Brice Colombier
email: brice.colombier@cea.fr

Alexandre Menu
email: alexandre.menu@emse.fr

Jean-Max Dutertre
email: dutertre@emse.fr

Pierre-Alain Moëllic
email: pierre-alain.moellic@cea.fr

Jean-Baptiste Rigaud
email: rigaud@emse.fr

Jean-Luc Danger
email: jean-luc.danger@telecom-paristech.fr

Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption on a 32-bit Microcontroller

Keywords: Fault attack, laser injection, flash memory

Physical attacks are a known threat posed against secure embedded systems. Notable among these is laser fault injection, which is often considered as the most effective fault injection technique. Indeed, laser fault injection provides a high spatial accuracy, which enables an attacker to induce bit-level faults. However, experience gained from attacking 8-bit targets might not be relevant on more advanced micro-architectures, and these attacks become increasingly challenging on 32-bit microcontrollers. In this article, we show that the flash memory area of a 32-bit microcontroller is sensitive to laser fault injection. These faults occur during the instruction fetch process, hence the stored value remains unaltered. After a thorough characterisation of the induced faults and the associated fault model, we provide detailed examples of bitlevel corruption of instructions and demonstrate practical applications in compromising the security of real-life codes. Based on these experimental results, we formulate a hypothesis about the underlying micro-architectural features that explain the observed fault model.

I. INTRODUCTION

Physical attacks pose a considerable threat to the security of embedded systems. Provided physical access to a device, an attacker can exploit hardware-based vulnerabilities to bypass existing security measures. Among these techniques, fault injection consists in disturbing the operating conditions of a device, while a secure computation takes place, in order to retrieve secret information or be granted unauthorised privileges. Laser fault injection features a high spatial accuracy, which Part of this work is funded by French ANR program (DS0901/2015) with the project PROSECCO (ANR-15-CE39-0008) enables an attacker to induce single bit-flips in static memory cells of 8-bit [START_REF] Dutertre | Fault round modification analysis of the advanced encryption standard[END_REF] and 32-bit microcontrollers [START_REF] Vasselle | Laser-induced fault injection on smartphone bypassing the secure boot[END_REF]. An explanation of the fault mechanism at the architectural level was proposed, based on the physical understanding of laser injection phenomenon [START_REF] Sarafianos | Electrical modeling of the photoelectric effect induced by a pulsed laser applied to an sram cell[END_REF], [START_REF] Dutertre | Laser fault injection at the CMOS 28 nm technology node: An analysis of the fault model[END_REF]. Conversely, this technique is expensive and difficult to carry out with numerous precise parameters to tune, which might result in endless explorations of the parameters space. While increasing chip integration enables designers to integrate complex 32-bit architectures, only few work investigate laser injection on these System-on-Chip architectures [START_REF] Vasselle | Laser-induced fault injection on smartphone bypassing the secure boot[END_REF], [START_REF] Trichina | Multi fault laser attacks on protected CRT-RSA[END_REF]- [START_REF] Guillen | Low-cost setup for localized semi-invasive optical fault injection attacks -how low can we go?[END_REF]. Besides, none of them address the underlying fault mechanism, which makes it difficult to explain the observed fault models in a consistent framework.

In this article, we highlight the flash memory as an area of interest for laser fault injection on a 32-bit microcontroller. We observe that individual bits of the fetched instructions can be set. The stored value remains untouched, only the read value is altered. For example, the data, the source, or the destination register of the fetched instruction can be altered, but also the opcode itself, potentially changing the instruction itself. Such modifications give rise to severe security concerns, since an attacker can then tamper with the instructions on the fly before they are executed.

The contributions of this article are the following. First, we highlight the sensitivity of flash memory to the singlebit "bit-set" fault model. We detail the influence of each parameter of the laser on the injected fault. Then we apply this fault model to real-life codes and show how it undermines their security. Finally, we discuss a physical explanation for the observed faults, which is consistent with the micro-architecture of the NOR flash memory of our target.

