2(x) is smooth, non-convex, and has a unique global minimizer.

2.2. Gradient noise

Our second key assumption is finiteness of gradient noise,
defined next:

Assumption 2.3 (Finite Gradient Noise). The gradient
noise σ = σ(f,D), defined as follows is finite

σ2 := ED[‖∇fv(x∗)‖2]. (8)

This is a very weak assumption, and should intuitively be
seen as an assumption on D rather than on f . For instance,
if the sampling vector v is non-negative with probability
one and E[vi

∑
j vj ] is finite for all i, then σ is finite. When

(1) is the training problem of an over-parametrized model,
which often occurs in deep neural networks, each individ-
ual loss function fi attains its minimum at x∗, and thus
∇fi(x∗) = 0. It follows that σ = 0.

2.3. Key lemma and connection to the weak growth
condition

A common assumption used to prove the convergence of
SGD is uniform boundedness of the stochastic gradients3:
there exist 0 < c < ∞ such that E‖∇fv(x)‖2 ≤ c for
all x. However, this assumption often does not hold, such
as in the case when f is strongly convex (Bottou et al.,
2018; Nguyen et al., 2018). We do not assume such a
bound. Instead, we use the following direct consequence
of expected smoothness to bound the expected norm of the
stochastic gradients.

Lemma 2.4. If (f,D) ∼ ES(L), then

ED
[
‖∇fv(x)‖2

]
≤ 4L(f(x)− f(x∗)) + 2σ2. (9)

When the gradient noise is zero (σ = 0), inequality (9)
is known as the weak growth condition (Vaswani et al.,
2018).

Corollary 2.5. If (f,D) ∼ ES(L) and if σ = 0, then f
satisfies the weak growth condition

ED[‖∇fv(x)‖2] ≤ 2ρ(f(x)− f(x∗)),

with ρ = 2L.

This corollary should be contrasted with Proposition 2
in (Vaswani et al., 2018) and Lemma 1 in (Nguyen et al.,
2018), where it is shown, by assuming the fi functions to be
smooth and convex, that the weak growth condition holds
with ρ = 2Lmax. However, as we will show in Lemma F.1,
Lmax ≥ L, and hence our bound is often tighter.

3Or it is assumed that E‖∇fv(xk)‖2 ≤ c for all k iterates.
But this too has issues since it implicitly assumes that the iter-
ates remain within a compact set, and yet it it used to prove the
convergence to within a compact set, raising issues of a circular
argument.
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3. Convergence Analysis
3.1. Main results

We now present our main theorem.

Theorem 3.1. Assume f is µ-quasi-strongly convex and
that (f,D) ∼ ES(L). Choose γk = γ ∈ (0, 1

2L ] for all
k. Then iterates of SGD given by (6) satisfy:

E‖xk − x∗‖2 ≤ (1− γµ)
k ‖x0 − x∗‖2 + 2γσ2

µ . (10)

Hence, given any ε > 0, choosing stepsize

γ = min
{

1
2L ,

εµ
4σ2

}
, (11)

and

k ≥ max
{

2L
µ ,

4σ2

εµ2

}
log
(

2‖x0−x∗‖2
ε

)
, (12)

implies E‖xk − x∗‖2 ≤ ε.

Note that we do not assume fi nor f to be convex. Theo-
rem 3.1 states that SGD converges linearly up to the additive
constant 2γσ2/µ which depends on the gradient noise σ2

and on the stepsize γ. We obtain a more accurate solu-
tion with a smaller stepsize, but then the convergence rate
slows down. Since we control D, we also control σ2 and L
(we compute these parameters for several distributions D in
Section 3.3).

Furthermore, we can control this additive constant by care-
fully choosing the stepsize, as shown in the next result.

Theorem 3.2 (Decreasing stepsizes). Assume f is µ-
quasi-strongly convex and that (f,D) ∼ ES(L). Let
K := L/µ and

γk =


1
2L for k ≤ 4dKe
2k+1

(k+1)2µ for k > 4dKe.
(13)

If k ≥ 4dKe, then SGD iterates given by (6) satisfy:

E‖xk − x∗‖2 ≤ σ2

µ2
8
k + 16dKe2

e2k2 ‖x0 − x∗‖2. (14)

3.2. Choosing D
For (6) to be efficient, the sampling vector v should be
sparse. For this reason we will construct v so that only a
(small and random) subset of its entries are non-zero.

