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Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for
Non-Convex Optimization

Thanh Huy Nguyen 1 Umut Şimşekli 1 Gaël Richard 1

Abstract

Recent studies on diffusion-based sampling meth-
ods have shown that Langevin Monte Carlo
(LMC) algorithms can be beneficial for non-
convex optimization, and rigorous theoretical
guarantees have been proven for both asymp-
totic and finite-time regimes. Algorithmically,
LMC-based algorithms resemble the well-known
gradient descent (GD) algorithm, where the GD
recursion is perturbed by an additive Gaussian
noise whose variance has a particular form. Frac-
tional Langevin Monte Carlo (FLMC) is a re-
cently proposed extension of LMC, where the
Gaussian noise is replaced by a heavy-tailed α-
stable noise. As opposed to its Gaussian counter-
part, these heavy-tailed perturbations can incur
large jumps and it has been empirically demon-
strated that the choice of α-stable noise can pro-
vide several advantages in modern machine learn-
ing problems, both in optimization and sampling
contexts. However, as opposed to LMC, only
asymptotic convergence properties of FLMC have
been yet established. In this study, we analyze
the non-asymptotic behavior of FLMC for non-
convex optimization and prove finite-time bounds
for its expected suboptimality. Our results show
that the weak-error of FLMC increases faster than
LMC, which suggests using smaller step-sizes in
FLMC. We finally extend our results to the case
where the exact gradients are replaced by stochas-
tic gradients and show that similar results hold in
this setting as well.
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Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

1. Introduction
Diffusion-based Markov Chain Monte Carlo (MCMC) algo-
rithms aim at generating samples from a distribution that is
only accessible by its unnormalized density function. Re-
cently, they have become increasingly popular due to their
nice scalability properties and theoretical guarantees (Ma
et al., 2015; Chen et al., 2015; Şimşekli et al., 2016; Dur-
mus et al., 2016). In addition to their success in Bayesian
machine learning, they have also been used for analyzing
large-scale non-convex optimization algorithms (Raginsky
et al., 2017; Xu et al., 2018; Şimşekli et al., 2018; Birdal
et al., 2018; Birdal & Şimşekli, 2019) and understanding
the behavior of stochastic gradient descent in deep learning
settings (Jastrzebski et al., 2017; Şimşekli et al., 2019).

One of the most popular approaches in this field is based on
the so-called Langevin diffusion, which is described by the
following stochastic differential equation (SDE):

dX(t) = −∇f(X(t))dt+
√

2/β dB(t), t ≥ 0, (1)

where X(t) ∈ Rd, f is a smooth function which is often
non-convex, β ∈ R+ is called the ‘inverse temperature’
parameter, and B(t) is the standard Brownian motion in Rd.

Under some regularity conditions on f , one can show that
the Markov process (Xt)t≥0, i.e. the solution of the SDE
(1), is ergodic with its unique invariant measure π, whose
density is proportional to exp(−βf(x)) (Roberts & Stramer,
2002). An important feature of this measure is that, when β
goes to infinity, its density concentrates around the global
minimum x? , arg minx∈Rd f(x) (Hwang, 1980; Gelfand
& Mitter, 1991). This property implies that, if we could
simulate (1) for large enough β and t, the simulated state
X(t) would be close to x?.

This connection between diffusions and optimization, mo-
tivates simulating (1) in discrete-time in order to obtain
‘almost global optimizers’. If we use a first-order Euler-
Maruyama discretization, we obtain a ‘tempered’ version
of the well-known Unadjusted Langevin Algorithm (ULA)
(Roberts & Stramer, 2002):

W k+1
ULA = W k

ULA − η∇f(W k
ULA) +

√
2η

β
∆Bk+1, (2)
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where k ∈ N+ denotes the iterations, η denotes the step-size,
and (∆Bn)n is a sequence of independent and identically-
distributed (i.i.d.) standard Gaussian random variables.
When β = 1, we obtain the classical ULA, which is mainly
used for Bayesian posterior sampling. Theoretical properties
of the classical ULA have been extensively studied (Roberts
& Stramer, 2002; Lamberton & Pages, 2003; Durmus &
Moulines, 2015; 2016; Dalalyan, 2017b).

When β � 1, the algorithm is called tempered and becomes
more suitable for optimization. Indeed, one can observe that
the noise term ∆Bk in (2) becomes less dominant, and the
overall algorithm can be seen as a ‘perturbed’ version of the
gradient descent (GD) algorithm. The connection between
ULA and GD has been recently established in (Dalalyan,
2017a) for strongly convex f . Moreover, Raginsky et al.
(2017) and Xu et al. (2018) proved non-asymptotic guaran-
tees for this perturbed scheme1. Their results showed that,
even in non-convex settings, the algorithm is guaranteed
to escape from local minima and converge near the global
minimizer. These results were extended in (Zhang et al.,
2017) and (Tzen et al., 2018), which showed that the iter-
ates converge near a local minimum in polynomial time and
stay there for an exponential time. Recently, the guarantees
for ULA were further extended to second-order Langevin
dynamics (Gao et al., 2018b;a).

