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Abstract

Amongst the very first variance reduced stochastic methods for solving the empiri-
cal risk minimization problem was the SVRG method [11]. SVRG is an inner-outer
loop based method, where in the outer loop a reference full gradient is evaluated,
after which m ∈ N steps of an inner loop are executed where the reference gradient
is used to build a variance reduced estimate of the current gradient. The simplicity
of the SVRG method and its analysis has lead to multiple extensions and variants
for even non-convex optimization. Yet there is a significant gap between the param-
eter settings that the analysis suggests and what is known to work well in practice.
Our first contribution is that we take several steps here towards closing this gap. In
particular, the current analysis shows that m should be of the order of the condition
number so that the resulting method has a favourable complexity. Yet in practice
m = n works well irregardless of the condition number, where n is the number of
data points. Furthermore, the current analysis shows that the inner iterates have to
be reset using averaging after every outer loop. Yet in practice SVRG works best
when the inner iterates are updated continuously and not reset. We provide an anal-
ysis of these aforementioned practical settings and show that they achieve the same
favourable complexity as the original analysis (with slightly better constants). Our
second contribution is to provide a more general analysis than had been previously
done by using arbitrary sampling, which allows us to analyse virtually all forms
of mini-batching through a single theorem. Since our setup and analysis reflects
what is done in practice, we are able to set the parameters such as the mini-batch
size and step size using our theory in such a way that produces a more efficient
algorithm in practice, as we show in extensive numerical experiments.

Preprint. Under review.
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1 Introduction

Consider the problem of minimizing a µ–strongly convex and L–smooth function f where

x∗ = arg min
x∈Rd

1

n

n∑
i=1

fi(x) =: f(x), (1)

and each fi is convex and Li–smooth. Several training problems in machine learning fit this format,
e.g. least-squares, logistic regressions and conditional random fields. Typically each fi represents a
regularized loss of an ith data point. When n is large, algorithms that rely on full passes over the
data, such as gradient descent, are no longer competitive. Instead, the stochastic version of gradient
descent SGD [22] is often used since it requires only a mini-batch of data to make progress towards
the solution. However, SGD suffers from high variance, which keeps the algorithm from converging
unless a carefully often hand-tuned decreasing sequence of stepsizes is chosen. This often results in a
cumbersome parameter tuning and a slow convergence.

To address this issue, many variance reduced methods have been designed in recent years including
SAG [23], SAGA [5] and SDCA [24] that require only a constant stepsize to achieve linear conver-
gence. In this paper, we are interested in variance reduced methods with an inner-out loop structure,
such as S2GD [12], SARAH [18], L-SVRG [14] and the orignal SVRG [11] algorithm. Here we
present not only a more general analysis that allows for any mini-batching strategy, but also a more
practical analysis, by analysing methods that are based on what works in practice, and thus providing
an analysis that can inform practice.

2 Background and Contributions
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Figure 1: Left: the total complexity (3) for random
Gaussian data, right: the step size (4) as b increases.

Convergence under arbitrary samplings.
We give the first arbitrary sampling conver-
gence results for SVRG type methods in
the convex setting1. That is our analysis in-
cludes all forms of sampling including mini-
batching and importance sampling as a spe-
cial case. To better understand the signifi-
cance of this result, we use mini-batching b
elements without replacement as a running
example throughout the paper. With this sam-
pling the update step of SVRG, starting from
x0 = w0 ∈ Rd, takes the form of

xt+1 = xt − α

(
1

b

∑
i∈B
∇fi(xt)−

1

b

∑
i∈B
∇fi(ws−1) +∇f(ws−1)

)
, (2)

where α > 0 is the stepsize, B ⊆ [n]
def
= {1, . . . , n} and b = |B|. Here ws−1 is the reference point

which is updated after m ∈ N steps, the xt’s are the inner iterates and m is the loop length. As
a special case of our forthcoming analysis in Corollary 4.1, we show that the total complexity of
the SVRG method based on (2) to reach an ε > 0 accurate solution has a simple expression which
depends on n, m, b, µ, L and Lmax

def
= maxi∈[n] Li:

Cm(b)
def
= 2

( n
m

+ 2b
)

max

{
3

b

n− b
n− 1

Lmax

µ
+
n

b

b− 1

n− 1

L

µ
,m

}
log

(
1

ε

)
, (3)

so long as the stepsize is

α =
1

2

b(n− 1)

3(n− b)Lmax + n(b− 1)L
. (4)

By total complexity we mean the total number of individual∇fi gradients evaluated. This shows that
the total complexity is a simple function of the loop length m and the mini-batch size b. See Figure 1
for an example for how total complexity evolves as we increase the mini-batch size.

1SVRG has very recently been analyzed under arbitrary samplings in the non-convex setting [10].
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Optimal mini-batch and step sizes for SVRG. The size of the mini-batch b is often left as a
parameter for the user to choose or set using a rule of thumb. The current analysis in the literature for
mini-batching shows that when increasing the mini-batch size b, while the iteration complexity can
decrease2, the total complexity increases or is invariate. See for instance results in the nonconvex
case [19, 21], and for the convex case [9], [13], [1] and finally [15] where one can find the iteration
complexity of several variants of SVRG with mini-batching. However, in practice, mini-batching
can often lead to faster algorithms. In contrast our total complexity (3) clearly highlights that when
increasing the mini batch size, the total complexity can decrease and the stepsize increases, as can
be seen in our plot of (3) and (4) in Figure 1. Furthermore Cm(b) is a convex function in b which
allows us to determine the optimal mini-batch a priori. For m = n, a widely used loop length
in practice, the optimal mini-batch size, depending on the problem setting, is given in Table 1.
Moreover, we can also determine the optimal loop length The reason we were able to achieve these

n ≤ L
µ

L
µ < n < 3Lmax

µ n ≥ 3Lmax

µ

Lmax ≥ nL
3 Lmax <

nL
3 Lmax ≥ nL

3 Lmax <
nL
3

n

⌊
b̂
⌋ ⌊

b̃
⌋ ⌊

min{b̂, b̃}
⌋

1

Table 1: Optimal mini-batch sizes for Algortithm 1 with m = n. The last line presents the optimal
mini-batch sizes depending on all the possible problem settings, which are presented in the first two

lines. Notations: b̂ =
√

n
2

3Lmax−L
nL−3Lmax

, b̃ = (3Lmax−L)n
n(n−1)µ−nL+3Lmax

.

new tighter mini-batch complexity bounds was by using the recently introduced concept of expected
smoothness [8] alongside a new constant we introduce in this paper called the expected residual
constant. The expected smoothness and residual constants, which we present later in Lemmas 4.1
and 4.2, show how mini-batching (and arbitrary sampling in general) combined with the smoothness
of our data can determine how smooth in expectation our resulting mini-batched functions are. The
expected smoothness constant has been instrumental in providing a tight mini-batch analysis for
SGD [7], SAGA [6] and now SVRG.

New practical variants. We took special care so that our analysis allows for practical parameter
settings. In particular, often the loop length is set to m = n or m = n/b in the case of mini-batching3.
And yet, the classical SVRG analysis given in [11] requires m ≥ 20Lmax/µ in order to ensure
a resulting iteration complexity of O((n + Lmax/µ) log(1/ε)). Furthermore, the standard SVRG
analysis relies on averaging the xt inner iterates after every m iterations of (2), yet this too is not
what works well in practice4. To remedy this, we propose Free-SVRG, a variant of SVRG where
the inner iterates are not averaged at any point. Furthermore, by developing a new Lyapunov style
convergence for Free-SVRG, our analysis holds for any choice of m, and in particular, for m = n we
show that the resulting complexity is also given by O((n+ Lmax/µ) log(1/ε)).

The only downside of Free-SVRG is that the reference point is set using a weighted averaging based
on the strong convexity parameter. To further fix this issue, we introduce L-SVRG-D, an improved
variant of Loopless-SVRG [14] that has no explicit inner-loop structure and instead updates the
reference point based on a coin toss. L-SVRG-D requires no knowledge of the strong convexity

2Note that the total complexity is equal to the iteration complexity times the mini-batch size b.
3See for example the lightning package from scikit-learn [20]: http://contrib.scikit-learn.org/lightning/ and

[18] for examples where m = n. See [2] for an example where m = 5n/b.
4Perhaps an exception to the above issues in the literature is the Katyusha method and its analysis [1], which

is an accelerated variant of SVRG. In [1] the author shows that using a loop length m = 2n and by not averaging
the inner iterates, the Katyusha method achieves the accelerated complexity ofO((n+

√
(nLmax)/µ) log(1/ε)).

Though a remarkable advance in the theory of accelerated methods, the analysis in [1] does not hold for the
unaccelerated case. This is important since, contrary to the name, the accelerated variants of stochastic methods
are not always faster than their non-accelerated counterparts. Indeed, acceleration only helps in the stochastic
setting when Lmax/µ ≥ n, in other words for problems that are sufficiently ill-conditioned.

3
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parameter and no averaging whatsoever, and achieves the same complexity as Free-SVRG, albeit at
the cost of introducing more variance into the procedure due to the coin toss.

3 Assumptions and Sampling

We collect all of the assumptions we use in the following.
Assumption 3.1. There exist L ≥ 0 and µ ≥ 0 such that for all x, y ∈ Rd,

f(x) ≤ f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖22 , (5)

f(x) ≤ f(y) + 〈∇f(x), x− y〉 − µ

2
‖x− y‖22 . (6)

We say that f is L–smooth (5) and µ–strongly convex (6). Moreover, for all i ∈ [n], fi is convex and
there exists Li ≥ 0 such that fi is Li–smooth.