Before we formally define v, let us first establish some ran-
dom set terminology. Let C ⊆ [n] and let eC :=

∑
i∈C ei,

where {e1, . . . , en} are the standard basis vectors in Rn.
These subsets will be selected using a random set val-
ued map S, in the literature referred to by the name sam-
pling (Richtárik & Takáč, 2016; Qu & Richtárik, 2016).

A sampling is uniquely characterized by choosing subset
probabilities pC ≥ 0 for all subsets C of [n]:

P [S = C] = pC , ∀C ⊂ [n], (15)

where
∑
C⊆[n] pC = 1. We will only consider proper sam-

plings. A sampling S is called proper if pi
def
= P[i ∈ S] =∑

C:i∈C pC is positive for all i.

The first analysis of a randomized optimization method with
an arbitrary (proper) sampling was performed by Richtárik
& Takáč (2016) in the context of randomized coordinate
descent for strongly convex functions. This arbitrary sam-
pling paradigm was later adopted in many other settings,
including accelerated coordinate descent for strongly con-
vex functions (Hanzely & Richtárik, 2018), coordinate and
accelerated descent for convex functions (Qu & Richtárik,
2016), primal-dual methods (Qu et al., 2015; Chambolle
et al., 2018), variance-reduced methods with convex (Csiba
& Richtárik, 2015) and nonconvex (Horváth & Richtárik,
2018) objectives. Arbitrary sampling arises as a special case
of our more general analysis by specializing the sampling
vector to one dependent on a sampling S. We now define
practical sampling vector v = v(S) as follows:

Lemma 3.3. Let S be a proper sampling, and let P̂ =
Diag(p1, ..., pn). Then the random vector v = v(S) given
by

v = P̂−1eS (16)

is a sampling vector.

Proof. Note that vi = 1(i∈S)/pi, where 1(i∈S) is the
indicator function of the event i ∈ S. It follows that
E [vi] = E

[
1(i∈S)

]
/pi = 1.

We can further specialize and define the following com-
monly used samplings. Each sampling S gives rise to a
particular sampling vector v = v(S) (i.e., distribution D),
which in turn gives rise to a particular stochastic reformula-
tion (4) and SGD variant (6).

Independent sampling. The sampling S includes every
i, independently, with probability pi > 0. This type of
sampling was considered in different contexts in (Horváth
& Richtárik, 2018; Hanzely & Richtárik, 2018).

Partition sampling. A partition G of [n] is a set consisting
of subsets of [n] such that ∪C∈GC = [n] and Ci ∩ Cj = ∅
for any Ci, Cj ∈ G with i 6= j. A partition sampling S is a
sampling such that pC = P[S = C] > 0 for all C ∈ G and∑
C∈G pC = 1.

Single element sampling. Only the singleton sets {i} for
i = 1, . . . , n have a non-zero probability of being sampled;
that is, P [|S| = 1] = 1. We have P [v(S) = ei/pi] = pi.
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τ–nice sampling. We say that S is a τ–nice if S samples
from all subsets of [n] of cardinality τ uniformly at ran-
dom. In this case we have that pi = τ

n for all i ∈ [n]. So,
P
[
v(S) = n

τ eC
]

= 1/
(
n
τ

)
for all subsets C ⊆ {1, . . . , n}

with τ elements.

3.3. Bounding L and σ2

By assuming that the fi functions are convex and smooth
we can calculate closed form expressions for the expected
smoothness L and gradient noise σ2. In particular we make
the following smoothness assumption:

Assumption 3.4. There exists a symmetric positive defi-
nite matrix Mi ∈ Rd×d such that

fi(x+ h) ≤ fi(x) + 〈∇fi(x), h〉+ 1
2 ‖h‖

2
Mi

, (17)

for all x, h ∈ Rd, and i ∈ [n], where ‖h‖2Mi
:=

〈Mih, h〉 . In this case we say that fi is Mi–smooth. Fur-
thermore, we assume that each fi is convex.

To better relate the above assumption to the standard smooth-
ness assumptions we make the following remark.

Remark 3.5. As a consequence of Assumption 3.4 we
also have that each fi is Li := λmax(Mi)–smooth and
f is L := 1

nλmax(
∑n
i=1 Mi)–smooth. Let Lmax :=

maxi∈[n] Li.

