
HAL Id: hal-02350879
https://telecom-paris.hal.science/hal-02350879v1

Submitted on 6 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tree Sampling Divergence: An Information-Theoretic
Metric for Hierarchical Graph Clustering

Bertrand Charpentier, Thomas Bonald

To cite this version:
Bertrand Charpentier, Thomas Bonald. Tree Sampling Divergence: An Information-Theoretic Metric
for Hierarchical Graph Clustering. IJCAI, 2019, Macao, China. �hal-02350879�

https://telecom-paris.hal.science/hal-02350879v1
https://hal.archives-ouvertes.fr

Tree Sampling Divergence: An Information-Theoretic Metric
for Hierarchical Graph Clustering

Bertrand Charpentier1∗and Thomas Bonald2

1Technical University of Munich
2Telecom ParisTech

charpent@in.tum.de, thomas.bonald@telecom-paristech.fr

Abstract

We introduce the tree sampling divergence (TSD),
an information-theoretic metric for assessing the
quality of the hierarchical clustering of a graph.
Any hierarchical clustering of a graph can be rep-
resented as a tree whose nodes correspond to clus-
ters of the graph. The TSD is the Kullback-Leibler
divergence between two probability distributions
over the nodes of this tree: those induced respec-
tively by sampling at random edges and node pairs
of the graph. A fundamental property of the pro-
posed metric is that it is interpretable in terms of
graph reconstruction. Specifically, it quantifies the
ability to reconstruct the graph from the tree in
terms of information loss. In particular, the TSD
is maximum when perfect reconstruction is feasi-
ble, i.e., when the graph has a complete hierarchi-
cal structure. Another key property of TSD is that
it applies to any tree, not necessarily binary. In par-
ticular, the TSD can be used to compress a binary
tree while minimizing the information loss in terms
of graph reconstruction, so as to get a compact rep-
resentation of the hierarchical structure of a graph.
We illustrate the behavior of TSD compared to ex-
isting metrics on experiments based on both syn-
thetic and real datasets.

1 Introduction
Many datasets have a graph structure. Examples include in-
frastructure networks, communication networks, social net-
works, databases and co-occurence networks, to quote a few.
These graphs often exhibit a complex, multi-scale structure
where each node belong to many groups of nodes, so-called
clusters, of different sizes [Caldarelli, 2007].

Hierarchical graph clustering is a common technique for
the analysis of the multi-scale structure of large graphs.
Rather than looking for a simple partition of the set of nodes,
as in usual clustering techniques, the objective is to represent
the graph by some rooted binary tree, whose leaves are the
nodes of the graph. This tree can then be used to find relevant

∗Contact Author.

clusterings at different resolutions by suitable cuts at different
levels of the tree.

While many hierarchical graph clustering algorithms have
recently been proposed, see for instance [Newman, 2004;
Pons and Latapy, 2005; Sales-Pardo et al., 2007; Clauset
et al., 2008; Lancichinetti et al., 2009; Huang et al., 2010;
Chang et al., 2011; Tremblay and Borgnat, 2014; Bateni et
al., 2017; Bonald et al., 2018], it proves very difficult to eval-
uate their performance due to the absence of public datasets
of graphs with ground-truth hierarchy. A natural approach
is then to define some quality metric based on the graph it-
self, just like modularity is a popular metric for assessing the
quality of a simple clustering [Newman and Girvan, 2004].

A cost function has recently been proposed by Dasgupta
[Dasgupta, 2016] to assess the quality of a hierachical clus-
tering and has been further analysed and extended in [Roy
and Pokutta, 2016; Cohen-Addad et al., 2017; Cohen-Addad
et al., 2018]; it can be viewed as the expected size of the
smallest cluster encompassing two nodes sampled at random
from the edges of the graph.

In this paper, we assess the quality of a hierarchical clus-
tering through the Kullback-Leibler divergence between two
probability distributions over the nodes of the tree: those in-
duced respectively by sampling clusters encompassing ran-
dom edges and node pairs of the graph. We refer to this
metric as Tree Sampling Divergence (TSD). If the tree cap-
tures the hierarchical structure of the graph, the TSD tends to
be large since most edges are sampled from nodes belonging
to small clusters of the graph (i.e., deep nodes of the tree),
whereas most node pairs, sampled independently, belong to
large clusters of the graph (i.e., shallow nodes of the tree,
close to the root).