So that we can analyse all forms of mini-batching simulanously through arbitrary sampling we make
use of a sampling vector.
Definition 3.1 (The sampling vector). We say that the random vector v = [v1, . . . , vn] ∈ Rn with
distribution D is a sampling vector if ED [vi] = 1 for all i ∈ [n].

With a sampling vector we can compute an unbiased estimate of f(x) and ∇f(x) via

fv(x)
def
=

1

n

n∑
i=1

vifi(x) and ∇fv(w)
def
=

1

n

n∑
i=1

vi∇fi(x). (7)

Indeed these are unbiased estimators since

ED [fv(x)] =
1

n

n∑
i=1

ED [vi] fi(x) =
1

n

n∑
i=1

fi(x) = f(x). (8)

Likewise we can show that ED [∇fv(x)] = ∇f(x). Computing∇fv is cheaper than computing the
full gradient ∇f whenever v is a sparse vector. In particular, this is the case when the support of v is
based on a mini-batch sampling.
Definition 3.2 (Sampling). A sampling S ⊆ [n] is any random set-valued map which is uniquely

defined by the probabilities
∑
B⊆[n] pB = 1 where pB

def
= P(S = B), ∀B ⊆ [n]. A sampling S is

called proper if for every i ∈ [n], we have that pi
def
= P [i ∈ S] =

∑
C:i∈C

pC > 0.

We can build a sampling vector using sampling as follows.

Lemma 3.1 (Sampling vector). Let S be a proper sampling. Let pi
def
= P [i ∈ S] and P

def
=

Diag (p1, . . . , pn). Let v = v(S) be a random vector defined by

v(S) = P−1
∑
i∈S

ei
def
= P−1eS . (9)

It follows that v is a sampling vector.

Proof. The i-th coordinate of v(S) is vi(S) = 1(i ∈ S)/pi and thus

E [vi(S)] =
E [1(i ∈ S)]

pi
=

P [i ∈ S]

pi
= 1.

Our forthcoming analysis holds for all samplings. However, we will pay particular attention to b-nice
sampling, otherwise known as mini-batching without replacement, since it is often used in practice.
Definition 3.3 (b-nice sampling). S is a b-nice sampling if it is sampling such that

P [S = B] =
1(
n
b

) , ∀B ⊆ [n], with |B| = b.

4



To construct such a sampling vector based on the b–nice sampling, note that pi = b
n for all i ∈ [n] and

thus we have that v(S) = n
b

∑
i∈S ei according to Lemma 3.1. The resulting subsampled function is

then fv(x) = 1
|S|
∑
i∈S fi(x), which is simply the mini-batch average over S.

Using arbitrary sampling also allows us to consider non-uniform samplings, and for completeness,
we present this sampling and several others in Appendix D.

4 Free-SVRG: freeing up the inner loop size

Similarly to SVRG, Free-SVRG is an inner-outer loop variance reduced algorithm. It differs from the
original SVRG [11] on two major ponts: how the reference point is reset and how the first iterate of
the inner loop is defined, see Algorithm 1.

First, in SVRG, the reference point is the average of the iterates of the inner loop. Thus, old iterates
and recent iterates have equal weights in the average. This is counterintuitive as one would expect
that to reduce the variance of the gradient estimate used in (2), one needs a reference point which is
closer to the more recent iterates. This is why, inspired by [17], we use the weighted averaging in
Free-SVRG given in (10), which gives more importance to recent iterates compared to old ones.

Second, in SVRG, the first iterate of the inner loop is reset to the reference point. Thus, the inner
iterates of the algorithm are not updated using a one step recurrence. In contrast, Free-SVRG defines
the first iterate of the inner loop as the last iterate of the previous inner loop, as is also done in practice.
These changes and a new Lyapunov function analysis is what allows us to freely choose the size of
the inner loop5. To declutter the notation, we define for a given step size α > 0:

Sm
def
=

m−1∑
i=0

(1− αµ)m−1−i and pt
def
=

(1− αµ)m−1−t

Sm
, for t = 0, . . . ,m− 1. (10)

Algorithm 1 Free-SVRG
Parameters inner-loop length m, step size α, a sampling vector v ∼ D, and pt defined in (10)
Initialization w0 = xm0 ∈ Rd

for s = 1, 2, . . . do
x0s = xms−1
for t = 0, 1, . . . ,m− 1 do

Sample vt ∼ D
gts = ∇fvt(xts)−∇fvt(ws−1) +∇f(ws−1)
xt+1
s = xts − αgts

ws =
∑m−1
t=0 ptx

t
s

4.1 Convergence analysis

Our analysis relies on two important constants called the expected smoothness constant and the
expected residual constant. Their existence is a result of the smoothness of the function f and that of
the individual function fi, i ∈ [n].

Lemma 4.1 (Expected smoothness. Theorem 3.6 in [7]). Let v ∼ D be a sampling vector and
assume that Assumption 3.1 holds. There exists L ≥ 0 such that for all x ∈ Rd,

ED
[
‖∇fv(x)−∇fv(x∗)‖22

]
≤ 2L (f(x)− f(x∗)) . (11)

Lemma 4.2 (Expected residual. Lemma F.1). Let v ∼ D be a sampling vector and assume that
Assumption 3.1 holds. There exists ρ ≥ 0 such that for all x ∈ Rd,

ED
[
‖∇fv(x)−∇fv(x∗)−∇f(x)‖22

]
≤ 2ρ (f(x)− f(x∗)) . (12)

5Hence the name of our method free-SVRG.

5



For completeness, the proof of Lemma 4.1 is given in Lemma E.1 in the supplementary material. The
proof of Lemma F.1 is also given in the supplementary material, in Lemma F.1. Indeed, all proofs are
deferred to the supplementary material.

Though Lemma 4.1 establishes the existence of the expected smoothness L, it was only very recently
that a tight estimate of L was conjectured in [6] and proven in [7]. In particular, for our working
example of b–nice sampling, we have that the constants L and ρ have simple closed formulae that
depend on b.
Lemma 4.3 (L and ρ for b-nice sampling). Let v be a sampling vector based on the b–nice sampling.
It follows that.

L = L(b)
def
=

1

b

n− b
n− 1

Lmax +
n

b

b− 1

n− 1
L, (13)

ρ = ρ(b)
def
=

1

b

n− b
n− 1

Lmax. (14)

The reason that the expected smoothness and expected residual constants are so useful in obtaining
a tight mini-batch analysis is because, as the mini-batch size b goes from n to 1, L(b) (resp. ρ(b))
gracefully interpolates between the smoothness of the full function L(n) = L (resp. ρ(n) = 0), and
the smoothness of the individual fi functions L(1) = Lmax (resp ρ(1) = Lmax). Also, we can bound
the second moment of a variance reduced gradient estimate using L and ρ as follows.
Lemma 4.4. Let Assumption 3.1 hold. Let x,w ∈ Rd and v ∼ D be sampling vector. Consider

g(x,w)
def
= ∇fv(x)−∇fv(w) +∇f(w). As a consequence of (11) and (12) we have that

ED
[
‖g(x,w)‖22

]
≤ 4L(f(x)− f(x∗)) + 4ρ(f(w)− f(x∗)). (15)

Next we present a new Lyaponuv style convergence analysis through which we will establish the
convergence of the iterates and the function values simultaneously.
Theorem 4.1. Consider the setting of Algorithm 1 and the following Lyapunov function

φs
def
= ‖xms − x∗‖

2
2 + ψs where ψs

def
= 8α2ρSm(f(ws)− f(x∗)). (16)

If Assumption 3.1 holds and if α ≤ 1
2(L+2ρ) , then

E [φs] ≤ βsφ0, where β = max
{

(1− αµ)m, 12
}
. (17)

4.2 Total complexity for b–nice sampling

To gain better insight into the convergence rate stated in Theorem 4.1, we present the total complexity
of Algorithm 1 when v is defined via the b–nice sampling introduced in Definition 3.3.
Corollary 4.1. Consider the setting of Algorithm 1 and suppose that we use b–nice sampling. Let
α = 1

2(L(b)+2ρ(b)) , where L(b) and ρ(b) are given in (13) and (14). We have that the total complexity

of finding an ε > 0 approximate solution that satisfies E
[
‖xms − x∗‖

2
2

]
≤ ε φ0 is

Cm(b)
def
= 2

( n
m

+ 2b
)

max

{
L(b) + 2ρ(b)

µ
,m

}
log

(
1

ε

)
. (18)

Now (3) results from plugging (13) and (14) into (18). As an immediate sanity check, we check the
two extremes b = n and b = 1. When b = n we would expect to recover the iteration complexity of
gradient descent, as we do in the next corollary6.
Corollary 4.2. Consider the setting of Corollary 4.1 with b = n and m = 1, thus α =

1
2(L(n)+2ρ(n)) = 1

2L . Hence, the resulting total complexity (18) is given by C1(n) = 6nLµ log
(
1
ε

)
.

In practice, the most common setting is choosing b = 1 and the size of the inner loop m = n. Here
we recover a complexity that is common to other non-accelerated algorithms [23], [5], [12], and for a
range of values of m including m = n.

6Though the resulting complexity is 6 times the tightest gradient descent complexity, it is of the same order.
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Corollary 4.3. Consider the setting of Corollary 4.1 with b = 1 and thus α = 1
2(L(1)+2ρ(1) = 1

6Lmax
.

