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ABSTRACT

Recording an airplane cockpit screen is a challenging task

since video codecs hardly preserve text details at the low bi-

trates required by avionic applications. We recently proposed

a scheme for semantic compression of airplane cockpit video

that preserves the readability of text while meeting bitrate and

encoder complexity constraints. Within each frame, text is

segmented from the video and encoded as character strings

rather than as pixels. Text in the screen is then inpainted, pro-

ducing a residual video with few high frequency components

easily encodable with standard codecs. The residual video

is transmitted with the encoded text as side-information. At

the receiver side, characters are synthesized atop the decoded

residual video, leaving the text unaffected by compression

artefacts. In this work, we evaluate our scheme with multi-

ple video codecs with different prediction schemes, produc-

ing novel experimental evidence in terms of attainable rate-

distortion performance and highlighting directions for future

research.

Index Terms— HEVC, AVC, screen content coding, air-

plane cockpit video, low bitrate, character recognition, se-

mantic video coding, convolutional neural networks

1. INTRODUCTION

Recording the cockpit screen of an airplane is emerging as a

novel application of video compression applied to the avionic

domain. In modern airliners, direct access to the plane sen-

sors and devices (GPS navigator, fuel level gauge, etc.) is

often impossible owing to multiple reasons. So, the only way

to record key flight information, e.g. for post-accident inves-

tigations, is capturing and storing the content of the cockpit

screen as a video. An airplane cockpit screen typically con-

sists in a number computer generated graphics superimposed

either on monochrome background (e.g., virtual gauges) or

natural images (e.g., navigation maps). Recording the con-

tent of an airplane cockpit as a video poses however a number

of technical challenges. First, the on-board storage capability

is usually limited at the order of gigabytes, allowing at most

of some tens of hours of recording which demands low bitrate

encoding. Second, compression artefacts shall not affect the

readability of computer-generated contents such as letters and

digits due to the security and safety reasons. Third, the video

encoder complexity is typically limited by safety norms on

maximum power consumption and heath dissipation.

Airplane cockpit screen coding represents a special case

of screen coding, for which a number of techniques have been

proposed. Some techniques consider each image as a com-

pound of multiple blocks that are compressed using different

tools according the block type (natural or computer-generated

blocks) [1, 2, 3, 4]. Computer-generated blocks (e.g., text)

are encoded lossless, whereas natural blocks are compressed

with lossy techniques. Notice that the rate-distortion perfor-

mance depends not only on the dimensions of those blocks,

but also on the used block classification method. The re-

cently approved Screen Content Coding (SCC) extension [5]

of H.265/HEVC [6] standard offers ad-hoc tools for coding

generic screen content. Nevertheless, our previous research

showed that computer graphics are strongly affected by the

compression artefacts at low bitrates required by this applica-

tion, not to mention the complexity of H.265/HEVC.

In our preliminary research [11] we proposed a screen

compression scheme where computer-generated graphics

(characters, lines) are segmented from the video at the source.

The characters are recognized via a Convolutional Neural

Network (CNN) [8] and are encoded as text rather than as

pixels. Characters are then encoded using a rate-efficient

intra-frame predictive scheme and delivered to the receiver.

Characters are removed from the video via inpainting [9] and

the residual video is compressed with H.265/HEVC video

codec. At the receiver, the characters are synthesized from

scratch and overlaid on the decoded residual video, recov-

ering the original stream. Removing high-frequency com-

ponents from the video reduces the video bitrate, whereas

the characters synthesized at the receiver are not affected by

compression artefacts.

This work extends and improves upon the results of [11]

in two ways. First, we explore the potential gains enabled

by an inter-frame predictive scheme in the context of cock-

pit video compression. The method in [11] being intra-frame

only, the gains were limited by the fact that we disregarded the

temporal correlation among neighbouring frames. Second,

we explore a lower complexity solution where the residual

video is compressed via H.264/AVC instead of H.265/HEVC.

Such solution addresses the need for an encoder [7] im-

plementable in FPGA, while it enjoys the benefits of the

well established licensing program of the H.264/AVC stan-
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Fig. 1. Simplified representation of our proposed scheme for

cockpit video compression. We refer the interested reader to

[11] for further details.

dard. Our experiments show that H.264/AVC retrofitted

with our semantic coding scheme is competitive with a ref-

erence H.265/HEVC encoder in rate-distortion sense, plus

they highlight promising directions for further enhancing the

performance of our scheme.