A fundamental property of the proposed metric is that it is
interpretable in terms of graph reconstruction. Specifically, it
quantifies the ability to reconstruct the graph from the tree. In
particular, the TSD is maximum when perfect reconstruction
is feasible, i.e., when the graph has a full hierarchical struc-
ture and can be reconstructed exactly from the corresponding
tree. While a similar property has been proved in [Cohen-
Addad et al., 2018] for Dasgupta’s cost, this applies only to
a graph that has a full hierarchical structure, when perfect re-
construction is possible; there is no interpretation in terms of
graph reconstruction for an arbitrary graph. The TSD quanti-
fies the gap to perfect reconstruction for any graph: this gap is

exactly the information lost in the reconstruction of the graph.
Another key property of TSD is that it applies to any tree,

not necessarily binary. In particular, the TSD applies to trees
of height 2, corresponding to the case of usual clustering
(not hierarchical) where the output is a partition of the set of
nodes. The TSD can thus be viewed as a universal metric, ap-
plicable to any type of clustering. Moreover, the TSD can be
used in practice to compress a binary tree while minimizing
the information loss in terms of graph reconstruction, so as to
get a compact representation of the hierarchical structure of a
graph.

The paper is structured as follows. We first introduce in
sections 2 and 3 the notions of graph sampling and graph
distance, which play a key role in our approach. The Tree
Sampling Divergence (TSD) is presented in section 4. In sec-
tion 5, we show how to compute the TSD in practice through
graph aggregation. The properties of the TSD in terms of
graph reconstruction are presented in section 6. The case of
general trees is considered in section 7, the practically inter-
esting case of flat clustering (trees of height 2) being pre-
sented in section 8. Some extensions of the TSD are de-
scribed in section 9. The behavior of the TSD is illustrated
by experiments on both synthetic and real data in section 10.
Section 11 concludes the paper.

2 Graph Sampling
Consider a weighted, undirected, connected graph G =
(V,E) of n nodes and m edges. Let w(u, v) be equal to the
weight of edge u, v, if any, and to 0 otherwise. We refer to
the weight of node u as:

w(u) =
∑
v∈V

w(u, v).

We denote by w the total weight of nodes:

w =
∑
u∈V

w(u) =
∑

u,v∈V
w(u, v).

These weights induce two ways to sample the graph.
Edge sampling. Sampling edges at random in proportion
to their weights yields the following joint probability distri-
bution on V :

∀u, v ∈ V, P (u, v) =
w(u, v)

w
.

This distribution is symmetric in the sense that:

∀u, v ∈ V, P (u, v) = P (v, u).

Observe that the graph G is fully characterized by its edge
sampling distribution P and its total weight w, since the
weight of edge u, v is given by w(u, v) = wP (u, v).
Node sampling. Sampling nodes at random in proportion
to their weights yields the following probability distribution
on V :

∀u ∈ V, P (u) =
w(u)

w
.

This is the marginal distribution of the edge sampling distri-
bution:

∀u ∈ V, P (u) =
∑
v∈V

P (u, v)

Observe that the graph structure cannot be recovered from
the node sampling distribution. The best reconstruction given
this distribution and the total weight w consists in assign-
ing the weight wP (u)P (v) to edge u, v. Following Newman
[Newman and Girvan, 2004], we refer to this graph as the null
model associated to graph G.

3 Graph Distance
We have seen that any graph is characterized by its edge sam-
pling distribution and its total weight. Thus the edge sam-
pling distribution can be used to define a distance between
two graphs, up to some multiplicative constant on the edge
weights. Specifically, letG1, G2 be two graphs over the same
set of nodes V and denote by P1, P2 the corresponding edge
sampling distributions. We define the distance between G1

and G2 by the Kullback-Leibler divergence between P1 and
P2, that is:

D(G1, G2) = D(P1||P2) =
∑

u,v∈V
P1(u, v) log

P1(u, v)

P2(u, v)
.

Observe that, like the Kullback-Leibler divergence, this dis-
tance is not symmetric. The graphs G1 and G2 are equivalent
for this distance, in the sense thatD(G1, G2) = 0, if and only
if P1 = P2, i.e., edge weights are equal up to a multiplicative
constant.