Hence the resulting total complexity (18) is given by Cm(1) = 18
(
n+ Lmax

µ

)
log
(
1
ε

)
, so long as

m ∈
[
min(n, Lmax

µ ),max(n, Lmax

µ )
]
.

Thus total complexity is essentially invariant for m = n, m = Lmax/µ and everything inbetween.

5 L-SVRG-D: a decreasing step size approach

Although Free-SVRG solves multiple issues regarding the construction and analysis of SVRG, it still
suffers from an important issue: it requires the knowledge of the strong convexity constant, as is the
case for the original SVRG algorithm [11]. One can of course use an explicit small regularization
parameter as a proxy, but this can result in a slower algorithm.

Recently a new loopless variant of SVRG was proposed and analysed in [14]. At each iteration, their
method makes a coin toss. With (a low) probability p, typically 1

n , the reference point is reset to a
recent iterate, and with probability 1− p, the reference point remains the same. This method does
not require knowledge of the strong convexity constant.

Our method, L-SVRG-D, uses the same loopless structure as in [14] but introduces different step
sizes at each iteration, see Algorithm 2. We initialize the step size to a fixed value α > 0. At each
iteration we toss a coin, and if it lands heads (with probability 1 − p) the step size decreases by a
factor

√
1− p. If it lands tails (with probability p) the reference point is reset to the most recent

iterate and the stepsize is reset to its initial value α.

This allows us to take larger steps than L-SVRG when we update the reference point, i.e., when
the variance of the unbiased estimate of the gradient is low, and smaller steps when this variance
increases.

Algorithm 2 L-SVRG-D
Parameters step size α, p ∈ (0, 1], and a sampling vector v ∼ D
Initialization w0 = x0 ∈ Rd, α0 = α
for k = 0, 1, 2, . . . do

Sample vk ∼ D
gk = ∇fvk(xk)−∇fvk(wk) +∇f(wk)
xk+1 = xk − αkgk

(wk+1, αk+1) =

{
(xk, α) with probability p
(wk,

√
1− p αk) with probability 1− p

Theorem 5.1. Consider the iterates of Algorithm 2 and the following Lyapunov function

φk
def
=
∥∥xk − x∗∥∥2

2
+ ψk where ψk

def
=

8α2
kL

p(3− 2p)

(
f(wk)− f(x∗)

)
, ∀k ∈ N. (19)

If Assumption 3.1 holds and

α ≤ 1

2ζpL
, where ζp

def
=

(7− 4p)(1− (1− p) 3
2 )

p(2− p)(3− 2p)
, (20)

then

E
[
φk
]
≤ βkφ0, where β = max

{
1− 2

3
αµ, 1− p

2

}
. (21)

Remark 5.1. To get a sense for the size of the step size given in (20), it is easy to show that ζp is an
increasing function of p such that 7/4 ≤ ζp ≤ 3. Since typically p ≈ 0, we often take a step which
is approximately α ≤ 2/(7L).

Corollary 5.1. Consider the setting of Algorithm 2 and suppose that we use b–nice sampling. Let
α = 1

2ζpL(b) . We have that the total complexity of finding an ε > 0 approximate solution that satisfies

7



E
[∥∥xk − x∗∥∥2

2

]
≤ ε φ0 is

Cp(b)
def
= 2(2b+ pn) max

{
3ζp
2

L(b)

µ
,

1

p

}
log

(
1

ε

)
. (22)

6 Optimal parameter settings: loop, mini-batch and step sizes

In this section, we restrict our analysis to b–nice sampling. First, we will determine the optimal loop
size for Algorithm 1. Then, we will examine the optimal mini-batch and step sizes for particular
choices of the inner loop size m for Algorithm 1 and of the probability of the reference point’s update
p in Algorithm 2, that play analogous roles. Note that the steps used in our algorithms depend on
b through the expected smoothness constant L(b) and the expected residual constant ρ(b). Hence,
optimizing the total complexity in the mini-batch size also determines the optimal step size.

Examining the complexities of Algorithms 1 and 2, given in (18) and (22), we can see that, setting
p = 1/m in Algorithm 2, these complexities only differ by constants. Thus, to avoid redundancy, we
present the optimal mini-batch sizes for Algorithm 2 in Appendix C and we will only consider here
the complexity of Algorithm 1 given in (18).

6.1 Optimal loop size for Algorithm 1

Here we determine the optimal value ofm for a fixed batch size b, denoted bym∗(b), which minimizes
the total complexity (18).
Proposition 6.1. The loop size that minimizes (18) and the resulting total complexity is given by

m∗(b) =
L(b) + 2ρ(b)

µ
and Cm∗(b) = 2

(
n+ 2b

L(b) + 2ρ(b)

µ

)
log

(
1

ε

)
. (23)

For example when b=1, we have thatm∗(1) = 3Lmax/µ andCm∗(1) = O((n+Lmax/µ) log(1/ε)),
which is the same complexity as achieved by the range of m values given in Corollary 4.3. Thus,
as we also observed in Corollary 4.3, the total complexity is not very sensitive to the choice of m,
and m = n is a perfectly safe choice as it achieves the same complexity as m∗. We also confirm this
numerically with a series of experiments in Section G.3.

6.2 Optimal mini-batch and step sizes

In the following proposition, we determine the optimal mini-batch and step sizes for two practical
choices of the size of the loop m.

Proposition 6.2. Let b∗
def
= arg min

b∈[n]
Cm(b), where Cm(b) is defined in (18). For the widely used

choice m = n, we have that b∗ is given by Table 1. For another widely used choice m = n/b, which
allows to make a full pass over the data during each inner loop, we have

b∗ =


⌊
b̄
⌋

if n > 3Lmax

µ

1 if 3Lmax

L < n ≤ 3Lmax

µ

n otherwise, if n ≤ 3Lmax

L

, where b̄
def
=
n(n− 1)µ− 3n(Lmax − L)

3(nL− Lmax)
.(24)

Previously theory showed that the total complexity would increase as the mini-batch size increased,
and thus established that single-element sampling was optimal. However, notice that for m = n and
m = n/b, the usual choices for m in practice, the optimal mini-batch size is different than 1 for a
range of problem settings. Since our algorithms are closer to the SVRG variants used in practice, we
argue that our results explain why mini-batching works in practice, as we verify in the next section.

7 Experiments

We performed a series of experiments on data sets from LIBSVM [4] and the UCI repository [3], to
validate our theoretical findings. We tested l2–regularized logistic regression on ijcnn1 and real-sim,
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and ridge regression on slice and YearPredictionMSD. We used two choices for the regularizer:
λ = 10−1 and λ = 10−3. All of our code is implemented in Julia 1.0. Due to lack of space, most
figures have been relegated to Section G in the supplementary material.

SVRG (b= 1,m= 20Lmax/μ) Free-SVRG (b= 1,m= n) L-SVRG-D (b= 1, p= 1/n)
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Figure 2: Algorithms comparison with theoretical settings on the ijcnn1 data set with λ = 10−3.
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Mini-batch size b
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b= b * (n) = 31,α * (b) = 9.31e− 05
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b= b * (n) = 31,α * (b) = 9.31e− 05

Figure 3: Impact of the mini-batch size on Free-SVRG, slice data set with λ = 10−1.

Practical theory. Our first round of experiments aimed at verifying if our theory does indeed result
in more practical algorithms. Indeed, we found that Free-SVRG and L-SVRG-D with the parameter
setting given by our theory are often faster than SVRG with settings suggested by the theory in [11],
that is m = 20Lmax/µ and α = 1/10Lmax, see Figure 2, and Section G.1 for more experiments
comparing different theoretical parameter settings.

Optimal mini-batch size. We also confirmed numerically that when using Free-SVRG withm = n,
the optimal mini-batch size b∗ derived in Table 1 was highly competitive as compared to the range of
mini-batch sizes b ∈ {1, 100,

√
n, n}, see Figure 3 and several more such experiments in Section G.2.
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In Section A we present general properties that are used in our proofs. In Section B, we present the
proofs for the convergence and the complexities of our algorithms. In Section D, we define several
samplings. In Section E, we present the expected smoothness constant for the samplings we present.
In Section F, we present the expected smoothness constant for the samplings we present.

A General properties

Lemma A.1. ∀a, b ∈ Rd, ‖a+ b‖22 ≤ 2‖a‖22 + 2‖b‖22.
Lemma A.2. For any random vector X ∈ Rd,E

[
‖X − E [X] ‖22

]
= E

[
‖X‖22

]
− ‖E [X] ‖22 ≤

E
[
‖X‖22

]
.

Lemma A.3. For any convex function f , we have

f(y) ≥ f(x) +∇f(x)>(x− y) ∀x, y ∈ Rd.

Lemma A.4 (Logarithm inequality).
log(x) ≤ x− 1 ∀x > 0. (25)

Lemma A.5 (Complexity bounds). Consider the sequence (αk)k ∈ R+ of positive scalars that
converges to 0 according to

αk ≤ ρkα0,

where ρ ∈ [0, 1). For a given ε ∈ (0, 1), we have that

k ≥ 1

1− ρ
log

(
1

ε

)
=⇒ αk ≤ εα0. (26)

Lemma A.6. Consider convex and Li–smooth functions fi, where Li ≥ 0 for all i ∈ [n], and define
Lmax = maxi∈[n] Li. Let

f(x) =
1

n

n∑
i=1

fi(x)

for any x ∈ Rd. Suppose that f is L–smooth, where L ≥ 0. Then,
nL ≥ Lmax. (27)

Proof. Let x, y ∈ Rd. Since f is L–smooth, we have

f(x) ≤ f(y) +∇f(y)>(x− y) +
L

2
‖x− y‖22 .