Using Assumption 3.4 and a sampling we establish the
following bounds on L.

Theorem 3.6. Let S be a proper sampling, and v = v(S)
(i.e., v is defined by (16). Let fi be Mi-smooth, and
P ∈ Rn×n be defined by Pij = P[i ∈ S & j ∈ S]. Then
(f,D) ∼ ES(L), where

L ≤ Lmax := maxi∈[n]

{∑
C:i∈C

pC
pi
LC

}
≤ 1

n maxi∈[n]

{∑
j∈[n] Pij

λmax(Mj)
pipj

}
, (18)

and LC := 1
nλmax(

∑
j∈C

1
pj
Mj). If |S| ≡ τ , then

L ≤ Lmax ≤ Lmax = maxi∈[n] λmax(Mi). (19)

By applying the above result to specific samplings, we ob-
tain the following practical bounds on L:

Proposition 3.7. (i) For single element sampling S, we
have

Lmax = 1
n maxi∈[n]

λmax(Mi)
pi

. (20)

(ii) For partition sampling S with partition G, we have

Lmax = 1
n maxC∈G

{
1
pC
λmax(

∑
j∈C Mj)

}
. (21)

For τ -nice sampling and independent sampling, we get the
following very informative bounds on L.

Proposition 3.8. (iii) For independent sampling S, we
have

L ≤ L+ maxi∈[n]
1−pi
pi

λmax(Mi)
n . (22)

(iv) For τ -nice sampling, we have

L ≤ n(τ−1)
τ(n−1)L+ n−τ

τ(n−1) maxi λmax(Mi) (23)

Gazagnadou et al. (2019) were the first to suggest using (23)
as an approximation for L. Through extensive experiments,
they showed that the bound (23) is very tight. Here we give
the first proof that (23) is indeed a valid upper bound.

For v = v(S) given by (16), formulas for the gradient noise
σ2 are provided in the next result:

Theorem 3.9. Let hi = ∇fi(x∗). Then

σ2 = 1
n2

∑
i,j∈[n]

Pij
pipj
〈hi, hj〉. (24)

Specializing the above theorem to specific samplings S
gives the following formulas for σ2:

Proposition 3.10. (i) For single element sampling S, we
have

σ2 = 1
n2

∑
i∈[n]

1
pi
‖hi‖2. (25)

(ii) For independent sampling S with E[|S|] = τ , we have

σ2 = 1
n2

∑
i∈[n]

1−pi
pi
‖hi‖2. (26)

(iii) For τ -nice sampling S, we have

σ2 = 1
nτ · n−τn−1

∑
i∈[n] ‖hi‖2. (27)

(iv) For partition sampling S with partition G, we have

σ2 = 1
n2

∑
C∈G

1
pC
‖∑i∈C hi‖2. (28)

Generally, we do not know the values of hi = ∇fi(x∗). But
if we have prior knowledge that x∗ belongs to some set C,
we can obtain upper bounds for σ2 for these samplings from
Proposition 3.10 in a straightforward way.

4. Optimal Mini-Batch Size
Here we develop the iteration complexity for different
samplings by plugging in the bounds on L and σ given
in Section 3.3 into Theorem 3.1. To keep the nota-
tion brief, in this section we drop the logarithmic term
log
(
2‖x0 − x∗‖2/ε

)
from the iteration complexity results.

Furthermore, for brevity and to better compare our results
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to others in the literature, we will use Li = λmax(Mi)
and Lmax = maxi∈[n] Li (see Remark 3.5). Finally let
h = 1

n

∑
i∈[n] ‖hi‖2 for brevity.

Gradient descent. As a first sanity check, we consider the
case where |S| = n with probability one. That is, each
iteration (6) uses the full batch gradient. Thus σ = 0 and
it is not hard to see that for τ = n in (23) or pi = 1 for all
i in (22) we have Lmax = L. Consequently, the resulting
iteration complexity (12) is now k ≥ 2L/µ. This is exactly
the rate of gradient descent, which is precisely what we
would expect since the resulting method is gradient descent.
Though an obvious sanity check, we believe this is the first
convergence theorem of SGD that includes gradient descent
as a special case. Clearly, this is a necessary pre-requisite
if we are to hope to understand the complexity of mini-
batching.