The above distance can be used to quantify the difference
between the graph G and its null model. This distance is:

I =
∑

u,v∈V
P (u, v) log

P (u, v)

P (u)P (v)
, (1)

the mutual information between nodes when sampled from
the edges. This is a simple yet meaningful metric to quantify
the clustering structure of the graph: if nodes are organized
in clusters, the mutual information between two nodes u, v
sampled from an edge is expected to be large (given node
u, you get information on the other node v); on the other
hand, if the graph has no clustering structure (e.g., a complete
graph), then the mutual information between two nodes u, v
sampled from an edge is small (given node u, you have little
information on the other node v; this information is null for a
complete graph).

We shall see in section 6 that the mutual information I is
directly related to our metric: this is the maximum value of
the TSD, which is attained by a tree if and only if perfect
graph reconstruction from this tree is feasible.

4 Tree Sampling Divergence
Consider some hierarchical clustering of a graph, represented
as a rooted binary tree whose leaves are the nodes of the
graph. For any u, v ∈ V , we denote by u ∧ v the closest
common ancestor of leaves u and v in the tree.

Let T be the set of nodes of the tree. Note that V ⊂ T and
|T | = 2n − 1. The graph sampling distributions introduced
in section 2 induce the following probability distributions on
T :

∀x ∈ T, p(x) =
∑

u,v:u∧v=x

P (u, v),

and
∀x ∈ T, q(x) =

∑
u,v:u∧v=x

P (u)P (v).

The former is that induced by edge sampling while the latter
is that induced by independent node sampling. Equivalently,
these are the distributions induced by edge sampling for the
original graph and the null model, respectively. We expect
these distributions to differ significantly if the tree indeed
represents the hierarchical structure of the graph. Specifi-
cally, we expect p to be mostly concentrated on deep nodes
of the tree (far from the root), as two nodes u, v connected
with high weight w(u, v) in the graph typically belong to a
small cluster, representative of the clustering structure of the
graph; on the contrary, we expect q to be concentrated over
shallow nodes (close to the root) as two nodes u, v sampled
independently at random typically belong to large clusters,
less representative of the clustering structure of the graph.

This motivates the following metric for the quality of the
tree T as hierarchical structure of the graph:

Q =
∑
x∈T

p(x) log
p(x)

q(x)
. (2)

This is the Kullback-Leibler divergence1 between the prob-
ability distributions p and q. The larger the divergence, the
better the tree for representing the graph. In the following, we
refer to this metric as the Tree Sampling Divergence (TSD).
We shall see in section 6 that the quantity I−Q, with I given
by (1), can be interpreted in terms of information loss in the
problem of graph reconstruction from the tree.

5 Graph Aggregation
The sampling distributions p, q can be simply computed by
graph aggregation (see Algorithm 1). The algorithm consists
in iteratively merging two nodes u, v of the graph that are
leaves of the tree into a single node x = u∧ v, their common
parent in the tree. This node has weight:

w(x) = w(u) + w(v),

and a self-loop with weight:

w(x, x) = w(u, u) + w(v, v) + 2w(u, v)

in the aggregate graph. We get the sampling probabilities of
node x ∈ T as:

p(x) =
w(x, x)

w
, q(x) =

(
w(x)

w

)2

,

and the TSD follows from (2).

6 Graph Reconstruction
We consider the problem of graph reconstruction from the
tree. Specifically, given the tree T and the weights of nodes,
we would like to build some graph Ĝ that is as close as pos-
sible to G. The hierarchical clustering can then be viwed as

1Note that Q is finite since the support of q is T (because P (u) >
0 for each u ∈ V).

Algorithm 1: Computation of TSD (binary trees)
Input: Graph G = (V,E) with sampling distribution P ;

Tree T
Output: Tree sampling distributions p, q

1 for x ∈ V do
2 p(x)← P (x, x); q(x)← P (x)2

3 while |V | > 1 do
4 u, v ← leaves of the tree T , with common parent x

// aggregate nodes u, v into x
5 V ← V \ {u, v}; V ← V ∪ {x}

// update P
6 for y neighbor of u or v do
7 if y 6= x then
8 P (x, y)← P (u, y) + P (v, y);

P (y, x)← P (x, y)

9 else
10 P (x, x)← P (u, u) + P (v, v) + 2P (u, v)

11 P (x)← P (u) + P (v)

// update p, q
12 p(x)← P (x, x); q(x)← P (x)2

// update T
13 T ← T \ {u, v}

the latent representation of the graph G in the auto-encoding
process:

G→ T → Ĝ.