Hence, multiplying by n on both sides,
n∑
i=1

fi(x) ≤
n∑
i=1

fi(y) +

n∑
i=1

∇fi(y)>(x− y) +
nL

2
‖x− y‖22 .

Rearranging this inequality,
n∑
i=1

(
fi(x)− fi(y)−∇fi(y)>(x− y)

)
≤ nL

2
‖x− y‖22 . (28)

Since the functions fi are convex, we have for all i ∈ [n],

fi(x)− fi(y)−∇fi(y)>(x− y) ≥ 0.

Then, as a consequence of (28), we have that for all i ∈ [n],

fi(x)− fi(y)−∇fi(y)>(x− y) ≤ nL

2
‖x− y‖22 .

Rearranging this inequality,

fi(x) ≤ fi(y) +∇fi(y)>(x− y) +
nL

2
‖x− y‖22 .

But since for all i ∈ [n], Li is the smallest positive constant that verifies

fi(x) ≤ fi(y) +∇fi(y)>(x− y) +
Li
2
‖x− y‖22 ,

we have for all i ∈ [n], Li ≤ nL. Hence Lmax ≤ nL.
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B Proofs of the results of the main paper

In this section, we will use the abreviations Et [X]
def
= E

[
X|xt, . . . , x1

]
for any random variable

X ∈ Rd and iterates (xt)t≥0.

B.1 Proof of Lemma 4.4

Proof.

ED
[
‖g(x,w)‖22

]
= ED

[
‖∇fv(x)−∇fv(x∗) +∇fv(x∗)−∇fv(w) +∇f(w)‖22

]
Lem. A.1
≤ 2ED

[
‖∇fv(x)−∇fv(x∗)‖22

]
+2ED

[
‖∇fv(w)−∇fv(x∗)−∇f(w)‖22

]
.

Since ED [∇fv(w)−∇fv(x∗)] = ∇f(w), we have

ED
[
‖∇fv(w)−∇fv(x∗)−∇f(w)‖22

] Lem.A.2
≤ ED

[
‖∇fv(w)−∇fv(x∗)‖22

]
.

Hence,

ED
[
‖g(x,w)‖22

]
≤ 2ED

[
‖∇fv(x)−∇fv(x∗)‖22

]
+ 2ED

[
‖∇fv(w)−∇fv(x∗)‖22

]
(11)+(12)
≤ 4L(f(x)− f(x∗)) + 4ρ(f(w)− f(x∗)).

B.2 Proof of Theorem 4.1

Proof.

Et
[
‖xt+1

s − x∗‖22
]

= Et
[
‖xts − x∗ − αgts‖22

]
= ‖xts − x∗‖22 − 2αEt

[
gts
]>

(xts − x∗) + α2Et
[
‖gts‖22

]
(8)+(15)
≤ ‖xts − x∗‖22 − 2α∇f(xts)

>(xts − x∗)
+2α2

[
2L(f(xts)− f(x∗)) + 2L(f(ws−1)− f(x∗))

]
(6)
≤ (1− αµ) ‖xts − x∗‖22 − 2α(1− 2αL)

(
f(xts)− f(x∗)

)
+4α2ρ(f(ws−1)− f(x∗)). (29)

Note that since α ≤ 1
2(L+2ρ) and ρ ≥ 0, we have that

α
Lemma E.3
≤ 1

2µ
,
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and consequently (1 − αµ) > 0. Thus by iterating (29) over t = 0, . . . ,m − 1 and taking the
expectation, since x0s = xms−1, we obtain

E
[
‖xms − x∗‖22

]
≤ (1− αµ)

m E
[
‖xms−1 − x∗‖22

]
−2α(1− 2αL)

m−1∑
t=0

(1− αµ)
m−1−t E

[
f(xts)− f(x∗)

]
+4α2ρE [f(ws−1)− f(x∗)]

m−1∑
t=0

(1− αµ)
m−1−t

(10)
= (1− αµ)

m E
[
‖xms−1 − x∗‖22

]
− 2α(1− 2αL)Sm

m−1∑
t=0

ptE
[
f(xts)− f(x∗)

]
+4α2ρSmE [f(ws−1)− f(x∗)]

(16)
= (1− αµ)

m E
[
‖xms−1 − x∗‖22

]
− 2α(1− 2αL)Sm

m−1∑
t=0

ptE
[
f(xts)− f(x∗)

]
+

1

2
E [ψs−1] . (30)

Since f is convex, we have by Jensen’s inequality that

f(ws)− f(x∗) = f(

m−1∑
t=0

ptx
t
s)− f(x∗)

≤
m−1∑
t=0

pt(f(xts)− f(x∗)). (31)

Consequently,

E [ψs]
(16)+(31)
≤ 8α2ρSm

m−1∑
t=0

ptE
[
(f(xts)− f(x∗))

]
. (32)

As a result,

E [φs]
(30)+(32)
≤ (1− αµ)

m E
[
‖xms−1 − x∗‖22

]
+

1

2
E [ψs−1]

−2α(1− 2α(L+ 2ρ))Sm

m−1∑
t=0

ptE
[
(f(xts)− f(x∗))

]
.

Since α ≤ 1
6L , the above implies

E [φs] ≤ (1− αµ)
m E

[
‖xms−1 − x∗‖22

]
+

1

2
E [ψs−1]

≤ βE [φs−1] ,

where β = max{(1− αµ)m, 12}.

Moreover, if we set ws = xts with probability pt, for t = 0, . . . ,m− 1, the result would still hold.
Indeed (31) would hold with equality and the rest of the proof would follow verbatim.

B.3 Proof of Corollary 4.1

Proof. Noting β = max
{(

1− µ
2(L(b)+2ρ(b))

)m
, 12

}
, we need to chose s so that βs ≤ ε, that is

s ≥ log(1/ε)
log(1/β) . Since in each inner iteration we evaluate 2b of the fi gradients, and in each outer
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iteration we evaluate all n gradients, this means that the total complexity will be given by

C
def
= (n+ 2bm)

log(1/ε)

log(1/β)

= max{− n+ 2bm

m log(1− µ
2(L(b)+2ρ(b)) )

,
n+ 2bm

log 2
} log

(
1

ε

)
(25)
≤ max{n+ 2bm

m

2(L(b) + 2ρ(b))

µ
, 2(n+ 2bm)} log

(
1

ε

)
.

B.4 Proof of Corollary 4.3

Proof. Recall that from (18), using the fact that L(1) = ρ(1) = Lmax, we have

Cm(1) = 2
( n
m

+ 2
)

max{3Lmax

µ
,m} log

(
1

ε

)
.

When n ≥ Lmax

µ . Then, m ∈
[
Lmax

µ , n
]
. We can rewrite Cm(1) as

Cm(1) = 2(n+ 2m) max{ 1

m

3Lmax

µ
, 1} log

(
1

ε

)
.

We have 1
m

3Lmax

µ ≤ 3 and n+ 2m ≤ 3n. Hence,

Cm(1) ≤ 18n log

(
1

ε

)
= O

((
n+

Lmax

µ

)
log

(
1

ε

))
.

When n ≤ Lmax

µ . Then, m ∈
[
n, Lmax

µ

]
. We have n

m ≤ 1 and m ≤ 3Lmax

µ . Hence,

Cm(1) ≤ 18Lmax

µ
log

(
1

ε

)
= O

((
n+

Lmax

µ

)
log

(
1

ε

))
.

B.5 Proof of Theorem 5.1

Before analyzing Algorithm 2, we present a lemma that allows to compute the expectations E [αk]
and E

[
α2
k

]
, that will be used in the analysis.

Lemma B.1. Consider the step sizes defined by Algorithm 2. We have

E [αk] =
(1− p) 3k+2

2 (1−
√

1− p) + p

1− (1− p) 3
2

α. (33)

E
[
α2
k

]
=

1 + (1− p)2k+1

2− p
α2. (34)

Proof. Taking expectation with respect to the filtration induced by the sequence of step sizes
{α1, . . . , αk}

Ep [αk+1] = (1− p)
√

1− p αk + pα. (35)

Then taking total expectation

E [αk+1] = (1− p)
√

1− pE [αk] + pα. (36)

Hence the sequence (E [αk])k≥1 is uniquely defined by

E [αk] =
(1− p) 3k+2

2 (1−
√

1− p) + p

1− (1− p) 3
2

α. (37)
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Indeed, applying (36) recursively gives

E [αk] = (1− p) 3k
2 α+ pα

k−1∑
i=0

(1− p) 3i
2 .

Adding up the geometric series gives

E [αk] = α(1− p) 3k
2 + pα

1− (1− p) 3k
2

1− (1− p) 3
2

=
(1− p) 3k

2 (1− (1− p) 3
2 )− (1− p) 3k

2 p+ p

1− (1− p) 3
2

α .

Which leads to (37) by factorizing. The same arguments are used to compute E
[
α2
k

]
.

We now present a proof of Theorem 5.1.