Another line of research has extended Langevin Monte
Carlo by replacing the Brownian motion with a motion
which can incur ‘jumps’ (i.e. discontinuities), such as the
α-stable Lévy Motion (see Figure 1) (Şimşekli, 2017; Ye &
Zhu, 2018). Coined under the name of Fractional Langevin
Monte Carlo (FLMC) methods, these approaches are mo-
tivated by the statistical physics origins of the Langevin
equation (1). In such a context, the Langevin equation aims
to model the position of a small particle that is under the
influence of a force, which has a deterministic and a stochas-
tic part. If we assume that the stochastic part of this force is
a sum of many i.i.d. random variables with finite variance,
then by the central limit theorem (CLT), we can assume that
their sum follows a Gaussian distribution, which justifies
the Brownian motion in (1).

The main idea in FLMC is to relax the finite variance as-
sumption and allow the random pulses to have infinite vari-
ance. In such a case, the classical CLT will not hold; how-
ever, the extended CLT (Lévy, 1937) will still be valid: the
law of the sum of the pulses converges to an α-stable distri-
bution, a family of ‘heavy-tailed’ distributions that contains
the Gaussian distribution as a special case. Then, by using a
similar argument to the previous case, we can replace the

1The results given in (Raginsky et al., 2017) are more general in
the sense that they are proved for the Stochastic Gradient Langevin
Dynamics (SGLD) algorithm (Welling & Teh, 2011), which is
obtained by replacing the gradients in (2) with stochastic gradients.

Brownian motion with the α-stable Lévy Motion (Yanovsky
et al., 2000), whose increments are α-stable distributed.

Based on an SDE driven by an α-stable Lévy Motion,
Şimşekli (2017) proposed the following iterative scheme
that is referred to as Fractional Langevin Algorithm (FLA):

W k+1
FLA = W k

FLA − ηcα∇f(W k
FLA) +

( η
β

) 1
α

∆Lαk+1, (3)

where α ∈ (1, 2] is called the characteristic index, cα is a
known constant, and {∆Lαk}k∈N+ is a sequence of α-stable
distributed random variables. As we will detail in Section 2,
FLA coincides with ULA when α = 2. Recently, Ye &
Zhu (2018) extended FLA to Hamiltonian dynamics. The
experimental results in (Şimşekli, 2017) and (Ye & Zhu,
2018) showed that the use of the heavy-tailed increments
can provide advantages in multi-modal settings, robustness
to algorithm parameters. Ye & Zhu (2018) further illustrated
that in an optimization context their algorithm achieves
better generalization in deep neural networks. In another
recent study, Şimşekli et al. (2019) illustrated that FLA can
also be used as a proxy for understanding the dynamics of
stochastic gradient descent in deep learning.

Even though asymptotic convergence properties of FLMC
were established for decreasing step-sizes in (Şimşekli,
2017; Panloup, 2008), these results do not explain the behav-
ior of the algorithm for finite number of iterations. Besides,
in practice, using a constant step-size often yields better
performance (Baker et al., 2017), a situation which cannot
be handled by the existing theory.

1.1. Overview of the main result

In this study, we analyze the non-asymptotic behavior of
FLA for non-convex optimization. In particular, we ana-
lyze the expected suboptimality E[f(W k

FLA) − f?], where
f? , f(x?). As we will describe in detail in Section 4, we
decompose this suboptimality into four different terms, and
we bound each of those terms one by one. Due to the choice
of the α-stable Lévy motion, the standard tools for analyz-
ing SDEs driven by a Brownian motion are not available for
our use, and therefore, we cannot use the proof strategies
developed for ULA as they are (such as (Raginsky et al.,
2017; Xu et al., 2018; Erdogdu et al., 2018)). Instead, we
follow an alternative path, where we first relate the expected
discrepancies to Wasserstein distance of fractional orders,
and then, inspired by (Gairing et al., 2018), we prove a result
that expresses the Wasserstein distance between the laws
of two SDEs (driven by α-stable Lévy motion) in terms of
their drift functions.