The outline of the article is as follows. In Section II, we analyse previous works on laser fault injection, pointing out the current scarcity of results and understanding of fault injection on 32-bit microcontrollers. In Section III, we detail our experimental setup. In Section IV, we describe the obtained fault model and how it is affected by the parameters of our experimental setup. In Section V, we highlight how the previously described fault model applies to implementations of a PIN verification and AES-128 algorithms by demonstrating two attacks that we performed. In Section VI, we discuss a hypothesis on the physical phenomenon accounting for the observed fault model, as well as the limitations of our setup. Finally, Section VII concludes the article.

II. PREVIOUS WORK

Attack schemes against physical implementations of cryptographic algorithms require to define an abstract model of a device erroneous behaviour [START_REF] Boneh | On the importance of eliminating errors in cryptographic computations[END_REF]. The complexity of fault model characterisation lies in the multiple features that influence a device response to fault injection, namely its micro-architecture, technology node, and sensitivity to the fault injection technique. Therefore, a comprehensive knowledge of the fault mechanism is hard to acquire.

In order to highlight the current scarcity of results on 32-bit microcontrollers, we define four levels of abstraction in Figure 1. The algorithmic level provides a description of the fault effects on an algorithm outputs, regardless of its implementation. The execution level details the faults effects on the components of the software data model. The implementation level explains how the observed behaviour is related to the hardware implementation of the target device. The physical level focuses on the physical phenomenon of the fault injection.

Algorithmic level

Execution level

Implementation level

Physical level

Fig. 1: Abstraction levels to describe a fault model. Substantial work has been done to understand fault injection on 8-bit microcontrollers in the context of smart-card security. Most of the publications focus on fault description at the algorithmic level to demonstrate practical attacks on cryptographic algorithms [START_REF] Choukri | Round reduction using faults[END_REF]- [START_REF] Van Woudenberg | Practical optical fault injection on secure microcontrollers[END_REF]. In some cases, observations of low-level execution faults are provided, highlighting instruction or register corruption [START_REF] Dehbaoui | Electromagnetic transient faults injection on a hardware and a software implementations of AES[END_REF]- [START_REF] Breier | Laser profiling for the backside fault attacks: With a practical laser skip instruction attack on AES[END_REF]. Balasch et al. demonstrated that a thorough characterisation of a device response to fault injection enables one to get a better understanding of the fault effects on the underlying hardware implementation [START_REF] Balasch | An in-depth and black-box characterization of the effects of clock glitches on 8-bit mcus[END_REF]. At the same time, several authors observed that timing constraints violation could explain the observed fault models at the physical level [START_REF] Selmane | Practical setup time violation attacks on AES[END_REF], [START_REF] Korak | On the effects of clock and power supply tampering on two microcontroller platforms[END_REF]. While none of these works addressed all four levels of abstraction, they reflect a global understanding of fault injection on 8-bit microcontrollers.

Current work on 32-bit architectures follows a similar timeline. Most of the publications focus so far on empirical observations at the algorithmic [START_REF] Bukasa | Let's shock our iot's heart: Armv7-m under (fault) attacks[END_REF] and execution level [START_REF] Trichina | Multi fault laser attacks on protected CRT-RSA[END_REF], [START_REF] Timmers | Controlling PC on ARM using fault injection[END_REF]. However, the observed fault models lack a consistent framework. Several difficulties can be underlined while attempting to understand the effect of fault injection on 32-bit architectures.

First, advanced technology nodes enable designers to improve the performance of a chip with architectural features like pipeline and cache mechanisms. They greatly increase the complexity of black-box fault effects analysis [START_REF] Moro | Electromagnetic fault injection: Towards a fault model on a 32-bit microcontroller[END_REF], [START_REF] Rivière | High precision fault injections on the instruction cache of armv7-m architectures[END_REF] as already observed on 8-bit architectures [START_REF] Balasch | An in-depth and black-box characterization of the effects of clock glitches on 8-bit mcus[END_REF].