Proof of Theorem 5.1. First,

Ek
[
‖xk+1 − x∗‖22

]
= Ek

[
‖xk − x∗ − αkgk‖22

]
= ‖xk − x∗‖22 − 2αkEk

[
gk
]>

(xk − x∗) + α2
kEk

[
‖gk‖22

]
(8)+(15)
≤ ‖xk − x∗‖22 − 2αk∇f(xk)>(xk − x∗)

+2α2
k

[
2L(f(xk)− f(x∗)) + 2L(f(wk)− f(x∗))

]
(6)
≤ (1− αkµ) ‖xk − x∗‖22 − 2αk(1− 2αkL)

(
f(xk)− f(x∗)

)
+4α2

kL(f(wk)− f(x∗))
(19)
= (1− αkµ) ‖xk − x∗‖22 − 2αk(1− 2αkL)

(
f(xk)− f(x∗)

)
+p

(
3

2
− p
)
ψk.

Hence we have, taking total expectation and noticing that the variables αk and xk are independent,

E
[∥∥xk+1 − x∗

∥∥2
2

]
≤ (1− E [αk]µ) E

[∥∥xk − x∗∥∥2
2

]
− 2E [αk(1− 2αkL)] E

[
f(xk)− f(x∗)

]
+p

(
3

2
− p
)

E
[
ψk
]
. (38)

We have also have

Ek
[
ψk+1

]
= (1− p)8(1− p)α2

kL
p(3− 2p)

(
f(wk)− f(x∗)

)
+ p

8α2L
p(3− 2p)

(
f(xk)− f(x∗)

)
= (1− p)2ψk +

8α2L
3− 2p

(
f(xk)− f(x∗)

)
.

Hence, taking total expectation gives

E
[
ψk+1

]
= (1− p)2E

[
ψk
]

+
8α2L
3− 2p

E
[
f(xk)− f(x∗)

]
(39)
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Consequently,

E
[
φk
] (38)+(39)

≤ (1− E [αk]µ) E
[∥∥xk − x∗∥∥2

2

]
−2

(
E [αk(1− 2αkL)]− 4

α2L
3− 2p

)
E
[
f(xk)− f(x∗)

]
+
(

1− p

2

)
E
[
ψk
]

= (1− E [αk]µ) E
[∥∥xk − x∗∥∥2

2

]
−2

(
E [αk]− 2

(
E
[
α2
k

]
+

2

3− 2p
α2

)
L
)

E
[
f(xk)− f(x∗)

]
+
(

1− p

2

)
E
[
ψk
]
. (40)

From Lemma B.1, we have E [αk] = (1−p)
3k+2

2 (1−
√
1−p)+p

1−(1−p)
3
2

α, and we can show that for all k

E [αk] ≥ 2

3
α, (41)

Letting q = 1− p we have that

(1− p) 3k+2
2 (1−

√
1− p) + p

1− (1− p) 3
2

=
q

3k+2
2 (1−√q) + 1− q

1− q 3
2

= q
3k+2

2
1−√q
1− q3/2

+
1− q

1− q3/2
≥ 1− q

1− q3/2
∀q ≥ 0.

Consequently,

E
[
φk
] (38)+(39)+(41)

≤
(

1− 2

3
αµ

)
E
[∥∥xk − x∗∥∥2

2

]
−2

(
E [αk]− 2

(
E
[
α2
k

]
+

2

3− 2p
α2

)
L
)

E
[
f(xk)− f(x∗)

]
+
(

1− p

2

)
E
[
ψk
]
. (42)

To declutter the notations, Let us define

ak
def
=

(1− p) 3k+2
2 (1−

√
1− p) + p

1− (1− p) 3
2

(43)

bk
def
=

1 + (1− p)2k+1

2− p
(44)

so that E [αk] = akα and E
[
α2
k

]
= bkα

2. Then (42) becomes

E
[
φk
]
≤

(
1− 2

3
αµ

)
E
[∥∥xk − x∗∥∥2

2

]
−2α

(
ak − 2α

(
bk +

2

3− 2p

)
L
)

E
[
f(xk)− f(x∗)

]
(45)

+
(

1− p

2

)
E
[
ψk
]
. (46)

Next we would like to drop the term (45). For this we need to guarantee that

ak − 2αL
(
bk +

2

3− 2p

)
≥ 0

Let q = 1− p so that the above becomes

q
3k+2

2 (1−√q) + 1− q
1− q 3

2

− 2αL
(

1 + q2k+1

1 + q
+

2

1 + 2q

)
≥ 0.
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In other words, after dividing through by
(

1+q2k+1

1+q + 2
1+2q

)
and re-arranging, we require that

2Lα ≤

q
3k+2

2 (1−√q)+1−q

1−q
3
2

1+q2k+1

1+q + 2
1+2q

=

q
3k+2

2 (1−√q)+1−q

1−q
3
2

(1+q2k+1)(1+2q)+2(1+q)
(1+q)(1+2q)

=
q

3k+2
2 (1−√q) + 1− q

q2k+1(1 + 2q) + 3 + 4q

(1 + q)(1 + 2q)

1− q 3
2

. (47)

We are now going to show that:

q
3k+2

2 (1−√q) + 1− q
q2k+1(1 + 2q) + 3 + 4q

≥ 1− q
3 + 4q

. (48)

Indeed, multiplying out the denominators of the above gives

F (q)
def
= (3 + 4q)

(
q

3k+2
2 (1−√q) + 1− q

)
− (1− q)

(
q2k+1(1 + 2q) + 3 + 4q

)
= q

3k+2
2 (1−√q)(3 + 4q)− q2k+1(1 + 2q)(1− q)

= q
3k+2

2 (1−√q)
(

3 + 4q − q k
2 (1 + 2q)(1 +

√
q)
)
.

And since q
k
2 ≤ 1, we have

F (q) ≥ q
3k+2

2 (1−√q) (3 + 4q − (1 + 2q)(1 +
√
q))

= 2q
3k+2

2 (1−√q)(1− q√q)
≥ 0.

As a result (48) holds, and thus if

2Lα ≤ 1− q
3 + 4q

(1 + q)(1 + 2q)

1− q 3
2

holds, then Equation (47) is verified for all k. This is why we impose the upperbound on the stepsize
given in (20). Finally since (20) ensures that ak − 2α(bk + 2

3−2p )L ≥ 0 and from (46) we have that

E
[
φk+1

] (38)+(39)
≤

(
1− 2

3
αµ

)
E
[∥∥xk − x∗∥∥2

2

]
+
(

1− p

2

)
E
[
ψk
]

≤ βE
[
φk+1

]
, (49)

where β = max{1− 2
3αµ, 1−

p
2}.

B.6 Proof of Corollary 5.1

Proof. We have that
E
[
φk
]
≤ βkφ0,

where β = max
{

1− 1
3ζp

L(b)
µ , 1− p

2

}
. Hence using Lemma A.5, we have that the iteration com-

plexity for an ε > 0 approximate solution that verifies E
[
φk
]
≤ εφ0 is

2 max

{
3ζp
2

L(b)

µ
,

1

p

}
log

(
1

ε

)
.

For the total complexity, one can notice that in expectation, we compute 2b+ pn stochastic gradients
at each iteration.
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B.7 Proof of Proposition 6.1

Proof. Dropping the log(1/ε) for brevity, we distinguish two cases, m ≥ 2(L(b)+2ρ(b))
µ and

m ≤ 2(L(b)+2ρ(b))
µ .

1. m ≥ 2(L(b)+2ρ(b))
µ : Then Cm(b) = 2(n+ 2bm), and hence we should use the smallest m

possible, that is, m = 2(L(b)+2ρ(b))
µ .

2. m ≤ 2(L(b)+2ρ(b))
µ : Then Cm(b) = 2(n+2bm)

m
2(L(b)+2ρ(b))

µ = 2
(
n
m + 2b

) 2(L(b)+2ρ(b))
µ .

Hence Cm(b) is decreasing in m and we should then use the highest possible value for m,
that is m = 2(L(b)+2ρ(b))

µ .

The result now follows by substituting m = 2(L(b)+2ρ(b))
µ into (18).

B.8 Proof of Proposition 6.2

Proof. Recall that have from Lemma 4.3:

L(b) =
1

b

n− b
n− 1

Lmax +
n

b

b− 1

n− 1
L, (50)

ρ(b) =
1

b

n− b
n− 1

Lmax. (51)

For brievity, we temporarily drop the term log
(
1
ε

)
in Cm(b) defined in Equation (18). Hence, we

want to find, for different values of m:

b∗ = arg min
b∈[n]

Cm(b) := 2
( n
m

+ 2b
)

max{κ(b),m}, (52)

where κ(b)
def
= L(b)+2ρ(b)

µ .

When m = n. In this case we have

Cn(b)
(18)
= 2(2b+ 1) max{κ(b), n}, (53)

Writing κ(b) explicitly:

κ(b) =
1

µ(n− 1)

(
(3Lmax − L)

n

b
+ nL− 3Lmax

)
.

Since 3Lmax > L, κ(b) is a decreasing function of b. In the light of this observation, we will
determine the optimal mini-batch size. The upcoming analysis is summarized in Table 1.

We distinguish three cases:

• If n ≤ L
µ : then κ(n) = L

µ ≥ n. Since κ(b) is decreasing, this means that for all b ∈
[n], κ(b) ≥ n. Consequently, Cn(b) = 2(2b+ 1)κ(b). Differentiating twice:

C
′′

n (b) =
4

µ(n− 1)

(3Lmax − L)n

b3
> 0.