Informally, we show that the expected suboptimality
E[f(W k

FLA)− f?] is bounded by a sum of four terms, sum-
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Figure 1. Illustration of the density function of the symmetric α-stable (SαS) distribution (left) and the α-stable Lévy motion (right). As
α gets smaller, SαS becomes heavier-tailed and consequently, Lα(t) incurs larger jumps.

marized as follows:

E[f(W k
FLA)− f?] ≤ A1 +A2 +A3 +A4,

where

A1 = O
(
k1+max{ 1

q ,γ+ γ
q }η

1
q

)
,

A2 = O
(k1+max{ 1

q ,γ+ γ
q }η

1
q+ γ

αq d

β
(q−1)γ
αq

)
,

A3 = O
(
β + d

)
exp
(
−λ∗kη

β

)
,

A4 = O
( 1

βγ+1
+
d

β
log(β + 1)

)
.

Here γ ∈ (0, 1) is the Hölder exponent of the gradients of
f , and q ∈ (1, α), λ∗ > 0 are some constants. This result
has the following implications. For any ε > 0,

1. If 1
q > γ + γ

q and k ' ε−1 and η < ε2q+1, then A1

scales as Cε and A2 scales as εPoly(β, d).

2. If 1
q ≤ γ + γ

q and k ' ε−1 and η < ε2q+γ+γq, then
A1 scales as Cε and A2 scales as εPoly(β, d).

3. If we choose kη > β
λ∗

log
(

1
ε

)
, then A3 scales as

εPoly(β, d).

where Poly(. . .) denotes a formal polynomial, i.e., an ex-
pression containing the real-ordered exponents of the vari-
ables, coefficients, and only the operations of addition, sub-
traction, and multiplication.

In Section 6, we extend our results in two directions: (i)
obtaining guarantees for Bayesian posterior sampling and
(ii) non-convex optimization where exact gradients are re-
placed with stochastic gradients. Our results imply that, in
the context of global optimization, the error induced by FLA
has a worse dependency on k and η, as compared to ULA.
This suggests that one should use smaller step-sizes in FLA.

2. Technical Background and Preliminaries
2.1. Notations and basic definitions

In this section, we will define the basic quantities that will
be used throughout the paper. We use < ·, · > to denote
the inner product between two vectors, ‖ · ‖ denotes the

Euclidean norm, Eω[·] denotes the expectation with respect
to the random variable ω, and E[·] denotes the expectation
with respect to all the random sources. We will use the
Wasserstein metric to quantify the distance between two
probability measures.

Definition 1 (Wasserstein distance). Let µ and ν be two
probability measures. For λ ≥ 1, we define the λ-
Wasserstein distance between µ and ν as follows:

Wλ(µ, ν) , (inf{E‖V −W‖λ : V ∼ µ,W ∼ ν})1/λ,

where the infimum is taken over all the couplings of µ and
ν (i.e. the joint probability distributions whose marginal
distributions are µ and ν).

From now on, we will denote W k
FLA as W k for notational

simplicity. All the proofs are given in the supplementary
document.

2.2. α-Stable Distributions and α-Stable Lévy Motion

Definition 2 (Symmetric α-stable random variables). The
α-stable distribution appears as the limiting distribution
in the generalized CLT (Samorodnitsky & Taqqu, 1994). A
scalar random variableX ∈ R is called symmetric α-stable
if its characteristic function has the following form:

E[eiωX ] = exp(−σ|ω|α)

where α ∈ (0, 2] and σ > 0. We denote X ∼ SαS(σ).

The parameter α is called the characteristic index or the tail
index, since it determines the tail behavior of the distribution.
Perhaps the most important special case of symmetric α-
stable distributions is the Gaussian distribution: SαS(σ) =
N (0, 2σ2) when α = 2. As we decrease α, the distribution
becomes heavier-tailed. Moreover, whenX ∼ SαS(σ), the
moment E[|X|p] is finite if and only if p < α. This implies
that the distribution has infinite variance (i.e. the variance
diverges) whenever α 6= 2. It is easy to draw random
samples from SαS by using (Chambers et al., 1976).

Definition 3 (Symmetric α-stable Lévy motion). A scalar
symmetric α-stable Lévy motion Lα(t), with 0 < α ≤ 2, is
a stochastic process satisfying the following properties:

(i) Lα(0) = 0, almost surely.
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(ii) Independent increments: for 0 ≤ t1 < . . . < tn,
the random variables Lα(t2)− Lα(t1),..., Lα(tn)−
Lα(tn−1) are independent.

(iii) Stationary increments: for all 0 ≤ s < t, the random
variables Lα(t)−Lα(s) and Lα(t−s) have the same
distribution as SαS((t− s)1/α).

(iv) Continuity in probability: for any δ > 0 and s ≥ 0,
P(|Lα(s)− Lα(t)| > δ)→ 0, as t→ s.