2. SEMANTIC COCKPIT VIDEO COMPRESSION

This section overviews the key features of our method for

low-bitrate cockpit video semantic compression, illustrated

in Fig. 1. We refer the interested reader to [11] for further

details.

2.1. Character Localization

As a first step, we localize the characters in the screen ex-

ploiting some features of cockpit screens to keep complexity

low. Namely, characters aspect in cockpit screens changes

depending on the background type (natural image or uniform

colour) to improve readability. Characters are in fact outlined

when superimposed on a natural images (typically, white text

with black background), whereas there is no outline when the

background is monochrome.

Therefore, we first coarsely classify each screen either as

having natural background (natural screen) or monochrome

background (computer-generated screen) as follows. Each

frame is first subdivided in tiles and for each tile we compute

the colour histogram: if most histograms are spiky, the screen

is labelled as synthetic, otherwise the screen is labelled as

natural.

Then, depending on the screen class, pixels corresponding

to text are segmented with an appropriate thresholding algo-

rithm. Concerning natural screens, characters are segmented

leveraging the knowledge they have an outline. Two thresh-

olding operations are combined, one on the letters colour

and another one on the contour colour. Otherwise, the Otsu

thresholding [10] algorithm is used for computer-generated

screens. Both thresholding algorithms produce a binary

threshold mask where , e.g. white, pixels correspond to char-

acters.

Further, Connected Components Analysis (CCA) clusters the

white pixels in the threshold mask assigning the same label to

pixels in the same neighbourhood. E.g., the comma and the

dot forming a semicolon are assigned the same label because

they belong to the same letter.

Next, a rectangular bounding box is casted around each pixel

cluster with identical label, representing the location of each

candidate character as a rectangular bounding box.

The output of the character localization algorithm is finally a

set of bounding boxes where each box represents a candidate

letter or digit.

2.2. Character Reading via Convolutional Neural Net-

work

Each potential character detected above is recognized using

a neural network. In [11] we explored three different ar-

chitectures with different performance-complexity trade-offs.

We describe here the solution based on the LeNet5 architec-

ture [8], which showed a character recognition accuracy of

99.84% at reading computer generated characters and with

bearable complexity for FPGA implementation. The network

is composed by two convolutional layers and three fully con-

nected layers. Each convolutional layer includes 6 and 16

5 × 5 filters each layer followed by a max-pooling feature

map subsampling layer. The first connected layer includes

120 units whereas the second layer includes 84 units. The

output layer finally includes 41 units as the network classi-

fies each character image according to C=41 labels (letters,

digits, symbols plus one no character class). We train the

network over character samples we extracted from a set of

hand-annotated airplane cockpit videos. Training samples are

augmented by randomly shifting each character to achieve

robustness to character localization errors. The networks is

trained to minimize the classification error across the classes

using the SGD method over batches of 128 samples and with a

learning rate of 10−2. The network outputs a most likely class

for each potential localized character, or it rejects the input in

the case of, e.g., background clutter erroneously localized as

a character, achieving robustness against noisy backgrounds.

2.3. Predictive Character Encoding

For each video frame, detected characters are encoded to-

gether with their coordinates and aspect information using

a rate-efficient predictive scheme. In typical cockpit screen

videos, we observed that the probability distributions of the

characters coordinate differences are very spiky. So, our

scheme exploits the regularity of each set of characters by

differentially encoding their horizontal and vertical coordi-

nates as follows. First, because characters are aligned in

rows, the vertical coordinate of two successive characters are

either identical or differ by ± one pixel. Thus, just 4 differ-

ent symbols are required to signal the differentially encoded

vertical coordinate: 3 of them indicate the same coordinate of

the previous character accounting for the localization noise,

while a fourth symbol will signal that the coordinate will

be explicitly signalled. Second, on the horizontal axis, the

characters are often shifted with a constant number of pixels

corresponding to the character width, cw (plus some spacing).



This allows us to differentially encode this coordinate by us-

ing three symbols: one for the default width cw, a second that

allows to account for a one-pixel tolerance (i.e., it encodes

cw+1) and a third that indicates explicit signalling will follow.

Our previous experiments showed that our scheme allows to

reduce the characters coding rate to less than an average of 10

bits per character for different real airplane cockpit test video

sequences.