4.1. Nonzero gradient noise

To better appreciate how our iteration complexity evolves
with increased mini-batch sizes, we now consider indepen-
dent sampling with |S| = τ and τ -nice sampling.

Independent sampling. Inserting the bound on L (22) and
σ (26) into (12) gives the following iteration complexity

k ≥ 2
µ max

{
L+ maxi∈[n]

1−pi
npi

Li ,
2
µε

1−pi
npi

h
}
. (29)

This is a completely new mini-batch complexity result,
which opens up the possibility of optimizing the mini-batch
size and probabilities of sampling. For instance, if we
fix uniform probabilities with pi = τ

n then (29) becomes
k ≥ 2

µ max {l(τ), r(τ)}, where

l(τ) := L+
(
1
τ − 1

n

)
Lmax; r(τ) := 2

µε

(
1
τ − 1

n

)
h. (30)

This complexity result corresponds to using the stepsize

γ = 1
2 min

{
1
l(τ) ,

1
r(τ)

}
(31)

if τ < n, otherwise only the left-hand-side term in the
minimization remains. The stepsize (31) is increasing since
both l(τ) and r(τ) decrease as τ increases.

With such a simple expression for the iteration complexity
we can choose a mini-batch size that optimizes the total com-
plexity. By defining the total complexity T (τ) as the number
of iterations k times the number of gradient evaluations (τ )
per iteration gives

T (τ) := 2
µn max

{
τnL+ (n− τ)Lmax,

2(n−τ)h
µε

}
. (32)

Minimizing T (τ) in τ is easy because T (τ) is a max of a
linearly increasing term τ × l(τ) and a linearly decreasing

term τ × r(τ) in τ . Furthermore n× l(n) ≥ 0 = n× r(n).
Consequently, if l(1) ≥ r(1), then τ∗ = 1, otherwise

τ∗ = n
2
µεh−Lmax

2
µεh−Lmax+nL

. (33)

Since r(1) is proportional to the noise and 1/ε and l(1)
is proportional to the smoothness constants the condition
l(1) ≤ r(1) holds when there is comparatively a lot of noise
or the precision is high. As we will see in Section 4.2 this
logic extends to the case where the noise is zero, where the
optimal mini-batch size is τ∗ = 1.

τ–nice sampling. Inserting the bound on L (23) and
σ (27) into (12) gives the iteration complexity k ≥
2
µ max{l(τ), r(τ)}, where

l(τ) = n(τ−1)
τ(n−1)L+ n−τ

τ(n−1)Lmax, (34)

r(τ) = 2(n−τ)
εµ(n−1)

h
τ , (35)

which holds for the stepsize

γ = 1
2 min

{
1
l(τ) ,

1
r(τ)

}
. (36)

Again, this is an increasing function in τ.

We are now again able to calculate the mini-batch size
that optimizes the total complexity T (τ) given by T (τ) =
2τ
µ max{l(τ), r(τ)}. Once again T (τ) is a max of a linearly

increasing term τ × l(τ) and a linearly decreasing term
τ×r(τ) in τ . Furthermore r(n) = 0 ≤ l(n). Consequently,
if r(1) ≤ l(1) then τ∗ = 1, otherwise

τ∗ = n
L−Lmax+

2
εµ ·h

nL−Lmax+
2
εµ ·h

. (37)

4.2. Zero gradient noise

Consider the case where the gradient noise is zero (σ = 0).
According to Theorem 3.1, the resulting complexity of SGD
with constant stepsize γ = 1

2L is given by the very simple
expression

k ≥ 2L
µ , (38)

where we have dropped the logarithmic term
log
(
‖x0 − x∗‖2

/
ε
)
. In this setting, due to Corol-

lary 2.5, we know that f satisfies the weak growth condition.
Thus our results are directly comparable to those developed
in (Ma et al., 2018) and in (Vaswani et al., 2018).

In particular, Theorem 1 in (Ma et al., 2018) states that
when running SGD with mini-batches based on sampling
with replacement, the resulting iteration complexity is

k ≥ L
µ
τ−1
τ + Lmax

µ
1
τ , (39)

again dropping the logarithmic term. Now gaining insight
into the complexity (38) is a matter of studying the expected
smoothness parameter L for different sampling strategies.
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Independent sampling. Setting σ = 0 (thus h = 0) and
using uniform probabilities with pi = τ

n in (29) gives

k ≥ 2L
µ +

(
1
τ − 1

n

)
2Lmax

µ . (40)

τ –nice sampling. If we use a uniform sampling and σ = 0
then the resulting iteration complexity is given by

k ≥ n(τ−1)
τ(n−1)

2L
µ + n−τ

τ(n−1)
2Lmax

µ . (41)

Iteration complexities (39), (40) and (41) tell essentially the
same story. Namely, the complexity improves as τ increases
to n, but this improvement is not enough when considering
the total complexity (multiplying by τ ). Indeed, for total
complexity, these results all say that τ = 1 is optimal.