We first need to define the decoding scheme, that is the
process to build some graph Ĝ from the tree T . To do this,
we assign some weight σ(x) to each node x ∈ T \ V . This
corresponds to the weight of cluster x and will be determined
so as to minimize the distance between the original graph G
and its reconstruction Ĝ. We let the weight of edge u, v in
graph Ĝ equal to:

ŵ(u, v) = w(u)w(v)σ(u ∧ v).

Thus the weight of edge u, v is proportional to the respec-
tive weights of nodes u, v and to the weight of their smallest
common cluster u ∧ v, as given by the tree.

It remains to find the cluster weights σ that minimize the
distance between the original graph G and its reconstruction
Ĝ. For this, we use the graph distance defined in section
3, corresponding to the Kullback-Leibler divergence between
the corresponding edge sampling distributions, P and P̂ . Ob-
serve that:

P̂ (u, v) = CP (u)P (v)σ(u ∧ v),

with:

C =

 ∑
u,v∈V

P (u)P (v)σ(u ∧ v)

−1 .

We obtain:

D(G, Ĝ) = D(P ||P̂),

=
∑

u,v∈V
P (u, v) log

P (u, v)

P̂ (u, v)
,

=
∑

u,v∈V
P (u, v) log

P (u, v)

P (u)P (v)

−
∑

u,v∈V
P (u, v) log σ(u ∧ v)

+ log

 ∑
u,v∈V

P (u)P (v)σ(u ∧ v)

 ,

= I − J,

where I , given by (1), is the mutual information between
nodes when sampled from the edges and

J =
∑

u,v∈V
P (u, v) log σ(u ∧ v)

− log

 ∑
u,v∈V

P (u)P (v)σ(u ∧ v)

 ,

=
∑
x∈T

p(x) log σ(x)− log

(∑
x∈T

q(x)σ(x)

)
.

Observe that I is independent of P̂ so that J is the quantity to
be maximized. Finding where the derivative of J with respect
to σ(x) is equal to 0 yields:

p(x)

σ(x)
=
q(x)

α
with α =

∑
x∈T

q(x)σ(x).

We get:

∀x ∈ T, σ(x) = α
p(x)

q(x)
.

For this optimal value of σ, we obtain:

J =
∑
x∈T

p(x) log
p(x)

q(x)
,

which is equal to Q, the tree sampling divergence.
Finally, the optimal reconstruction of the graph corre-

sponds to the sampling distribution:

P ?(u, v) ∝ P (u)P (v)
p(u ∧ v)

q(u ∧ v)

and the distance between the original graph G and its optimal
reconstruction G? is:

D(G,G?) = D(P ||P ?) = I −Q.

We deduce that the information loss in the optimal auto-
encoding process G → T → G? is I − Q. In particular,
Q ≤ I , with equality if and only if perfect reconstruction
from the tree T is possible.

7 Tree Compression
While existing quality metrics are typically defined for bi-
nary trees (see for instance Dasgupta’s cost and extensions
in [Cohen-Addad et al., 2017]), the TSD equally applies to
general trees. The definition is exactly the same. As for the
computation, Algorithm 1 applies except that the aggregation
must be applied simultaneously to all leaves of the tree hav-
ing the same parent (see Algorithm 2).

Algorithm 2: Computation of TSD (general trees)
Input: Graph G = (V,E) with sampling distribution P ;

Tree T
Output: Tree sampling distributions p, q

1 for x ∈ V do
2 p(x)← P (x, x); q(x)← P (x)2

3 while |V | > 1 do
4 S ← leaves of the tree T , with common parent x

// aggregate nodes S into x
5 V ← V \ S; V ← V ∪ {x}

// update P
6 for y neighbor of a node in S do
7 if y 6= x then
8 P (x, y)←

∑
u∈S P (u, y);

P (y, x)← P (x, y)

9 else
10 P (x, x)←

∑
u,v∈S P (u, v)

11 P (x)←
∑

u∈S P (u)

// update p, q
12 p(x)← P (x, x); q(x)← P (x)2

// update T
13 T ← T \ S

This is a very interesting property as dense trees are sought
in practice, the information provided by a binary tree being
to rich to be directly exploited by data scientists or engineers.
Moreover, it provides a way to compress a binary tree in an
optimal way, by minimizing the information loss caused by
tree compression. In view of (2), the information loss caused
by the merge of cluster x ∈ T (internal node of the tree) with
its parent y is:

∆(x, y) = (p(x) + p(y)) log
p(x) + p(y)

q(x) + q(y)

− p(x) log
p(x)

q(x)
− p(y) log

p(y)

q(y)
.