Second, fault injection techniques leveraging timing constraints violation fail to catch local features of 32-bit micro-architectures. Indeed, attempts to characterise the effects of clock glitches on 32-bit architectures obtained very similar results to those with 8-bit architectures [START_REF] Korak | On the effects of clock and power supply tampering on two microcontroller platforms[END_REF], [START_REF] Barenghi | Low voltage fault attacks on the RSA cryptosystem[END_REF], while different fault models were observed with optical injection depending on the injection locality [START_REF] Guillen | Low-cost setup for localized semi-invasive optical fault injection attacks -how low can we go?[END_REF].

Third, substantial work has been done to understand fault effects on 32-bit microcontroller at the execution and implementation level using local electromagnetic fault injection [START_REF] Moro | Electromagnetic fault injection: Towards a fault model on a 32-bit microcontroller[END_REF], [START_REF] Rivière | High precision fault injections on the instruction cache of armv7-m architectures[END_REF]. However, chip sensitivity to the underlying physical phenomenon is not understood yet and lacks a consistent description [START_REF] Ordas | Electromagnetic fault injection: The curse of flip-flops[END_REF].

Laser fault injection was introduced by Skorobogatov in 2002, based on related works on the simulation of ionising radiation in semiconductors devices [START_REF] Skorobogatov | Optical fault induction attacks[END_REF]. Provided access to the die, an attacker can induce electronhole dissociation on the path of a laser beam. As a consequence, a photoelectric current is generated in reverse biased junctions of the illuminated transistors. This effect was investigated to describe the bit-flip fault model in SRAM cells [START_REF] Sarafianos | Electrical modeling of the photoelectric effect induced by a pulsed laser applied to an sram cell[END_REF], [START_REF] Dutertre | Laser fault injection at the CMOS 28 nm technology node: An analysis of the fault model[END_REF] with attacks on AES encryption [START_REF] Dutertre | Fault round modification analysis of the advanced encryption standard[END_REF] and secure program register [START_REF] Vasselle | Laser-induced fault injection on smartphone bypassing the secure boot[END_REF]. Both physical understanding and spatial accuracy of laser fault injection make this technique well suited to gain insight into the effects of fault injection on 32-bit architecture.

Previous work on flash memory vulnerabilities pointed out the memory control logic as a sensitive area to laser fault injection [START_REF] Skorobogatov | Flash memory 'bumping' attacks[END_REF]- [START_REF] Cai | Optical fault injection attacks for flash memory of smartcards[END_REF] although the authors do not explain the underlying fault mechanism.

In this article, we characterise the effect of laser injection in the flash memory area and observe that single bit-set in data fetched from the flash memory can be performed. We then give several examples of instructions corruption. We demonstrate the validity of the fault model on the implementations of two security algorithms in Section V and propose a transistor-level explanation of the physical fault mechanism in Section VI.

III. METHODS AND EXPERIMENTAL SETUP

A. Target board and microcontroller

The target microcontroller that we used for our experiments embeds an ARM Cortex-M3 core with 128 kB of flash memory and is manufactured at the 90 nm technology node. It is mounted on a ChipWhisperer [START_REF] Flynn | Chipwhisperer: An open-source platform for hardware embedded security research[END_REF] target board, with the chip soldered below and facing up. We designed a custom target board suitable for laser injection thanks to the open-source hardware information provided for the ChipWhisperer platform 1 . The target microcontroller runs at the 7.4 MHz frequency fixed by the ChipWhisperer platform, corresponding to a 135 ns clock period. An opening was cut on the PCB board, just under the chip, to give access to its back-side.

To perform laser fault injection, the back of the chip must be decapsulated to show the silicon substrate. This is performed by chemical processing before the chip is mounted on the board. The decapsulation must be carried out with great care, especially regarding the amount of chemical product used to decapsulate: too few keeps part of the die covered, thereby reducing the fault injection area, too much makes the decapsulated chip very fragile. Thinning the die was not necessary here. A picture of the board is shown in Figure 2. This target board is then mounted on the ChipWhisperer motherboard and put in place on the laser bench.