5. Importance Sampling
In this section we propose importance sampling for single
element sampling and independent sampling with E[|S|] =
τ , respectively. Due to lack of space, the details of this
section are in the appendix, Section K. Again we drop the
log term in (12) and adopt the notation in Remark 3.5.

5.1. Single element sampling

For single element sampling, plugging (20) and (25) into
(12) gives the following iteration complexity

2
εµ2 max

{
εµ
n maxi∈[n]

Li
pi
, 2
n2

∑
i∈[n]

1
pi
‖hi‖2

}
,

where 0 < pi ≤ 1 and
∑
i∈[n] pi = 1. In order to optimize

this iteration complexity over pi, we need to solve a n dimen-
sional linearly constrained nonsmooth convex minimization
problem, which could be harder than the original problem
(1). So instead, we will focus on minimizing Lmax and σ2

over pi seperately. We will then use these two resulting
(sub)optimal probabilities to construct a sampling.

In particular, for single element sampling we can recover the
partially biased sampling developed in (Needell et al., 2016).
First, from (20) it is easy to see that the probabilities that
minimize Lmax are pLi = Li/

∑
j∈[n] Lj , for all i. Using

these suboptimal probabilities we can construct a partially
biased sampling by letting p̂i := 1

2p
L
i + 1

2n . Plugging this
sampling in (20) gives Lmax ≤ 2L := 2

n

∑
i∈[n] Li, and

from (25), we have σ2 ≤ 2
n

∑
i∈[n] ‖hi‖2 := 2h. This

sampling is the same as the partially biased sampling in
(Needell et al., 2016). From (29) in Theorem 3.1, we get
that the total complexity is now given by

k ≥ max
{

4L
αµ ,

8h
εµ2

}
. (42)

For uniform sampling, Lmax = maxi∈[n] Li ≥ L and σ2 =
1
n

∑
i∈[n] ‖hi‖2. Hence, compared to uniform sampling, the

iteration complexity of partially biased sampling is at most
two times larger, but could be n/2 smaller in the extreme
case where Lmax = nL.

5.2. Minibatches

Importance sampling for minibatches was first considered
in (Csiba & Richtárik, 2018); but not in the context of SGD.
Here we propose the first importance sampling for mini-
batch SGD. In Section K.2 in the appendix we introduce the
use of partially biased sampling together with independent
sampling with |S| = τ and show that we can achieve a total
complexity of (by Proposition K.3)

k ≥ max
{(
L+ 2

τL
)

2
µ ,
(
2
τ − 1

n

)
4h
εµ2

}
, (43)

which not only eliminates the dependence on Lmax, but also
improves as the mini-batch size τ increases.

6. Experiments
In this section, we empirically validate our theoretical re-
sults. We perform three experiments in each of which we
highlight a different aspect of our contributions.

In the first two experiments we focus on ridge regression
and regularized logistic regression problems (problems with
strongly convex objective f and components fi) and we
evaluate the performance of SGD on both synthetic and
real data. In the second experiment (Section 6.2) we com-
pare the convergence of SGD for several choices of the
distributionD (different sampling strategies) as described in
Section 3.2. In the last experiment (Section 6.3) we focus on
the problem of principal component analysis (PCA) which
by construction can be seen as a problem with a strongly
convex objective f but with non-convex functions fi (Allen-
Zhu & Yuan, 2016; Garber & Hazan, 2015; Shalev-Shwartz,
2016).

In all experiments, to evaluate SGD we use the relative
error measure ‖x

k−x∗‖2
‖x0−x∗‖2 . For all implementations, the start-

ing point x0 is sampled from the standard Gaussian. We
run each method until ‖xk − x∗‖2 ≤ 10−3 or until a pre-
specified maximum number of epochs is achieved. For the
horizontal axis we always use the number of epochs.