2.4. Residual Video Compression

As a final step, the text is erased from the cockpit video and

the resulting residual video is compressed. Each pixel in the

threshold map is inpainted using a low complexity colour in-

painting technique [9]. Inpainting fills each character pixel

with the most likely colour according to its neighbourhood.

The inpainting result is a residual video without computer-

generated graphics, and thus with fewer high frequency com-

ponents to encode. The residual video is then compressed

with some standard video codec (see Sect. 3.1) and, for exam-

ple, stored on a removable support. The encoded characters

are stored alongside the compressed video. At the receiver

side, the inpainted residual video is first recovered. Then, for

each frame, we synthesize the characters that were transmit-

ted as side information. The result is a cockpit video sequence

where characters are not affected by compression artefacts,

thus preserving their readability.

3. EXPERIMENTAL RESULTS

In this section we experiment with our cockpit video semantic

compression scheme over multiple video sequences and using

different codecs and video compression schemes.

3.1. Experimental Setup

We experiment over the six cockpit video sequences illus-

trated in Fig. 2. Those sequences can be classified accord-

ing to the type of the background. Two of them (Seq. 5 and

6) have complex computer-generated text and graphics over-

laid on black background. Four of them (Seq. 1, 2, 3 and 4)

include text superimposed on natural background, which can

be either captured with surveillance cameras installed outside

the airplane operating in the visible light (Seq. 1) and in-

frared spectrum (Seq. 2), or it can be synthetic represented

by H.265/HEVC test sequences Cactus (Seq. 3) and Park

(Seq. 4). The purpose of using the latter two sequences is to

stress the resilience of the character detector to background

clutter. Table 1 summarizes the characteristics of our test se-

quences. Each sequence is processed according to our se-

mantic compression scheme [11] summarized in the previous

section (Proposed scheme, in the following).

Concerning the residual video compression in Sec. 2.4,

we recall that we operate in an embedded avionics scenario

(a) (b)

(c) (d)

(e) (f)

Fig. 2. The six airplane cockpit screens video sequences used

in our experiments (see Tab. 1 for the relative characteristics).

Table 1. Characteristics of our six test sequences.

# Seq. Resolution Frame Rate Background

1 (Fig. 2(a)) 1920x1080 24 fps Natural

2 (Fig. 2(b)) 1920x1080 24 fps Natural

3 (Fig. 2(c)) 1920x1080 24 fps Natural

4 (Fig. 2(d)) 1920x1080 24 fps Natural

5 (Fig. 2(e)) 720x576 24 fps Black

6 (Fig. 2(f)) 720x576 24 fps Black

where the overall power consumption must be kept under con-

trol. As the codec used to compress the residual video is one

of the major computational complexity sources, Tab. 2 esti-

mates the complexity of some H.265/HEVC and H.264/AVC

encoders implemented in FPGA technology. The first two

rows compare two implementations of H.265/HEVC and

H.264/AVC encoders in inter-mode, showing that H.264/AVC

power consumption is one third of its H.265/HEVC counter-

part. The last two rows detail two all-intra and inter-enabled

low-memory implementations of the H.264/AVC codec: in

this case the H.264/AVC complexity can be less than one fifth

the H.265/HEVC counterpart. Thus, while AVC compression

efficiency is lower than H.265/HEVC, its lower complexity

makes it an interesting option for compressing the residual

video in our power-constrained scenario. For this reason,

in the following we experiment both with the HEVC/H.265

codec (HM-16.14) plus its Screen Content Coding extension

(SCM-8.3) and with the earlier yet less complex H.264/AVC

codec (JM 19.0).



Table 2. FPGA complexity estimate for H.264/AVC and

H.265/HEVC encoders (1920x1080, 30 fps).

Codec Logic

[kALM]

RAM

[kbits]

Power

[W]

AVC-Inter [13] 30-60 5000 < 1

HEVC-Inter [14] 90 10000 < 3

LowMem AVC-Intra [12] 5 58 0.5

LowMem AVC-Inter [12] 8.6 114 0.6

In the following, we refer to our proposed scheme with

H.265/HEVC and with H.264/AVC compression of the resid-

ual video as Prop-HEVC and Prop-AVC respectively.

As reference schemes, we consider the case where each se-

quence is encoded with the standard H.265/HEVC codec

and its SCC extension (HEVC and SCC, respectively) and

H.264/AVC codec (AVC). We recall that with such schemes

characters are encoded as pixels exactly as the rest of the

screen, so such schemes do allow us to evaluate the effect of

compression artefacts on the characters readability.