We illustrate SαS and Lα(t) in Figure 1. In the rest of
the paper, Lα(t) will denote a d-dimensional Lévy process
whose components are independent scalar symmetric α-
stable Lévy motions as defined in Definition 3.

2.3. Fractional Langevin Monte Carlo

The FLMC framework is based on a Lévy-driven SDE, that
is defined as follows:

dX(t) = Ψ(X(t−), α)dt+ (1/β)1/αdLα(t) (4)

where X(t−) denotes the left limit of the process at time t,
Lα(t) denotes the d-dimensional Lévy motion as described
in Section 2.2. FLMC is built up on the following result:

Theorem 1 (Şimşekli (2017)). Consider the SDE (4) in the
case d = 1, β = 1, and α ∈ (1, 2], where the drift Ψ is
defined as follows:

Ψ(x, α) , −
Dα−2

(
φ(x)∂f(x)

∂x

))
φ(x)

. (5)

where D denotes the fractional Riesz derivative and is de-
fined as follows for a function u:

Dγu(x) , F−1{|ω|γ û(ω)},

Here,F denotes the Fourier transform and û , F(u). Then,
π is an invariant measure of the Markov process (X(t))t≥0

that is a solution of the SDE given by (4).

This theorem states that if the drift (5) can be computed, then
the sample paths of (4) can be considered as samples drawn
from π. However, computing (5) is in general not tractable,
therefore one needs to approximate it for computational
purposes. If we use the alternative definition of the Riesz
derivative given by (Ortigueira, 2006), we can approximate
the drift as follows (Şimşekli, 2017; Ye & Zhu, 2018):

−
Dα−2

(
φ(x)∂f(x)

∂x

))
φ(x)

≈ −cα
∂f(x)

∂x
,

where φ(x) , exp(−βf(x)), cα , Γ(α − 1)/Γ(α/2)2

and Γ denotes the Gamma function. With this choice of
approximation, in the d-dimensional case we obtain FLA, as
given in (3). We can observe that, when α = 2, (4) becomes
the Langevin equation (1) and FLA becomes ULA.

3. Assumptions and the Main Result
We start by defining three different stochastic processes
X1(t), X2(t), and X3(t), which will be the main constructs
in our analysis. We first informally define these processes as
follows: X2 is a continuous-time process that interpolates
W k in time and it will let us avoid dealing with the discrete-
time process W k directly. X1 is the limiting process of X2

when the step-size goes to zero. Finally, X3 is a process
whose law converges to the Gibbs measure π.

In our approach, we will first relateX2 to its limiting process
X1. Since it is more challenging to relate X1 to x?, we will
then relate X1 to X3, and X3 to π. By following a similar
approach to (Raginsky et al., 2017), we will finally relate π
to f?. Formally, we decompose the expected suboptimality
in the following manner:

Ef(W k)− f∗ = Ef(X2(kη))− Ef(X1(kη))

+ Ef(X1(kη))− Ef(X3(kη))

+ Ef(X3(kη))− Ef(Ŵ )

+ Ef(Ŵ )− f∗, (6)

where Xi(kη) with i = 1, 2, 3 denotes the state reached by
the three stochastic processes at time kη, and Ŵ is a random
variable drawn from π. We will now formally define the
processes X1, X2, and X3.

The first SDE is the continuous-time limit of the FLA algo-
rithm given in (3) and defined as follows for t ≥ 0:

dX1(t) = b1(X1(t−), α)dt+ β−1/αdLα(t), (7)

where the drift function has the following form:

b1(x, α) , −cα∇f(x).

The second SDE is a linearly interpolated version of the
discrete-time process {W k}k∈N+ , defined as follows:

dX2(t) = b2(X2, α)dt+ β−1/αdLα(t), (8)

where X2 ≡ {X2(t)}t≥0 denotes the whole process and the
drift function is chosen as follows:

b2(X2, α) , −cα
∞∑
k=0

∇f(X2(kη))I[kη,(k+1)η[(t).

Here, I denotes the indicator function, i.e. IA(x) = 1 if
x ∈ A and IA(x) = 0 if x /∈ A. It is easy to verify that
X2(kη) = W k for all k ∈ N+ (Dalalyan, 2017b; Raginsky
et al., 2017).

The last SDE is designed in such a way that its solution has
the Gibbs distribution as the invariant distribution and is
defined as follows:

dX3(t) = b(X3(t−), α)dt+ β−1/αdLα(t), (9)
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where the drift is a d-dimensional vector whose i-th compo-
nent, i = 1, . . . , d, has the following form:

(b(x, α))i , −
Dα−2
xi

(
φ(x)∂f(x)

∂xi

))
φ(x)

. (10)

Here, Dxi denotes the Riesz derivative along the direction
xi (Ortigueira et al., 2014). With this definition for the drift,
we have the following result for the invariant measure of
X3, which is an extension of Theorem 1 to general d and β.