B. Laser characteristics and parameters

The laser source uses an acousto-optic technology to generate an infrared laser beam at a wavelength of 1,064 nm. An infrared laser is a necessity to perform fault injection through the back-side since the silicon substrate is opaque to visible light. An infrared laser can go through it and impact the active regions of the transistors.

The laser source can shoot laser pulses as short as 50 ns with a maximum power of 3 W. The laser pulse is directed to the focusing system by an optical fiber. The focusing system allows to obtain a laser spot of 5 µm in diameter. We manually adjust its focus with a confocal infrared camera. The laser shot is triggered by an external input, generated by the target device. There is an adjustable delay between the rising edge of the trigger and the actual arrival of the laser beam on the die.

There are five injection parameters that must be tuned:

• power: the peak power of the laser pulse,

• duration: the duration of the laser pulse,

• delay: the delay between the arrival of the trigger on the laser source and the actual shot, • x position: the x position on the target board, • y position: the y position on the target board.

C. Characterisation codes

Leveraging simple test codes, one can characterise the target unexpected behaviours and the fault model dependence on experimental conditions. As opposed to [START_REF] Bukasa | Let's shock our iot's heart: Armv7-m under (fault) attacks[END_REF], we state that the conclusions drawn from test codes about the underlying fault mechanisms can be extended to any codes, as observed in [START_REF] Balasch | An in-depth and black-box characterization of the effects of clock glitches on 8-bit mcus[END_REF]. Attack scenarios on software implementation of secure algorithms were remarkably consistent with our characterisation results. Codes given in Listings 1 and 2 were used to characterise the fault model. Their respective usage is described below. The code was compiled into the Thumb instruction set. Therefore, instructions can either be 16 or 32-bit wide and are sometimes unaligned. Data stored in flash memory is said to be aligned if it is stored at an address which is a multiple of 32 bits.

1) Bit-level characterisation of fault location: The first code highlights modifications in data fetched from flash memory. The target instruction is on line 4 of Listing 1.

Listing 1 Characterisation of bit-set location. This LDR instruction fetches the 32-bit word 0x00000000 stored at the test_data label and stores it in register R0. A fault is detected on the third bit if, for instance, the actual value stored in register R0 is 0x00000008 after a laser injection was performed. The test word 0x00000000 was used to highlight bit-sets, as prior test with the word 0xFFFFFFFF validated that we were not able to induce bit-resets. The advantage of faulting raw data instead of an instruction is that it allows to observe bit-sets on a whole 32-bit word, whereas a 32bit instruction always contains several 1s, for which the bit-set is not observable. The LDR instruction executes in two clock cycles. In the first clock cycle, the offset of the address at which the data is stored is computed. In the second clock cycle, the data is actually read and stored in R0. The second clock cycle is the one we target. Dummy instructions (NOP) are inserted before and after the target instruction to prevent the effects of instruction corruption on the observed fault model.

2) Characterisation of fault sensitivity over time: The second characterisation code aims at highlighting the most fault-sensitive moments in the execution of instructions. For this, after finding out the location where a given bit can be faulted thanks to the code given in Listing 1, we swept over the injection delay with a 10 ns step to target consecutive instructions shown in Listing 2, from line 3 to 9. Under normal conditions, after executing the code shown in Listing 2, the output consists in several 32-bit 0x0000FFFF values stored in registers R0, R1, R4, R5, R6, R8, and R9.

The results obtained with these codes are given in the next section, where we present the influence of the laser parameters on the fault injection process.