We evaluate the rate-distortion (called R-D) performances

of each scheme at different quantization (QP) values corre-

sponding to high-bitrates (QP from 20 to 45 with steps of 5)

and low-bitrates (QP from 45 to 51 with steps of 1) ranges.

We objectively evaluate the quality of the recovered video in

terms of PSNR, plus we visually inspect the characters in the

recovered video to assess how compression artefact impair

their readability.

3.2. Experiments with All-Intra Coding

To start with, we experiment in the case where the video

codec operates in Intra-only mode, i.e. no temporal corre-

lation whatsoever is exploited. Despite the reduced compres-

sion efficiency, Intra-coding saves on computational complex-

ity by skipping motion search and on memory complexity not

having to keep the decoded frames in the reference buffer.

Fig. 4 shows the rate-distortion curve for each video se-

quence and each compression scheme.

Concerning the three reference schemes, HEVC has better

R-D performance than AVC by reason of having better cod-

ing tools. In turn, SCC outperforms HEVC due to the coding

tools tailored for screen compression. SCC performs par-

ticularly well especially with the two sequences in Fig. 4(e)

and 4(f) which consists entirely of computer graphics on

a black background (and thus the PSNR close to 50 dB).

However, Fig. 3 (left, centre) shows that neither HEVC nor

SCC preserve the readability of the characters at high QP

values. The characters are hardly readable because the coarse

quantization of the transform coefficients at high QP values

makes impossible to correctly recover high frequency primi-

tives such as edges, generating compression artefacts.

Concerning our two proposed schemes, Prop-AVC shows

constantly better R-D performance than its AVC counterpart

in Fig. 4. Most interesting, the experiments reveal that Prop-

AVC outperforms HEVC in all natural sequences at medium

to low coding rate and outperforms even SCC for low bitrate.

Our explanation of these unexpected results is as follows.

First, in our proposed scheme, only the inpainted residual

video is encoded, so there are no high-frequency components

to encode, making it more suitable to be coded with AVC.

Therefore, the coding rate of the video is significantly reduced

due to the fewer high-frequency elements to encode. Second,

at the decoder, the characters are synthesized and overlaid on

the decoded residual video and the original-decoded PSNR

is computed. So, our proposed method achieves far better

PSNR in character areas than the reference schemes and thus

overall. In the same time, HEVC pays the cost in rate and dis-

tortion of preserving the shapes of computer-generated text.

Fig. 3 (right) confirms that Prop-AVC preserves the read-

ability of the text, since the synthesized characters are not

affected by compression artefacts. That is, these experiments

reveal that proposed semantic compression scheme allows the

H.264/AVC codec to outperform the more recent and more

complex H.265/HEVC codec both in terms of background

video quality and characters readability, whereas it performs

close to its SCC extension. Finally, the Prop-HEVC curves

show that our method allows plain H.265/HEVC to outper-

forms even its specialized SCC extension, as already verified

in our previous research.

Concerning the different classes of video sequences, our pro-

posed method achieves the best results over the sequences

5 and 6 (Prop-AVC largely outperforms even SCC). These

sequences contain only computer-generated graphics over

black background, thus the residual video to encode is almost

all black, explaining the large gains offered by our scheme.

Sequences 1 and 2 obtain consistent gains, however these

gains are lower (albeit in excess of 5 dB at most) since their

natural background with moderate motion is more complex

to encode than a black background. Finally, sequences 3

and 4 show the least improvements due to the high amount

of motion details in the background video, which makes the

savings in high frequency elements encoding less relevant

with respect to the cost of encoding the background in Intra

mode.

Notice that for the the Prop-AVC and Prop-HEVC schemes,

the rate includes also the rate of the encoded characters. Such

rate is equal to about 1.7 kbit per frame, i.e. about 41 kbit/s

(for natural screens), which represents a negligible fraction

of the overall video rate.

3.3. Experiments with Inter-frame Coding

Next, we repeat our experiments allowing the H.264/AVC and

the H.265/HEVC video codecs to exploit the temporal corre-

lation among adjacent frames in the (residual) video. In order

to keep the encoder computational complexity low, we use a

low-delay configuration, with a Group of Pictures (GOPs) of

4 frames. Also, the encoder is allowed to keep just one frame

in the decoded picture buffer to keep low the memory com-



Fig. 3. Reconstruction artefacts at QP=50 for All-Intra coding configuration. Left: HEVC (PSNR 25 dB); Center: SCC (PSNR

25.6 dB); Right: Prop-AVC (PSNR 26.7 dB). Our proposed scheme preserves the characters readability since they are not

affected by compression artefacts, resulting in better PSNR.

plexity.