Lemma 1. The SDE (9) with drift b defined by (10) admits
π as an invariant distribution of its solution (X3(t))t≥0.

The process {X3(t)}t will play an important role in our
analysis, since it will enable us to relate W k to the Gibbs
measure π, whose samples will be close to the global opti-
mum x? with high probability (Pavlyukevich, 2007).

We now state our assumptions that will imply our main
result.

H1. There exists a constant B ≥ 0 such that

cα‖∇f(0)‖ ≤ B.

H2. The gradient of f is Hölder continuous with constants
M > 0, 0 ≤ γ < 1:

cα‖∇f(x)−∇f(y)‖ ≤M‖x− y‖γ , ∀x, y ∈ Rd.

H3. For some m > 0 and b ≥ 0, f is (m, b, γ)-dissipative:

cα〈x,∇f(x)〉 ≥ m‖x‖1+γ − b, ∀x ∈ Rd.

The assumptions H1-H3 are mild and when γ = 1, they
become the standard Lipschitz and dissipativity conditions
that are often considered in diffusion-based non-convex
optimization algorithms (Raginsky et al., 2017; Xu et al.,
2018; Erdogdu et al., 2018). However, due to the choice
of the α-stable Lévy motion with α ∈ (1, 2), we need to
consider a ‘fractional’ version of those assumptions and
exclude the case where γ = 1, which makes H3 weaker and
H2 more restrictive than the case where γ = 1. Nevertheless,
H2 can be replaced by local Hölder continuity. A more
detailed discussion is given in the supplementary document.

In our analysis, we will make a repeated use of the Hölder
and Minkowski inequalities, which require the following
condition to hold:

H4. There exist positive real numbers p, q, p1, q1 such that

1

p
+

1

q
=

1

p1
+

1

q1
= 1, and

q < α, γp < 1, γq1 < 1, (q − 1)p1 < 1.

Even though this assumption looks rather technical, when
combined with H2 and 3, it will in fact impose smoothness

constraints on f and restrict γ to be less than 1. We will
discuss this observation in more detail in Section 5.

Next, we require b to be dissipative for large distances and
we assume a bounded moment condition, which will be used
for establishing the ergodicity of X3.

H5. 1) For all x, y ∈ Rd and for some constants γ̄ ∈ [0, 1],
l0 ≥ 0, K1 > 0 and K2 > 0, the following holds:

〈b(x)− b(y), x− y〉
‖x− y‖

≤

{
K1‖x− y‖γ̄ , ‖x− y‖ < l0,

−K2‖x− y‖, ‖x− y‖ ≥ l0.

2) For any t > 0, γ̂ ∈ (0, α), and for any coupling Pt of
X3(t) and Ŵ ∼ π, we have:∫

‖X3(t)− Ŵ‖γ̂dPt < C∗,

for some constant C∗ > 0.

Proposition 1. Under assumptions H1-H3 and H5, the
distribution of X3(t) exponentially converges to its unique
invariant distribution π in the Wasserstein metric, i.e., for
any λ ≥ 0 such that λ < α, there exist constants C > 0
and C1 > 0 such that

Wλ(µ3t, π) ≤ Ce−C1t, (11)

where µ3t denotes the probability measure of X3(t).

In the rest of the paper, we will assume that the constants
C and C1 behave similarly to the case of the unadjusted
Langevin algorithm (α = 2). In particular, we assume that
C is proportional to β and C1 is proportional to β−1, so that
we can rewrite (11) as follows:

Wλ(µ3t, π) ≤ Cβe−λ∗t/β .

In the unadjusted Langevin algorithm, the constant λ∗ turns
out to be the uniform spectral gap associated with the Gibbs
measure π and it has shown to scale exponentially with
respect to the dimension d in the worst case (Raginsky et al.,
2017). We believe that a similar property holds in our case
as well.

Our next assumption is on the approximation quality of the
function b by b1.

H6. There exists a constant L > 0 such that L < m and

sup
x∈Rd

‖cα∇f(x) + b(x, α)‖ ≤ L,

where the function b is defined in (10).

In Corollary 2 of (Şimşekli, 2017), it has been shown that
H6 holds if the tails of π vanish sufficiently quickly (cf.
Assumption H4 in (Şimşekli, 2017)). On the other hand,
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the gap between b and b1 can be diminished even more if
we consider a more sophisticated numerical approximation
scheme, such as the one given in (Çelik & Duman, 2012)
(cf. Theorem 2 of (Şimşekli, 2017)).