Observe that the merge of x and y does not modify the edge
sampling distributions on the other nodes of the tree. In par-
ticular, the information loss ∆(x, y) can be computed for all
branches of the tree, with a complexity in O(n) given p and
q, and successive merges be done in increasing order of these
information losses. The stopping criterion may be related to
some target number of internal nodes in the tree, or some
maximum total information loss.

8 Graph Clustering
Since the TSD applies to any tree, it applies in particular to
trees of height 2, corresponding to usual graph clustering (i.e.,
a partition of the nodes).

Let C1, . . . , CK be K clusters, forming a partition of V .
This can be represented as a tree of height 2, with k internal
nodes x1, . . . , xK at level 1 (the clusters) and n leaves at level
2 (the nodes of the graph). For each cluster k = 1, . . . ,K, we
have:

p(xk) =
∑

u,v∈Ck

P (u, v) =
wk

w
,

where
wk =

∑
u,v∈Ck

w(u, v)

denotes the internal weight of cluster k (total weight of edges
within the cluster). Similarly,

q(xk) =

(∑
u∈Ck

P (u)

)2

=

(
Wk

w

)2

,

where
Wk =

∑
u∈Ck

w(u)

denotes the weight of cluster k (total weight of nodes in the
cluster). Assuming that there are no self loops, we get for the
root, which we denote by 0,

p(0) = 1−
K∑

k=1

p(xk), q(0) = 1−
K∑

k=1

q(xk).

Thus the TSD takes the form:

Q =

K∑
k=1

wk

w
log

wwk

W 2
k

+

(
1−

K∑
k=1

wk

w

)
log

(
1−

∑K
k=1

wk

w

1−
∑K

k=1

(
Wk

w

)2
)
.

This is a novel metric for evaluating the quality of a cluster-
ing, different from modularity [Newman and Girvan, 2004],
the usual metric given by:

M =

K∑
k=1

p(xk)−
K∑

k=1

q(xk) =

K∑
k=1

wk

w
−

K∑
k=1

(
Wk

w

)2

.

The key property of the TSD is that it quantifies the ability to
reconstruct the graph in terms of information loss; this applies
to any tree and thus to usual graph clustering as well. There
is no such interpretation with modularity.

9 Extensions
The TSD can be extended in several ways. First, the node pair
sampling distribution q can be replaced by the uniform distri-
bution (i.e., the null model is the complete graph). This boils
down to the initialization P (x) ← 1

n for all x ∈ V before
applying Algorithm 1 or 2. Second, the Kullback-Leibler di-
vergence can be replaced by some other divergence, like the
square Euclidean distance between the probability measures,∑

x∈T (p(x)−q(x))2. The experiments presented below sug-
gest however that it is preferable to use the Kullback-Leibler
divergence.

10 Experiments
The Python code and the datasets used for the experiments
are available online2.

Graph Representation
We first show how TSD is able to detect the quality of a tree
in terms of graph representation. For this, we generate two
noisy versions of the same graph, say G1 and G2, and return
the corresponding trees, say T1 and T2, by the hierarchical
clustering algorithm described in [Bonald et al., 2018]. We
then assess the ability of TSD to identify the best tree asso-
ciated to each graph (e.g., T1 should be better than T2 for
graph G1). The classification score (in proportion of correct
answers) is given in Table 1 for two metrics, TSD and Das-
gupta’s cost. Each classification score is based on 1000 sam-
ples of the graphsG1 andG2; the original graphG, generated
at random from a random hierarchy, has 100 nodes and aver-
age degree 10; the two graphs G1 and G2 are derived from G
by replacing some random subset of the edges at random (the
higher the noise, the easier the classification task).

Noise 2% 5% 10%
TSD 64% 82% 94%

Dasgupta’s cost 59% 72% 86%

Table 1: Classification scores.

Graph Reconstruction
Next, we show how TSD captures the quality of a tree in
terms of graph reconstruction. To this end, we consider a
hierarchical stochastic block model (HSBM) of 80 nodes and
3 levels of hierarchy (binary tree with clusters of 10 nodes on
leaves) with different parameters, see [Lyzinski et al., 2017].
For each graph, we apply various graph clustering algorithms,
so as to get hierarchies of different qualities. The reconstruc-
tion procedure is that described in section 6.