Fig. 5 shows the corresponding rate-distortion curves.

First and unsurprising, exploiting temporal correlation largely

improves the rate-distortion performance of all schemes when

compared with the corresponding graphs in Fig. 4. The bet-

ter temporal prediction tools of H.265/HEVC clearly enable

better R-D performance than H.264/AVC. However, when we

compare the Prop-AVC and Prop-HEVC schemes with the

corresponding references, we observe different trends with

respect to the Intra-only case. In particular, we observe that

for sequences 5 and 6 (Fig. 5(e) and 5(f)), Prop-AVC out-

performs HEVC only for a subset of the tested QP values.

By comparison, in Intra-only mode Prop-AVC outperformed

even SCC at any bitrate. Also, Prop-AVC cannot achieve

the low bitrates achieved by HEVC any more. In any case,

SCC outperforms both Prop-AVC and Prop-HEVC. Looking

at sequences 1 and 2, Prop-AVC does not outperform HEVC

but for very few QP values and only for the second sequence.

We explain these results as follows. The video bitrate, in

our scheme, accounts both for the residual video coding rate

and for the encoded characters rate. The characters rate is

identical to the Intra-only experiments since no temporal cor-

relation is exploited in our character encoding scheme. As

the residual video is encoded exploiting temporal correlation,

the ratio between characters rate and residual video rate in-

creases. In this scenario, the characters rate is not negligible

any more with respect to the residual video rate, explaining

the less competitive performance of our scheme when tempo-

ral prediction is enabled. These results call for exploiting the

temporal redundancy between co-located text in temporally

adjacent video frames. Our analysis of real cockpit video

sequences verified the intuition that text co-located characters

in neighbour frames are strongly correlated. We postulate

that by extending our semantic encoding scheme to exploit

temporal redundancy, we could drastically reduce the charac-

ter rate, making it negligible with respect to inter-predicted

residual video.

Finally, we also evaluate the performance of our Proposed-

SCC scheme with respect to the SCC scheme for the five

class-A sequences using the Bjontegaard metrics. Tab. 3

shows that our proposed method achieves consistent R-D

gains with respect to the reference when the Inter prediction

is enabled. Depending on the considered QP ranges, our

gains range from 18% for low QPs values to 57% for high

QP values.

Table 3. Bjontegaard metrics (BD-PSNR and BD-RATE)

for class-A sequence, computed for Proposed-SCC vs. SCC

codecs using Inter coding configuration.

High Quality Low Quality

QP = [40, 35, 30, 25] QP = [50, 45, 40, 35]
Video BD−PSNR BD−Rate BD−PSNR BD−Rate

Seq. 1 0.69 dB −34.3% 3.05 dB −40.0%
Seq. 2 0.43 dB −17.9% 1.49 dB −30.0%
Seq. 3 1.66 dB −38.2% 3.66 dB −57.1%
Seq. 4 1.31 dB −31.2% 2.60 dB −55.5%

4. CONCLUSIONS AND FURTHER WORK

In this work, we experimentally evaluated our semantic

scheme for airplane cockpit video compression with two

different video codecs. Availing different coding configura-

tions, several interesting results emerge.

When the video is encoded in Intra-only mode, the H.264/AVC

codec retrofitted with our proposed scheme outperforms the

more recent H.265/HEVC codec and performs close to its

SCC extension. Thus, we can exploit the modular struc-

ture of the semantic coding scheme to improve the coding

efficiency keeping the complexity suitable for avionic appli-

cations.

Contrary, when temporal inter-frame prediction is used, the

competitive advantage of our semantic video compression

scheme decreases as the rate of the encoded characters is not

negligible any more with respect to the rate of the residual

video.
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Fig. 5. PSNR vs. video bitrate for Inter coding configura-

tion. First row - Left: Seq. 1 (Fig. 2(a)); Right: Seq. 2

(Fig. 2(b)). Second row - Left: Seq. 3 (Fig. 2(c)); Right: Seq.

4 (Fig. 2(d)). Third row - Left: Seq. 5 (Fig. 2(e)); Right: Seq.

6 (Fig. 2(f)).
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