In our final condition, we assume that the fractional mo-
ments of π is uniformly bounded.

H7. There exists a constant C > 0 such that∫
Rd
‖x‖rπ(dx) ≤ C b+ d/β

m

for all 0 ≤ r ≤ 2.

Now, we are ready to state our main result.

Theorem 2. Under conditions H1-H7 and for 0 < η < m
M2 ,

there exists a positive constant C independent of k and η
such that the following bound holds:

E[f(W k)]− f∗ ≤C

{
k1+max{ 1

q ,γ+ γ
q }η

1
q

+
k1+max{ 1

q ,γ+ γ
q }η

1
q+ γ

αq d

β
(q−1)γ
αq

+
βb+ d

m
exp(−λ∗kη

β
)

}

+
Mc−1

α

βγ+1(1 + γ)

+
1

β
log

(2e(b+ d
β ))

d
2 Γ(d2 + 1)βd

(dm)
d
2

.

More explicit constants can be found in the supplementary
document. Similar to ULA (Raginsky et al., 2017), our
bound grows with the number of iterations k. We note that
this result sheds light on the explicit dependency of the error
with respect to the algorithm parameters (e.g. step-size)
for a fixed number of iterations, rather than explaining the
asymptotic behavior when k goes to infinity. In the next
sections, we will provide an overview of the proof of this
theorem along with some remarks and comparisons to ULA.

4. Proof Overview
Our proof strategy consists of bounding each of the four
terms in (6) separately. Before bounding these terms, we
first start by relating the expected discrepancies to the
Wasserstein distance between two random processes. The
result is formally presented in the following lemma and it
extends the 2-Wasserstein continuity result given in (Polyan-
skiy & Wu, 2016) to Wasserstein distance with fractional
orders.

Lemma 2. Let V and W be two random variables on Rd
which have µ and ν as the probability measures and let g

be a function in C1(Rd,R). Assume that for some c1 >
0, c2 ≥ 0 and 0 ≤ γ < 1,

‖∇g(x)‖ ≤ c1‖x‖γ + c2, ∀x ∈ Rd

and max
{(

E‖W‖γp
) 1
p

,
(
E‖V ‖γp

) 1
p
}
< ∞. Then, the

following bound holds:∣∣∣ ∫ gdµ−
∫
gdν

∣∣∣ ≤CWq(µ, ν),

for some C > 0.

Lemma 2 lets us upperbound the first three terms of the right
hand side of (6) by the Wasserstein distance between the
appropriate stochastic processes, respectivelyWq(µ1t, µ2t),
Wq(µ1t, µ3t), andWq(µ3t, π), where µit denotes the law
of Xi(t).

The termWq(µ3t, π) is related to the ergodicity of the pro-
cess (9) and it has been shown that this distance diminishes
exponentially for a considerably large class of Lévy diffu-
sions (Masuda, 2007; Xie & Zhang, 2017). On the other
hand, the termWq(µ1t, µ3t) is related to the numerical ap-
proximation of the Riesz derivatives, which is analyzed in
(Şimşekli, 2017). Therefore, in this study, we use the as-
sumptions H5 and H6 for dealing with these terms, and
focus on the termWq(µ1t, µ2t), which is related to the so-
called ‘weak-error’ of the Euler scheme for the SDE (7).
The existing estimates for such weak-errors are typically
of order Cηa, where a < 1 and C is a constant that grows
exponentially with t (Mikulevičius & Zhang, 2011). The
exponential growth with t is prohibitive in our case and
one of our main technical contributions is that, in the se-
quel, we will prove a bound that grows polynomially with t,
which substantially improves over the one with exponential
growth.

We start by bounding Wq(µ1t, µ2t) and Wq(µ1t, µ3t). In
order to do so, we prove the following lemma, which will
be the key for our analysis.

Lemma 3. For λ ∈ (1,∞), i, j ∈ {1, 2, 3} and i 6= j, we
have the following identity:

Wλ(µit, µjt) = inf
{(

E
[ ∫ t

0

λ ‖∆Xij(s)‖λ−2

〈∆Xij(s),∆bij(s−)〉ds
])1/λ}

,

where the infimum is taken over the couplings whose
marginals are µit and µjt and

∆Xij(s) , Xi(s)−Xj(s)

∆bij(s−) , bi(Xi(s−), α)− bj(Xj(s−), α).
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This result extends the recent study (Gairing et al., 2018)
and lets us relate the Wasserstein distance between the dis-
tributions of the random processes to their drift functions.

By using Lemma 3, we start by bounding the Wasserstein
distance between µ1t and µ2t. The result is summarized in
the following theorem.
Theorem 3. Assume that the following condition holds:
0 < η ≤ m

M2 . Then, we have

Wq
q (µ1t, µ2t) ≤ Cq Poly(k, η, β, d),

for some C > 0.