Figure 1 shows the quality of the reconstruction for usual
scores (detailed below) with respect to the quality / cost of
the hierarchy, for three metrics: TSD, Dasgupta’s cost, and
the version of the TSD based on the Euclidean distance, we
refer to as the Euclidean divergence (see section 9). The re-
sults suggest that TSD is the best metric in terms of graph re-
construction, with a clear correlation between the metric and
the reconstruction scores. The correlation is also present but
more noisy for Dasgupta’s cost; there is no correlation with
the Euclidean divergence.

The quality of the reconstruction is based on the following
classical scores [Bordes et al., 2013; Nickel and Kiela, 2017;
Nickel et al., 2016; Bojchevski and Günnemann, 2018]. First,
keeping all edges of the reconstructed graph whose weight
is larger than some threshold provides a set of graphs with
different false positive and false negative rates, from which
we get the Area Under ROC Curve (AUC) and the Average
Precision Score (APS). Second, we compute the rank of each
edge of the original graph among all possible edges ending in
one of the two nodes in the reconstructed graph, in decreasing
order of weights. This rank score is averaged over all nodes

2See https://github.com/sharpenb/Tree-Sampling-Divergence.

https://github.com/sharpenb/Tree-Sampling-Divergence

0.3 0.4 0.5 0.6 0.7
Tree Sampling Divergence

0.0

0.2

0.4

0.6

0.8

1.0

Re
co

ns
tru

ct
io

n
sc

or
e

APS
AUC
Rank

0.2 0.4 0.6 0.8
Dasgupta's Cost

0.0

0.2

0.4

0.6

0.8

1.0

Re
co

ns
tru

ct
io

n
sc

or
e APS

AUC
Rank

0.00 0.02 0.04 0.06 0.08 0.10
Euclidean Divergence

0.0

0.2

0.4

0.6

0.8

1.0

Re
co

ns
tru

ct
io

n
sc

or
e APS

AUC
Rank

Figure 1: Reconstruction scores against quality / cost metrics.

and normalized by the number of nodes to get a score between
0 and 1; the lower the rank, the better the reconstruction.

Tree Compression
Next, we show the pratical interest of TSD in terms of tree
compression. We consider OpenFlights3, a weighted graph
of 3,092 nodes and 18,193 edges representing flights between
the main airports of the world. We first apply the hierarchi-
cal clustering algorithm described in [Bonald et al., 2018]
then apply the algorithm described at the end of section 7 to
compress the resulting tree with minimum information loss.
Specifically, we merge 3, 000 levels among the 3, 092 levels
of the original binary tree.

The results are shown in Figure 2, together with a cluster-
ing derived from this compressed tree. We observe that the
compressed tree still captures the hierarchical structure of the
graph, despite the very high compression rate applied here
(only 3% of the hierarchical levels are retained). The com-
pressed tree is clearly much easier to exploit in practice than
the original tree.

3https://openflights.org

(a) Binary tree (3092 levels)

(b) Compressed tree (92 levels)

(c) Clustering extracted from the compressed tree (20 clusters)

Figure 2: Tree compression on the Openflights graph.

11 Conclusion
We have presented a novel quality metric for hierarchical
graph clustering. This metric, inspired by information theory,
reflects the ability to reconstruct the initial graph from a hier-
archy representing this graph. It is applicable to general trees
(not only binary trees) and can be used for tree compression.

References
[Bateni et al., 2017] Mohammadhossein Bateni, Soheil

Behnezhad, Mahsa Derakhshan, MohammadTaghi Haji-
aghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab
Mirrokni. Affinity clustering: Hierarchical clustering at
scale. In Advances in Neural Information Processing
Systems, 2017.

https://openflights.org

[Bojchevski and Günnemann, 2018] Aleksandar Bojchevski
and Stephan Günnemann. Deep gaussian embedding of
graphs: Unsupervised inductive learning via ranking. In
International Conference on Learning Representations,
2018.

[Bonald et al., 2018] Thomas Bonald, Bertrand Charpentier,
Alexis Galland, and Alexandre Hollocou. Hierarchical
graph clustering based on node pair sampling. In Proceed-
ings of the 14th International Workshop on Mining and
Learning with Graphs (MLG), 2018.