IV. OBSERVABLE FAULT MODEL

A. Parameters and types of faults 1) Characterisation of bit-set location: We observed that moving along the y-axis (longest side) on the flash Listing 2 Characterisation of sensitivity over time. Figure 3a shows a mapping of the faulty bits with a xstep of 100 µm and a y-step of 5 µm for an aligned word. The laser power is set to 1.1 W with a pulse duration of 135 ns. It clearly shows that the affected bit is directly related to the y position (see color code on the right-hand side of Figure 3). Black dots show locations where the chip stopped responding. Figure 3b shows an optimal delay, around 1,850 ns here, where all the bits of the fetched word can be set depending on the y coordinate of the laser spot over the flash memory area. Faulty bit (b) Timing of the optimal delay to set the bits in the fetched data. Figure 4 is the same as Figure 3 but for an unaligned word. In this situation, the upper and lower 16-bit parts of the accessed data are swapped (see Figure 4a). This behaviour is better understood by analysing the injection timing: the sixteen least significant bits are faulty one clock period (135 ns) before the sixteen most significant bits, as shown on Figure 4b. This observation reflects the organisation of the binary code, and supports the assumption that the sequential access to the flash memory is faulted during the fetch operation. Faulty bit (b) Timing of the optimal delay to set the bits in the the fetched data. When performing the fault injection, an attacker does not know if the target instruction is aligned or not. Therefore, according to Figures 3 and4, if n denotes the targeted bit of an instruction, the laser spot must be positioned to fault either the bit n if the instruction is aligned, or the bit n + 16 mod 32 if the instruction is unaligned. The previous results lead to several observations. First, predictable and repeatable faults can be achieved by targeting a fixed location on the flash memory area. In the specific case where the corrupted instruction has no effect on the outputs of the test routine, the equivalent of an instruction skip is observed. Second, targeting the same instruction with the same spot location might induce an entirely different behaviour if the instruction memory alignment is different. The fault model dependency on laser injection parameters is described below.

After we found a position at which a bit can be set, we explored the power and duration parameters. The results are presented in Figure 5, for a laser power ranging from 0.5 to 1.4 W and a pulse duration from 65 to 270 ns. From these results, it appears that increasing the power and the duration of the laser pulse increases the success rate of the fault injection. One very interesting setting is 0.5 W of power and 200 ns of duration. Indeed, it allows reaching 100 % of fault occurrence for a range of almost 50 ns, while performing only single-bit faults. Performing a fault on two adjacent bits with 100 % probability is then possible by increasing the power to 1.1 W. These results show that in order to obtain single-bit faults, careful tuning of the laser pulse power and duration is required.

2) Characterisation of fault sensitivity over time: After running the code shown in Listing 2 at a position where a specific bit can be set, it appeared that some moments in time are more prone to fault injection than others. Results are shown in Figure 6, which shows how the probability of occurrence of a fault changes with the injection delay.

We observe in Figure 6 that the gap between two peaks of fault sensitivity is always a multiple of the clock period. It supports the assumption that the fault injection is synchronous with the chip internal activity. Besides, we observe on the left-hand side of Figure 6 that the interval between two consecutive faults is not constant. As this feature has not been documented yet, we assume that the fetch timing depends on the pipeline activity. However, for every instruction, there is a delay parameter that allows to fault it with 100% probability.

These characterisation results show that individual instructions can be targeted. Provided the right injection parameters, single bit-set can be achieved on all the bits of an instruction or word fetched from the flash memory.

B. Modification of a MOVW instruction

As an illustrative example of the possibilities offered by the fault model, we performed fault injection on a MOVW instruction. This 32-bit instruction loads a 16-bit value into the lower part of a 32-bit register and resets the upper part. The opcode, the destination register (denoted as Rd) and the n-bit data (denoted as "i" or "immn") of the instruction are shown in the upper part of Figure 7. An example MOVW instruction is given where 0x0000 is stored in R0. This information is given in the ARM Architecture Reference Manual2 . We illustrate the impact of the fault model with three instruction modifications that we did actually perform on the target. The arrow indicates which bit is set by laser injection.

By performing a bit-set on the bit of index 2 of the instruction, the data to be stored was altered. Setting this bit led to store 0x0004 instead of 0x0000 into R0.

By performing a bit-set on the bit of index 8 of the instruction, the destination register was altered. Setting this bit led to store 0x0000 into R1 instead of R0.

Finally, by performing a bit-set on the bit of index 23 of the instruction, the opcode was altered. This changed 0% 50%100% the instruction from MOVW to MOVT. Setting this bit led to store 0x0000 into the upper part of R0 instead, without altering the lower part.