The full statement of the proof and the explicit constants are
provided in the supplementary document. By only consider-
ing the leading terms of the bound provided in Theorem 3,
we obtain the following corollary.
Corollary 1. Suppose that 0 < η < min

{
1, mM2

}
. Then,

the bound for the Wasserstein distance between the laws of
X1(t) and X2(t) can be written as follows:

Wq
q (µ1t, µ2t) ≤C(k2η + k2η1+γ/αβ−(q−1)γ/αd).

By combining Corollary 1 with Lemma 2, we obtain the
following result, which provides an upperbound for the first
term of the right hand side of (6).
Corollary 2. For 0 < η < m

M2 , there exists a constant
C > 0 such that the following bound holds:∣∣E[f(X1(kη))]− E[f(X2(kη))]

∣∣
≤ C

(
k1+ 1

q η
1
q + k1+ 1

q η
1
q+ γ

αq β−
(q−1)γ
αq d

)
.

Remark 1. For any ε > 0, if we choose k ' ε−1Poly(β, d)
and η < ε2q+1Poly(β, d), then the bound in Corollary 2
scales as εPoly(β, d).

Next, by using a similar approach, we bound the distance
between µ1t and µ3t. In the next theorem, we show that the
error grows polynomially with the parameters.
Theorem 4. We have the following estimate:

Wq
q (µ1t, µ3t) ≤CqPoly(k, η, β, d)

By considering the leading terms of the bound in Theorem 4
and combining it with Lemma 2, we obtain the following
corollaries.
Corollary 3. There exists a constant C ≥ 0 such that the
following bound holds:

Wq
q (µ1t, µ3t) ≤C(kq+γη + kq+γηqβ−

q−1
α d)

Corollary 4. There exists a constant C ≥ 0 such that the
following inequality holds:

|E[f(X1(kη))]− E[f(X3(kη))]|

≤ C
(
kγ+ γ+q

q ηγ+ 1
q β−

γ
α d+ kγ+ γ+q

q η
1
q

)
.

Remark 2. For any ε > 0, if we choose k ' ε−1Poly(β, d)
and η < ε2q+γq+γPoly(β, d), then the bound in Corol-
lary 4 scales as εPoly(β, d).

We now pass to the term Ef(X3(kη)) − Ef(Ŵ ) of (6).
Since we already assumed that µ3t exponentially converges
to π in Wasserstein distance (cf. H5), as a direct application
of Lemma 2, we obtain the following result.

Lemma 4. Let Ŵ be a random variable drawn from the
invariant measure π ∝ exp(−βf) of (9). There exists a
constant C ≥ 0 such that the following bound holds:

|E[f(X3(t))]− E[f(Ŵ )]| ≤ C bβ + d

m
exp(−λ∗β−1t).

Remark 3. For any ε > 0, if we take kη > β
λ∗

log
(

1
ε

)
,

then the bound in Lemma 4 can be scaled as εPoly(β, d).

We finally bound the term Ef(Ŵ ) − f∗, which is the ex-
pected suboptimality of a sample from π. By following a
similar proof technique presented in (Raginsky et al., 2017),
we obtain the following result.

Lemma 5. For β > 0, we have

E[f(Ŵ )]− f? ≤β−1 log
( (2e(b+ d

β ))d/2Γ(d2 + 1)βd

(dm)d/2

)
+
β−γ−1Mc−1

α

1 + γ
.

Combining Corollary 2, Corollary 4, Lemma 4, and
Lemma 5 proves Theorem 2.

5. Additional Remarks
5.1. Comparison with ULA

Let us compare this result with those for ULA presented in
(Raginsky et al., 2017), since they use a similar decompo-
sition (as opposed to (Xu et al., 2018)). The last two terms
of the right hand side of the bound in Theorem 2 have less
importance as they can be made arbitrarily small by increas-
ing β. Besides, for β large enough, the first two terms in
our bound can be combined in a single term that scales in
the order of k1+max{ 1

q ,γ+ γ
q }η

1
q . The corresponding term

for ULA is given as follows: kη5/4, cf. Section 3.1 of (Ra-
ginsky et al., 2017). This observation shows that FLA has a
worse dependency both on k and η, which is not surprising
and indeed in-line with the existing literature (Mikulevičius
& Zhang, 2011).

5.2. Discussion on smoothness assumptions

In this section we will discuss Assumption H4 and provide
a condition on γ such that H4 holds. Let us recall the four
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constraints given in H4:

(1/p+ 1/q) = (1/p1 + 1/q1) = 1

γp < 1, γq1 < 1, (q − 1)p1 < 1.