[Bordes et al., 2013] Antoine Bordes, Nicolas Usunier,
Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-
relational data. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 26, pages
2787–2795. Curran Associates, Inc., 2013.

[Caldarelli, 2007] Guido Caldarelli. Large scale structure
and dynamics of complex networks: from information
technology to finance and natural science, volume 2.
World Scientific, 2007.

[Chang et al., 2011] Cheng-Shang Chang, Chin-Yi Hsu, Jay
Cheng, and Duan-Shin Lee. A general probabilistic frame-
work for detecting community structure in networks. In
Proceedings IEEE INFOCOM, 2011.

[Clauset et al., 2008] Aaron Clauset, Cristopher Moore, and
Mark EJ Newman. Hierarchical structure and the predic-
tion of missing links in networks. Nature, 2008.

[Cohen-Addad et al., 2017] Vincent Cohen-Addad, Varun
Kanade, and Frederik Mallmann-Trenn. Hierarchical clus-
tering beyond the worst-case. In Advances in Neural In-
formation Processing Systems, 2017.

[Cohen-Addad et al., 2018] Vincent Cohen-Addad, Varun
Kanade, Frederik Mallmann-Trenn, and Claire Mathieu.
Hierarchical clustering: Objective functions and algo-
rithms. In Proceedings of ACM-SIAM Symposium on Dis-
crete Algorithms, 2018.

[Dasgupta, 2016] Sanjoy Dasgupta. A cost function for
similarity-based hierarchical clustering. In Proceedings of
ACM symposium on Theory of Computing, 2016.

[Huang et al., 2010] Jianbin Huang, Heli Sun, Jiawei Han,
Hongbo Deng, Yizhou Sun, and Yaguang Liu. Shrink:
A structural clustering algorithm for detecting hierarchical
communities in networks. In Proceedings of ACM Inter-
national Conference on Information and Knowledge Man-
agement, 2010.

[Lancichinetti et al., 2009] Andrea Lancichinetti, Santo For-
tunato, and János Kertész. Detecting the overlapping and
hierarchical community structure in complex networks.
New Journal of Physics, 11(3), 2009.

[Lyzinski et al., 2017] Vince Lyzinski, Minh Tang, Avanti
Athreya, Youngser Park, and Carey E Priebe. Commu-
nity detection and classification in hierarchical stochastic
blockmodels. IEEE Transactions on Network Science and
Engineering, 4(1), 2017.

[Newman and Girvan, 2004] Mark EJ Newman and
Michelle Girvan. Finding and evaluating community
structure in networks. Physical review E, 2004.

[Newman, 2004] Mark EJ Newman. Fast algorithm for de-
tecting community structure in networks. Physical review
E, 69(6):066133, 2004.

[Nickel and Kiela, 2017] Maximillian Nickel and Douwe
Kiela. Poincaré embeddings for learning hierarchical rep-
resentations. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Sys-
tems 30, pages 6338–6347. Curran Associates, Inc., 2017.

[Nickel et al., 2016] Maximilian Nickel, Lorenzo Rosasco,
Tomaso A Poggio, et al. Holographic embeddings of
knowledge graphs. In AAAI, pages 1955–1961, 2016.

[Pons and Latapy, 2005] Pascal Pons and Matthieu Latapy.
Computing communities in large networks using random
walks. In International symposium on computer and infor-
mation sciences. Springer, 2005.

[Roy and Pokutta, 2016] Aurko Roy and Sebastian Pokutta.
Hierarchical clustering via spreading metrics. In Advances
in Neural Information Processing Systems, 2016.

[Sales-Pardo et al., 2007] Marta Sales-Pardo, Roger
Guimera, André A Moreira, and Luı́s A Nunes Amaral.
Extracting the hierarchical organization of complex sys-
tems. Proceedings of the National Academy of Sciences,
104(39), 2007.

[Tremblay and Borgnat, 2014] Nicolas Tremblay and Pierre
Borgnat. Graph wavelets for multiscale community min-
ing. IEEE Transactions on Signal Processing, 62(20),
2014.

	Introduction
	Graph Sampling
	Graph Distance
	Tree Sampling Divergence
	Graph Aggregation
	Graph Reconstruction
	Tree Compression
	Graph Clustering
	Extensions
	Experiments
	Graph Representation
	Graph Reconstruction
	Tree Compression

	Conclusion