For more experiments we refer the interested reader to Sec-
tion L of the Appendix.

Regularized Regression Problems: In the case of the
ridge regression problem we solve:

min
x
f(x) = 1

2n

∑n
i=1(A[i, :]x− yi)2 + λ

2 ‖x‖2,

while for the L2-regularized logistic regression problem we
solve:

min
x
f(x) = 1

2n

∑n
i=1 log (1 + exp(−yiA[i, :]x))+λ

2 ‖x‖2.
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Figure 1. Comparison between constant and decreasing step size
regimes of SGD. Ridge regression problem (first row): on left
- synthetic data, on right - real dataset: abalone from LIBSVM.
Logistic regression problem(second row): on left - synthetic data,
on right - real data-set: a1a from LIBSVM. In all experiments
λ = 1/n.
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Figure 2. Performance of SGD with several minibatch strategies
for logistic regression. Above: the w3a data-set from LIBSVM.
Below: standard Gaussian data.

In both problems A ∈ Rn×d, y ∈ Rn are the given data
and λ > 0 is the regularization parameter. We generated
synthetic data in both problems by sampling the rows of
matrix A (A[i, :]) from the standard Gaussian distribution
N (0, 1). Furthermore for ridge regression we sampled the
entries of y from the standard Gaussian distribution while in
the case of logistic regression y ∈ {−1, 1}n where P(yi =
1) = P(yi = −1) = 1

2 . For our experiments on real data
we choose several LIBSVM (Chang & Lin, 2011) datasets.

6.1. Constant vs decreasing step size

We now compare the performance of SGD in the constant
and decreasing stepsize regimes considered in Theorems
3.1 (see (11)) and 3.2 (see (13)), respectively. Here we
use a uniform single element sampling. As expected from
theory, we see in Figure 1 that the decreasing stepsize regime
is vastly superior at reaching a higher precision than the
constant step-size variant. In our plots, the vertical red line
denotes the value of 4dL/µe predicted from Theorem 3.2
and highlights the point where SGD needs to change its
update rule from constant to decreasing step-size.
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Figure 3. On the left: Comparison between constant and decreas-
ing step size regimes of SGD for PCA. On the right: comparison
of different sampling strategies of SGD for PCA.

6.2. Minibatches

In Figures 2 and 5 we compare the single element sampling
(uniform and importance), τ independent sampling (uni-
form, uniform with optimal batch size and importance) and
τ nice sampling (with some τ and with optimal τ∗). The
probabilities of importance samplings in the single element
sampling and τ independent sampling are calculated by for-
mulas (67) and (77) in the Appendix. Formulas for optimal
minibatch size τ∗ in independent sampling and τ -nice sam-
plings are given in (33) and (37), respectively. Observe that
minibatching with optimal τ∗ gives the best convergence.
In addition, note that for constant step size, the importance
sampling variants depend on the accuracy ε. From Figure 2
we can see that before the error reaches the required accu-
racy, the importance sampling variants are comparable or
better than their coresponding uniform sampling variants.

6.3. Sum-of-non-convex functions

In Figure 3, our goal is to illustrate that Theorem 3.1
holds even if the functions fi are non convex. This ex-
periment is based on the experimental setup given in (Allen-
Zhu & Yuan, 2016). We first generate random vec-
tors a1, . . . , an, b ∈ Rd from U(0, 10) and set A :=
1
n

∑n
i=1 aia

>
i . Then we consider the problem:

min
x
f(x) = 1

2n

∑n
i=1 x

>(aia
>
i +Di)x+ b>x,

where Di, i ∈ [n] are diagonal matrices satisfying D :=
D1 + · · ·+Dn = 0. In particular, to guarantee that D = 0,
we randomly select half of the matrices and assign their
j-th diagonal value (Di)jj equal to 11; for the other half
we assign (Di)jj to be −11. We repeat that for all diagonal
values. Note that under this construction, each fi is a non-
convex function. Once again, in the first plot we observe that
while both are equally fast in the beginning, the decreasing
stepsize variant is better at reaching higher accuracy than the
fixed stepsize variant. In the second plot we see, as expected,
that all four minibatch versions of SGD outperform single
element SGD. However, while the τ -nice and τ -independent
samplings with τ = n/5 lead to a slight improvement only,
the theoretically optimal choice τ = τ∗ leads to a vast
improvement.
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