Our aim is to find a condition on γ (more precisely, the
maximum value of γ) such that there exist p, q, p1, q1 > 0
satisfying these four conditions.

By solving these four conditions (the details are given in the
supplementary document), we obtain 1 < q < (1 +

√
5)/2,

p > (3 +
√

5)/2, and γ < 1/p < (3−
√

5)/2.

This upper bound for γ tells us that there exist p, q, p1, q1

satisfying the four constraints if and only if 0 ≤ γ < (3−√
5)/2.

Under these observations, Theorem 2 is restated in Corol-
lary S1 in the supplementary document. As a final remark on
this smoothness condition, we note that similar constraints
are imposed on Lévy-driven SDEs in other studies as well
(Panloup, 2008; Şimşekli, 2017). This is due to the fact that
such SDEs often require better-behaved drifts in order to be
able to compensate the jumps incurred by the Lévy motion.

6. Extensions
6.1. Guarantees for Posterior Sampling

In this section, we will discuss the implications of our results
in the classical Monte Carlo sampling context. If our aim
is only to draw samples from the distribution π, then, for a
fixed k, we can bound the Wasserstein distance between the
law of W k and π. The result is stated as follows:
Corollary 5. For 0 < η ≤ m

M2 , the following bound holds:

Wq(µ2t, π) ≤C
(
k

max{2,q+γ}
q η

1
q

+ k
max{2,q+γ}

q η
1
q+ γ

qα β−
γ(q−1)
qα d

1
q

+ βe−λ∗
kη
β

)
.

As a typical use case, we can consider Bayesian posterior
sampling, where we choose β = 1 and

f(X) = −(log P(Y |X) + log P(X)).

Here, Y denotes a dataset, P(Y |X) is the likelihood, P(X)
denotes the prior density, and the target distribution π be-
comes the posterior distribution with density P(X|Y ).

6.2. Extension to Stochastic Gradients

In many machine learning problems, the function f to be
minimized has the following form:

f(x) ,
1

n

n∑
i=1

f (i)(x),

where i denotes different data points and n is the total num-
ber of data points. In large-scale applications, n can be very
large, which renders the gradient computation infeasible.
Therefore, at iteration k, we often approximate ∇f by its
stochastic version that is defined as follows:

∇fk(x) ,
1

ns

∑
i∈Ωk

∇f (i)(x),

where Ωk is a random subset of {1, . . . , n} with |Ωk| =
ns � n. The quantity ∇fk(x) is often referred to as the
‘stochastic gradient’. If the stochastic gradients satisfy a
moment condition, then we have the following results:

Theorem 5. Assume that for each i, the function x 7→
f (i)(x) satisfies the conditions H1-H7. Let us replace ∇f
by ∇fk in (3). If, in addition, there exists δ ∈ [0, 1) for any
k, such that

EΩk‖cα(∇f(x)−∇fk(x))‖q1 ≤δq1Mq1‖x‖γq1 ,

for x ∈ Rd, then we have the following bound:

Wq
q (µ1t, µ2t) ≤C(1 + δ)(k2η

+ k2η1+γ/αβ−γ(q−1)/αd).

Similar to our previous bounds, we can use Theorem 5 for
obtaining a bound for the expected discrepancy, given as
follows:

Corollary 6. Under the same assumptions as in Theorem 5,
we have the following bound:∣∣E[f(X1(kη))]− E[f(X2(kη))]

∣∣ ≤
C(1 + δ)

(
k1+ 1

q η
1
q + k1+ 1

q η
1
q+ γ

αq β−
(q−1)γ
αq d

)
.

These results show that the guarantees for FLA will still
hold even under the presence of stochastic gradients.

7. Conclusion
In this study, we focused on FLA, which is a recent exten-
sion of ULA, and can be seen as a perturbed version of the
gradient descent algorithm with heavy-tailed α-stable noise.
We analyzed the non-asymptotic behavior of FLMC for non-
convex optimization and proved finite-time bounds for its
expected suboptimality. Our results agreed with the exist-
ing related work, and showed that the weak-error of FLA
increases faster than ULA, which suggests using smaller
step-sizes in FLA. We finally extended our results to the
case where exact gradients are replaced by stochastic gradi-
ents and showed that similar results hold in this setting as
well. A clear future direction implied by our results is the
investigation of the local behavior of FLA.
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sde with applications. Stochastic Processes and their
Applications, 128(7):2153–2178, 2018.

Gao, X., Gurbuzbalaban, M., and Zhu, L. Breaking re-
versibility accelerates Langevin dynamics for global non-
convex optimization. arXiv preprint arXiv:1812.07725,
2018a.
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