These simple examples aim at illustrating the capabilities of the method. Depending on the instructions of the assembly code, advanced manipulations are possible.

V. APPLICATIONS TO REAL-LIFE CODES

This section shows how to leverage the fault model described above on real-life security codes. We did perform all the experiments and obtained perfect repeatability, in accordance with the fault model described above. It is worth noting that we did not observe any degradation or wear of the Flash memory under attack.

A. PIN verification algorithm

In order to apply the fault injection technique described above to a real security test-case, we targeted a constant-time 4-digit PIN verification algorithm with hardened Booleans [START_REF] Dureuil | FISSC: A fault injection and simulation secure collection[END_REF]. Its description is given in Algorithm 1. if trials > 0 then 8:

for i ← 0 to 3 do 9:

if user_PIN[i] != reference_PIN[i] then diff = TRUE 10:

else dummy = FALSE 11:

if diff == TRUE then trials = trials -1 12:

else authenticated = TRUE 13:

return authenticated

The PIN verification algorithm is protected against simple power analysis [30] by a constant-time implementation. Therefore, an attacker cannot determine the correct digits one after the other by simply observing the execution time of the algorithm. This is achieved by systematically comparing all the digits of the user and reference PINs (see for loop on line 8 of Algorithm 1). Thus a perturbation attack is required to break such an implementation.

A first approach to perform a successful authentication using a fault attack without providing the correct user bits

Reference instructions

Generic MOVW 1 1 1 1 0 i 1 0 0 1 0 0 imm4 0 imm3 Rd imm8 MOVW, R0, 0 1 1 1 1 0 0 1 0 0 1 0 Data corruption MOVW, R0, 4 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 Destination register corruption MOVW, R1, 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 Opcode corruption MOVT, R0, 0 1 1 1 1 0 0 1 0 1 1 0 Fig. 7: Examples of achievable corruptions on a MOVW instruction.

PIN could be to change the initialisation value of the authenticated variable (see initialisation on line 4 of Algorithm 1). By setting it to TRUE instead of FALSE, the authentication is successful even if the user PIN is wrong. However, the target implementation that we used employs hardened Booleans. This common technique consists in storing Booleans in bytes and encoding TRUE as 0x55 and FALSE as 0xAA for instance. In this case, two bit-sets and two bit-resets are needed to turn TRUE into FALSE, making the attack very challenging and impractical in our fault injection setup since we can only perform bit-sets.

The approach we explored is then to corrupt the trials counter (see line 7 of Algorithm 1). Indeed, if we can bypass this comparison, then an exhaustive search over all the possible PINs becomes feasible. The if instruction is compiled into the assembly code shown in Figure 8. The CMP instruction compares the trials variable, stored in R3, with 0. Then the BLE instruction branches to address if the result of the comparison is "less or equal". We chose to alter the destination register part of the CMP instruction to force a comparison with register R7 instead of register R3 (see Figure 9). The ARM convention is to store in register R7 the address of the SRAM space, called frame pointer, allocated for the subroutine local variables. The result of the comparison is thus always positive, and the branch is never taken. Even if the trials counter reaches zero, the user and reference PINs are still compared. Therefore, an attacker can iterate over all the possible 4-digit PINs until authentication succeeds. Reference instructions Generic CMP 0 0 1 0 1 Rd imm8 CMP R3, 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 Register corruption CMP R7, 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 Fig. 9: Fault on the destination register part of the CMP instruction to fault the comparison.

B. AES encryption

The second security use-case is the AES-128 encryption algorithm [START_REF] Daemen | The Design of Rijndael: AES -The Advanced Encryption Standard[END_REF]. The algorithm consists of ten rounds, each round including AddRoundKey, SubBytes, ShiftRows and MixColumns transformations, except for the last round which does not include the MixColumns transformation. A final AddRoundKey is then performed, which is the transformation we targeted.