Hence Cn(b) is a convex function. Now examining its first derivative:

C
′

n(b) =
2

µ(n− 1)

(
− (3Lmax − L)n

b2
+ 2(nL− 3Lmax)

)
,

we can see that:

– If n ≤ 3Lmax

L , Cn(b) is a decreasing function, hence

b∗ = n.
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– If n > 3Lmax

L ,Cn(b) admits a minimizer, which we can find by setting its first derivative
to zero. The solution is

b̂
def
=

√
n

2

3Lmax − L
nL− 3Lmax

.

Hence,
b∗ =

⌊
b̂
⌋

• If n ≥ 3Lmax

µ , then κ(1) = 3Lmax

µ . Since κ(b) is decreasing, this means that for all
b ∈ [n], κ(b) ≤ n. Hence, Cn(b) = 2(2b + 1)n. Cn(b) is an increasing function of b.
Therefore,

b∗ = 1.

• If L
µ < n < 3Lmax

µ , we have κ(1) > n and κ(n) < n. Hence there exists b̃ ∈ [1, n] such
that κ(b) = n, and it is given by

b̃
def
=

(3Lmax − L)n

n(n− 1)µ− nL+ 3Lmax
. (54)

Define G(b) :
def
= (2b+ 1)κ(b). Then,

arg min
b∈[1, n]

G(b) =

{
n if n ≤ 3Lmax

L ,

b̂ if n > 3Lmax

L .
(55)

As a result, we have that

– if n ≤ 3Lmax

L , G(b) is decreasing on [1, n], hence Cn(b) is decreasing on [1, b̃] and
increasing on [b̃, n]. Then,

b∗ =
⌊
b̃
⌋
.

– if n > 3Lmax

L , G(b) is decreasing on [1, b̂] and increasing on [b̂, n]. Hence Cn(b) is
decreasing on [1,min{b̂, b̃}] and increasing on [min{b̂, b̃}, 1]. Then,

b∗ =
⌊
min{b̂, b̃}

⌋
.

To summarize, we have for m = n,

b∗ =



1 if n ≥ 3Lmax

µ⌊
min(b̃, b̂)

⌋
if max{Lµ ,

3Lmax

L } < n < 3Lmax

µ⌊
b̂
⌋

if 3Lmax

L < n < L
µ⌊

b̃
⌋

if Lµ < n ≤ 3Lmax

L

n otherwise, if n ≤ min{Lµ ,
3Lmax

L }

(56)

When m = n/b. In this case we have

Cm(b)
(18)
= 6 max{bκ(b), n},

with
bκ(b) =

1

µ(n− 1)
((3Lmax − L)n+ (nL− 3Lmax)b) ,

and thus κ(1) = 3Lmax

µ and nκ(n) = nL
µ ≥ n. We distinguish two cases:

• if n ≤ 3Lmax

L , then bκ(b) is decreasing in b. Since nκ(n) ≥ n, Cm(b) = 6bκ(b), thus
Cm(b) is decreasing in b, hence

b∗ = n
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• if n > 3Lmax

L , bκ(b) is increasing in b. Thus,

– if n ≤ 3Lmax

µ = κ(1), then Cm(b) = 6bκ(b). Hence b∗ = 1.

– if n > 3Lmax

µ , using the definition of b̃ in Equation (54), we have that

Cm(b) =

{
6n for b ∈ [1, b̄]
6bκ(b) for b ∈ [b̄, n]

,

where

b̄ =
n(n− 1)µ− (3Lmax − L)n

nL− 3Lmax

is the batch size b ∈ [n] which verifies bκ(b) = n. Hence b∗ can be any point in
{1, . . . ,

⌊
b̄
⌋
}. In light of shared memory parallelism, b∗ =

⌊
b̄
⌋

would be the most
practical choice.

C Optimal mini-batch size for Algorithm 2

By using a similar proof as in Section B.8, we derive the following result.

Proposition C.1. Note b∗
def
= arg min

b∈[n]
Cp(b), where Cp(b) is defined in (22). For the widely used

choice p = 1
n , we have that

b∗ =


1 if n ≥ 3ζ1/n

2
Lmax

µ⌊
min(b̃, b̂)

⌋
if 3ζ1/n

2
L
µ < n <

3ζ1/n
2

Lmax

µ

n otherwise, if n ≤ 3ζ1/n
2

L
µ

, (57)

where ζp is defined in (20) for p ∈ (0, 1].

Because ζp depends on p, optimizing the total complexity with respect to b for the case p = b
n is

extremely cumbersome. Thus, we restrain our study for the optimal mini-batch sizes for Algorithm 2
to the case where p = 1

n .

Proof. For brievity, we temporarily drop the term log
(
1
ε

)
in Cp(b) defined in Equation (22). Hence,

we want to find, for different values of m:

b∗ = arg min
b∈[n]

C1/n(b) := 2 (2b+ 1) max{π(b),m}, (58)

where π(b)
def
=

3ξp
2
L(b)
µ . We have

π(b) =
3ξp
2

1

µ(n− 1)

(
n(Lmax − L)

b
+ nL− Lmax

)
. (59)

Since Lmax ≥ L, π(b) is a decreasing function on [1, n]. We distinguish three cases:

• if n > κ(1) =
3ξp
2
Lmax

µ , then for all b ∈ [1, n], n > κ(b). Hence,

Cn(b) = 2(2b+ 1)n.

C1/n(b) is an increasing function of b. Hence

b∗ = 1.

• if n < π(n) =
3ξp
2
L
µ , then for all b ∈ [1, n], n < π(b). Hence,

C1/n(b) = π(b).

Since π(b) is a decreasing function of b,

b∗ = n.
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• if 3ξp
2
L
µ = π(n) ≤ n ≤ π(1) =

3ξp
2
Lmax

µ . Then there exists b ∈ [1, n] such that π(b) = n

and its expression is given by

b̃ =
3ξp
2 n(Lmax − L)

µn(n− 1)− 3ξp
2 (nL− Lmax)

.

Now, consider the function

G(b)
def
= (2b+ 1)π(b)

=
3ξp
2

1

µ(n− 1)

(
2(nL− Lmax)b+

n(Lmax − L)

b

)
+ Ω,

where Ω replaces constants which don’t depend on b. The first derivative of G(b) is

G′(b) =
3ξp
2

1

µ(n− 1)

(
−n(Lmax − L)

b2
+ 2(nL− Lmax)

)
,

and its second derivative is

G′′(b) =
3ξpn(Lmax − L)

µ(n− 1)b3
≥ 0.

G(b) is a convex function, and we can find its minimizer by setting its first derivative to zero.
This minimizer is

b̂ =

√
n

2

Lmax − L
nL− Lmax

.

Indeed, recall that from Lemma A.6, we have nL ≥ Lmax. Consequently, the function
Cn(b) is decreasing on

[
1,min

{
b̃, b̂
}]

and increasing on
[
min

{
b̃, b̂
}
, n
]
. Hence,

b∗ =
⌊
min

{
b̃, b̂
}⌋

.

D Samplings

In Definition 3.3, we defined b–nice sampling. For completeness, we present here some other
interesting possible samplings.
Definition D.1 (single-element sampling). Given a set of probabilities (pi)i∈[n], S is a single-element
sampling if P(|S| = 1) = 1 and

P(S = {i}) = pi ∀i ∈ [n].

Definition D.2 (partition sampling). Given a partition B of [n], S is a partition sampling if

pB
def
= P(S = B) > 0 ∀B ∈ B, and

∑
B∈B

pB = 1.

Definition D.3 (independent sampling). S is an independent sampling if it includes every i indepen-
dently with probability pi > 0.

In Section E, we will determine for each of these samplings their corresponding expected smoothness
constant.

E Expected Smoothness

First, we present two general properties about the expected smoothness constant (4.1): we establish
its existence, and we prove that it is always greater than the strong convexity constant. Then, we
determine the expected smoothness constant for particular samplings.
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E.1 General properties of the expected smoothness constant

The following lemma is an adaptation of Theorem 3.6 in [7]. It establishes the existence of the
expected smoothness constant as a result of the smoothness of the functions fi, i ∈ [n].
Lemma E.1 (Theorem 3.6 in [7]). Let v be an unbiased sampling vector with vi ≥ 0 with probability
one. Suppose that fv(w) = 1

n

∑n
i=1 fi(w)vi is Lv–smooth and convex. It follows that the expected

smoothness constant (4.1) is given by

L = max
i∈[n]

E [Lvvi] .

Proof. Since the fi’s are convex, each realization of fv is convex, and it follows from equation 2.1.7
in [16] that

‖∇fv(x)−∇fv(y)‖22 ≤ 2Lv (fv(x)− fv(y)− 〈∇fv(y), x− y〉) . (60)

Taking expectation over the sampling gives

E
[
‖∇fv(x)−∇fv(x∗)‖22

]
≤ 2E [Lv (fv(x)− fv(x∗)− 〈∇fv(x∗), x− x∗〉)]

(60)
=

2

n
E

[
n∑
i=1

Lvvi (fi(x)− fi(x∗)− 〈∇fi(x∗), x− x∗〉)

]

=
2

n

n∑
i=1

E [Lvvi] (fi(x)− fi(y)− 〈∇fi(x∗), x− x∗〉)

≤ 2 max
i=1,...,n

E [Lvvi] (f(x)− f(x∗)− 〈∇f(x∗), x− x∗〉)

= 2 max
i=1,...,n

E [Lvvi] (f(x)− f(x∗)) .

By comparing the above with (11) we have that L = max
i=1,...,n

E [Lvvi] .

Lemma E.2 (PL inequality). If f is µ–strongly convex, then for all x, y ∈ Rd

1

2µ
‖∇f(x)‖22 ≥ f(x)− f(x∗), ∀x ∈ Rd. (61)

Proof. Since f is µ–strongly convex, we have from, rearranging (6), that for all x, y ∈ Rd

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖x− y‖22 .

Minimizing both sides of this inequality in y proves (61).

The following lemma shows that the expected smoothness constant is always greater than the strong
convexity constant.
Lemma E.3. If the expected smoothness inequality (11) holds with constant L and f is µ–strongly
convex, then L ≥ µ.

Proof. We have, since E [∇fv(x)−∇fv(x∗)] = ∇f(x)

E
[
‖∇fv(x)−∇fv(x∗)−∇f(x)‖22

]
= E

[
‖∇fv(x)−∇fv(x∗)‖22

]
− ‖∇f(x)‖22

(11)+(61)
≤ 2(L − µ)(f(x)− f(x∗)). (62)

Hence 2(L − µ)(f(x)− f(x∗)) ≥ 0, which means L ≥ µ.

Remark E.1. Consider the expected residual constant ρ defined in 4.2. This constant verifies for all
x ∈ Rd,

E [‖∇fv(x)−∇fv(x∗)−∇f(x)‖] ≤ 2ρ(f(x)− f(x∗)).

From Equation (62), we can see that we can use ρ = L as the expected residual constant.
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E.2 Expected smoothness constant for particular samplings

The results on the expected smoothness constants related to the samplings we present here are all
derived in [7] and thus are given without proof. The expected smoothness constant for b-nice sampling
is given in Lemma 4.3. Here, we present this constant for single-element sampling, partition sampling
and independent sampling.
Lemma E.4 (L for single-element sampling. Proposition 3.7 in [7]). Consider S a single-element
sampling from Definition D.1. If for all i ∈ [n], fi is Li–smooth, then

L =
1

n
max
i∈[n]

Li
pi

where pi = P(S = {i}).
Remark E.2. Consider S a single-element sampling from Definition D.1. It is then easy to see that
the probabilities that maximize L are

pi =
Li∑

j∈[n] Lj
.

Consequently,

L = L̄
def
=

1

n

n∑
i=1

Li.

In contrast, for uniform single-element sampling, i.e., when pi = 1
n for all i, we have L = Lmax,

which can be significantly larger than L̄. Since the step sizes of all our algorithm are a decreasing
function of L, importance sampling can lead to much faster algorithms.

Lemma E.5 (L for partition sampling. Proposition 3.7 in [7]). Given a partition B of [n], consider

S a partition sampling from Definition D.3. For all B ∈ B, suppose that fB(x)
def
= 1

b

∑
i∈B fi(x) is

LB–smooth. Then, with pB = P(S = B)

L =
1

n
max
B∈B

LB
pB

Lemma E.6 (L for independent sampling. Proposition 3.8 in [7]). Consider S a single-element
sampling from Definition D.3. Note pi = P(i ∈ S). If for all i ∈ [n], fi is Li–smooth and f is
L–smooth, then

L = L+ max
i∈[n]

1− pi
pi

Li
n

where pi = P(S = {i}).

F Expected residual

In this section, we compute bounds on the expected residual ρ from Lemma 4.2.
Lemma F.1. Let v = [v1, . . . , vn] ∈ Rn be an unbiased sampling vector with vi ≥ 0 with probability
one. It follows that the expected residual constant exists with

ρ =
λmax(Var [v])

n
Lmax, (63)

where Var [v] = E
[
(v − 1)(v − 1)>

]
.

Before the proof, let us introduce the following lemma (inspired from https://www.cs.ubc.ca/

~nickhar/W12/NotesMatrices.pdf).
Lemma F.2 (Trace inequality). Let A and B be symmetric n× n such that A < 0. Then,

Tr (AB) ≤ λmax(B)Tr (A)
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Proof. Let A =
∑n
i=1 λi(A)UiU

>
i , where λ1(A) ≥ . . . ≥ λn(A) ≥ 0 denote the ordered

eigenvalues of matrix A. Setting Vi
def
=
√
λi(A)Ui for all i ∈ [n], we can write A =

∑n
i=1 ViV

>
i .

Then,

Tr (AB) = Tr

(
n∑
i=1

ViV
>
i B

)
=

n∑
i=1

Tr
(
ViV

>
i B

)
=

n∑
i=1

Tr
(
V >i BVi

)
=

n∑
i=1

V >i BVi

≤ λmax(B)

n∑
i=1

V >i Vi = λmax(B)Tr (A) ,

where we use that B 4 λmax(B)In.

We now turn to the proof of the theorem.

Proof. Let v = [v1, . . . , vn] ∈ Rn be an unbiased sampling vector with vi ≥ 0 with probability one.
We will show that there exists ρ ∈ R+ such that:

E
[
‖∇fv(w)−∇fv(x∗)− (∇f(w)−∇f(x∗))‖22

]
≤ 2ρ (f(w)− f(x∗)) . (64)

Let us expand the squared norm first. DefineDF (w) as the Jacobian of F (w)
def
= [f1(w), . . . , fn(w)]

We denote R def
= (DF (w)−DF (x∗))

C
def
= ‖∇fv(w)−∇fv(x∗)− (∇f(w)−∇f(x∗))‖22

=
1

n2
‖(DF (w)−DF (x∗)) (v − 1)‖22

=
1

n2
〈R(v − 1), R(v − 1)〉Rd

=
1

n2
Tr
(
(v − 1)>R>R(v − 1)

)
=

1

n2
Tr
(
R>R(v − 1)(v − 1)>

)
.

Taking expectation,

E [C] =
1

n2
Tr
(
R>RVar [v]

)
≤ 1

n2
Tr
(
R>R

)
λmax(Var [v]). (65)

Moreover, since the fi’s are convex and Li-smooth, it follows from equation 2.1.7 in [16] that

Tr
(
R>R

)
=

n∑
i=1

‖∇fi(w)−∇fi(x∗)‖22

≤ 2

n∑
i=1

Li(fi(w)− fi(x∗)− 〈∇fi(x∗), w − x∗〉)

≤ 2nLmax(f(w)− f(x∗)). (66)

Therefore,

E [C]
(65)+(66)
≤ 2

λmax(Var [v])

n
Lmax(f(w)− f(x∗)). (67)

Which means

ρ =
λmax(Var [v])

n
Lmax (68)
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Hence depending on the sampling S, we need to study the eigenvalues of the matrix Var [v], whose
general term is given by

(Var [v])ij =

{
1
pi
− 1 if i = j

Pij

pipj
− 1 otherwise,

(69)

with

pi
def
= P(i ∈ S) and Pij

def
= P(i ∈ S, j ∈ S) for i, j ∈ [n] (70)

To specialize our results to particular samplings, we introduce some notations:

• B designates all the possible sets for the sampling S,
• b = |B|, where B ∈ B, when the sizes of all the elements of B are equal.

F.1 Expected residual for uniform b-nice sampling

Lemma F.3 (ρ for b-nice sampling). Consider b-nice sampling from Definition 3.3. If each fi is
Lmax-smooth, then

ρ =
n− b

(n− 1)b
Lmax. (71)

Proof. For uniform b-nice sampling, we have using notations from (70)

∀i ∈ [n], pi =
c1
|B|

,

∀i, j ∈ [n], Pij =
c2
|B|

,

with c1 =
(
n−1
b−1
)
, c2 =

(
n−2
b−2
)

and |B| =
(
n
b

)
. Hence,

Var [v]
(69)
=



|B|
c1
− 1 |B|c2

c21
− 1 . . . |B|c2

c21
− 1 |B|c2

c21
− 1

|B|c2
c21
− 1 |B|

c1
− 1 . . . |B|c2

c21
− 1 |B|c2

c21
− 1

...
. . .

...
|B|c2
c21
− 1 . . . . . . |B|

c1
− 1 |B|c2

c21
− 1

|B|c2
c21
− 1 . . . . . . |B|c2

c21
− 1 |B|

c1
− 1


.

As noted in Appendix C of [8], Var [v] is then a circulant matrix with associated vector(
|B|
c1
− 1,

|B|c2
c21
− 1, . . . ,

|B|c2
c21
− 1

)
,

and, as such, it has two eigenvalues

λ1
def
=
|B|
c1

(
1 + (n− 1)

c2
c1

)
− n = 0,

λ2
def
=
|B|
c1

(
1− c2

c1

)
=
n(n− b)
b(n− 1)

. (72)

Hence, the expected residual can be computed explicitely as

ρ
(68)
=

n− b
(n− 1)b

Lmax. (73)

We can see that the residual constant is a descreasing function of b and in particular: ρ(1) = Lmax

and ρ(n) = 0.
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F.2 Expected residual for uniform partition sampling

Lemma F.4 (ρ for uniform partition sampling). Suppose that b divises n and consider partition
sampling from Definition D.2. Given a partition B of [n] of size b

n , if each fi is Lmax-smooth, then,

ρ =

(
1− b

n

)
Lmax. (74)

Proof. Recall that for partition sampling, we choose a priori a partition B = B1 t · · · tBn
b

of [n].
Then, for k ∈ [nb ],

∀i ∈ [n], pi =

{
pBk

= b
n if i ∈ Bk

0 otherwise, (75)

∀i, j ∈ [n], Pij =

{
pBk

= b
n if i, j ∈ Bk

0 otherwise. (76)

Let k ∈ [nb ]. If i, j ∈ Bk, then 1
pi
− 1 =

Pij

pipj
− 1 = n

b − 1.

As a result, up to a reordering of the observations, Var [v] is a block diagonal matrix, whose diagonal
matrices, which are all equal, are given by, for k ∈ [nb ],

Vk = (
n

b
− 1)1b1

>
b =


n
b − 1 n

b − 1 . . . n
b − 1 n

b − 1
n
b − 1 n

b − 1 . . . n
b − 1 n

b − 1
...

. . .
...

n
b − 1 . . . . . . n

b − 1 n
b − 1

n
b − 1 . . . . . . n

b − 1 n
b − 1

 ∈ Rb×b.

Since all the matrices on the diagonal are equal, the eigenvalues of Var [v] are simply those of one of
these matrices. Any matrix Vk = (nb − 1)1b1>b we consider has two eigenvalues: 0 and n− b. Then,

ρ
(68)
=

(
1− b

n

)
Lmax. (77)

If b = n, SVRG with uniform partition sampling boils down to gradient descent as we recover ρ = 0.
For b = 1, we have ρ =

(
1− 1

n

)
Lmax.

F.3 Expected residual for independent sampling

Lemma F.5 (ρ for independent sampling). Consider independent sampling from Definition D.2. Let
pi = P(i ∈ S). If each fi is Lmax-smooth, then

ρ =

 1

min
i∈[n]

pi
− 1

 Lmax

n
. (78)

Proof. Using the notations from (70), we have

∀i ∈ [n], pi = pi,

∀i, j ∈ [n], Pij = pipj when i 6= j.

Thus, according to (69):

Var [v] = Diag

(
1

p1
− 1,

1

p2
− 1, . . . ,

1

pn
− 1

)
.

whose largest eigenvalue is

λmax(Var [v]) = max
i∈[n]

1

pi
− 1 =

1

min
i∈[n]

pi
− 1.

27



Consequently,

ρ
(68)
=

 1

min
i∈[n]

pi
− 1

 Lmax

n
. (79)

If pi = 1
n for all i ∈ [n], which corresponds in expectation to uniform single-element sampling

SVRG since E [|S|] = 1, we have ρ = n−1
n Lmax. While if pi = 1 for all i ∈ [n], this leads to

gradient descent and we recover ρ = 0.

The following remark gives a condition to construct an independent sampling with E|S| = b.
Remark F.1. One can add the following condition on the probabilities:

∑n
i=1 pi = b, such that

E [|S|] = b. Such a sampling is called b-independent sampling. This condition is obviously met if
pi = b

n for all i ∈ [n].
Lemma F.6. Let S be a independent sampling from [n] and let pi = P [i ∈ S] for all i ∈ [n]. If∑n
i=1 pi = b, then E [|S|] = b.

Proof. Let us model our sampling by a tossing of n independent rigged coins. Let X1, . . . , Xn be
n Bernoulli random variables representing these tossed coin, i.e., Xi ∼ B(pi), with pi ∈ [0, 1] for
i ∈ [n]. If Xi = 1, then the point i is selected in the sampling S. Thus the number of selected points
in the mini-batch |S| can be denoted as the following random variable

∑n
i=1Xi, and its expectation

equals

E [|S|] = E

[
n∑
i=1

Xi

]
=

n∑
i=1

E [Xi] =

n∑
i=1

pi = b .

Remark F.2. Note that one does not need the independence of the (Xi)i=1,...,n.

F.4 Expected residual for single-element sampling

From Remark E.1, we can take L as the expected residual constant. Thus, we simply use the expected
smoothness constant from Lemma E.4.
Lemma F.7 (ρ for single-element sampling). Consider single-element sampling from Definition D.1.
If for all i ∈ [n], fi is Li-smooth, then

ρ =
1

n
max
i∈[n]

Li
pi
.

G Additional experiments

G.1 Comparison of theoretical variants of SVRG

In this series of experiments, we compare the performance of the SVRG algorithm with the settings
of [11] against Free-SVRG and L-SVRG-D with the settings given by our theory.

G.1.1 Experiment 1.a: Comparison without mini-batching (b = 1)

A widely used choice for the size of the inner loop is m = n. Since our algorithms allow for a free
choice of the size of the inner loop, we set m = n for Free-SVRG and p = 1/n for L-SVRG-D, and
use a mini-batch size b = 1, see Figures 4, 5, 6 and 7.

G.1.2 Experiment 1.b: optimal mini-batching

Here we use the optimal mini-batch sizes we derived for Free-SVRG in Table 1 and L-SVRG-D in (57).
Since the original SVRG theory has no analysis for mini-batching, and the current existing theory
shows that the total complexity of the algorithm is an increasing function of the mini-batch size, we
use b = 1 for SVRG, see Figures 8, 9, 10 and 11.
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Figure 4: b = 1, m = n for Free-SVRG and L-SVRG-D, YearPredictionMSD data set.

G.1.3 Experiment 1.c: theoretical inner loop size or update probability without
mini-batching

Here, using a batch size b = 1, we set the inner loop sizes for Free-SVRG to the optimal value m∗ =
3Lmax/µ that we derived in Proposition 6.1. We set p = 1/m∗ for L-SVRG-D, see Figures 12, 13, 14
and 15.

G.2 Experiment 2.a: Comparing different choices for the mini-batch size

Here we consider Free-SVRG and compare its performance for different batch sizes: the optimal
one b∗, 1, 100,

√
n and n. In Figure 16, 17, 18 and 19 we show that we are able to predict the best

optimal mini-batch size a priori using Table 1.

G.3 Experiment 2.b: Comparing different choices for the inner loop size

We set b = 1 and compare different values for the inner loop size: the optimal one m∗, Lmax/µ,
3Lmax/µ and 2n in order to validate our theory in Proposition 6.1, that is, that the overall performance
of Free-SVRG is not sensitive to the range of values of m, so long as m is close to n, Lmax/µ or
anything in between. And indeed, this is what we confirmed in Figures 20, 21, 22 and 23. The choice
m = 2n is the one suggested by [11] in their practical SVRG (Option II).
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Figure 5: b = 1, m = n for Free-SVRG and L-SVRG-D, slice data set.
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Figure 6: b = 1, m = n for Free-SVRG and L-SVRG-D, ijcnn1 data set.
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Figure 7: b = 1, m = n for Free-SVRG and L-SVRG-D, real-sim data set.
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Figure 8: Optimal mini-batching when theoretically available, YearPredictionMSD data set.
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Figure 9: Optimal mini-batching when theoretically available, slice data set.
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Figure 10: Optimal mini-batching when theoretically available, ijcnn1 data set.

32



0 2 4 6
epochs

10−6

10−4

10−2

100

re
sid

ua
l

SVRG (m * = 70, b= 1,α * = 2.86e− 01)
Free-SVRG (m= n= 72309, b * (n) = 1,α * (b * ) = 4.76e− 01)
L-SVRG-D (p= 1/n= 1.38e− 05, b * (n) = 1,α * (b * ) = 8.16e− 01)

0 100 200 300 400 500
time

10−6

10−4

10−2

100

re
sid

ua
l

SVRG (m * = 70, b= 1,α * = 2.86e− 01)
Free-SVRG (m= n= 72309, b * (n) = 1,α * (b * ) = 4.76e− 01)
L-SVRG-D (p= 1/n= 1.38e− 05, b * (n) = 1,α * (b * ) = 8.16e− 01)

(a) λ = 10−1

0 2 4 6
epochs

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

SVRG (m * = 5020, b= 1,α * = 3.98e− 01)
Free-SVRG (m= n= 72309, b * (n) = 1,α * (b * ) = 6.64e− 01)
L-SVRG-D (p= 1/n= 1.38e− 05, b * (n) = 1,α * (b * ) = 1.14e+ 00)

0 100 200 300 400 500
time

10−6

10−5

10−4

10−3

10−2

10−1

100

re
sid

ua
l

SVRG (m * = 5020, b= 1,α * = 3.98e− 01)
Free-SVRG (m= n= 72309, b * (n) = 1,α * (b * ) = 6.64e− 01)
L-SVRG-D (p= 1/n= 1.38e− 05, b * (n) = 1,α * (b * ) = 1.14e+ 00)

(b) λ = 10−3

Figure 11: Optimal mini-batching when theoretically available, real-sim data set.
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Figure 12: Optimal inner loop size when theoretically available, YearPredictionMSD data set.
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Figure 13: Optimal inner loop size when theoretically available, slice data set.
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Figure 14: Optimal inner loop size when theoretically available, ijcnn1 data set.
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Figure 15: Optimal inner loop size when theoretically available, real-sim data set.
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Figure 16: Impact of the mini-batch size on Free-SVRG for the YearPredictionMSD data set.
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Figure 17: Impact of the mini-batch size on Free-SVRG for the slice data set.
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Figure 18: Impact of the mini-batch size on Free-SVRG for the ijcnn1 data set.
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Figure 19: Impact of the mini-batch size on Free-SVRG for the real-sim data set.
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Figure 20: Impact of the inner loop size on Free-SVRG for the YearPredictionMSD data set.
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Figure 21: Impact of the inner loop size on Free-SVRG for the slice data set.
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Figure 22: Impact of the inner loop size on Free-SVRG for the ijcnn1 data set.
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Figure 23: Impact of the inner loop size on Free-SVRG for the real-sim data set.
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