Algorithm 2 describes the AddRoundKey transformation. It operates on a 4x4 state matrix [START_REF] Daemen | The Design of Rijndael: AES -The Advanced Encryption Standard[END_REF]. Going through all the sixteen possible entries, the AddRoundKey transformation consists in XORing the state matrix entry S i,j and a tenth round-key byte K 10 i,j , where i denotes the column and j denotes the row.

Algorithm 2 Add_round_key transformation.

1: procedure ADD_ROUND_KEY 2:

for i ← 0 to 3 do 3:

for j ← 0 to 3 do 4:

Si,j = Si,j ⊕ K 10 i,j

As shown in Algorithm 2, the AddRoundKey transformation consists in two nested for loops. The C and assembly codes for this construction are shown on Figure 10. In order to fault the final AddRoundKey transformation, we chose to alter the control flow and prematurely exit the for loops. By performing a fault on the ADD instruction, we can modify the data part and add 5 instead of 1 to the loop variable (see Figure 11). This causes the for loop to end prematurely, since the exit condition is satisfied after the first iteration. As a consequence, faulty bytes of the ciphertext are given by the expression C i,j ⊕ K 10 i,j , where C i,j denote the correct byte of the ciphertext found on the i-th column of the j-th row of the state-matrix after completion of a fault-free encryption. Reference instructions Generic ADD 0 0 1 1 0 Rd imm8 ADD R0, 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 Data corruption ADD R0, 5 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 Fig. 11: Fault on the data part of the ADD instruction to prematurely escape a for loop.

By faulting the inner for loop on its first execution, in the first column of the state matrix, the three last bytes of the first row are faulty. The resulting ciphertext Cinner i,j is given in Equation [START_REF] Dutertre | Fault round modification analysis of the advanced encryption standard[END_REF].

Cinner i,j = C i,j ⊕ K 10 i,j if i = 0, j ∈ [1..3] C i,j otherwise (1)
By faulting the outer for loop, only the first column bytes of the state matrix are XORed with the associated tenth round-key bytes. Thus the three last columns of the ciphertext matrix are faulty. The resulting ciphertext Couter i is given in Equation [START_REF] Vasselle | Laser-induced fault injection on smartphone bypassing the secure boot[END_REF].

Couter i,j = C i,j ⊕ K 10 i,j if i ∈ [1..3], j ∈ [0..3] C i,j otherwise (2)
Holding these two faulty ciphertexts, the attacker can recover the last fifteen bytes of the tenth round key by XORing the fifteen faulty bytes with the bytes of the correct ciphertext (see Equation (3)).

K 10 i,j = Cinner i,j ⊕ C i,j if i = 0, j ∈ [1..3] Couter i,j ⊕ C i,j if i ∈ [1..3], j ∈ [0..3] (3)
The first byte of the tenth round key K 10 0,0 must then be brute-forced, which is easily done in 2 7 attempts on average. The whole AES key can then be recovered by reversing the key schedule. To conclude, altering the control-flow of AES encryption and obtaining two faulty ciphertexts allows an attacker to fully recover the AES key with an average complexity of 2 7 .

VI. DISCUSSION

A. Possible explanation for the observed fault model

The architecture of the flash memory in the microcontroller we targeted is a NOR flash (see Figure 12). Previous work has highlighted that the sensitive areas of CMOS are reverse biased PN junctions [START_REF] Roscian | Fault model analysis of laser-induced faults in SRAM memory cells[END_REF]. From this information, we can propose the following explanation for the observed fault model described in Section IV. When a bit is read from flash memory, the associated bit-line is pre-charged to V dd . A floating-gate transistor, connected to this bit-line, is activated by its word-line. If the floating gate is charged, then the threshold voltage is high. If there is no charge on the floating gate, then the threshold voltage is low. A floating-gate transistor with no voltage on its control gate is blocked, regardless of the charge stored on its floating gate. By setting an intermediate voltage V read on the control gate of the floating-gate transistor, low-threshold transistors pull the bit-line to ground while high-threshold transistors do not.

In NOR flash memory, floating-gate transistors are connected in parallel between a bit-line and the ground. When a laser spot illuminates the drain of a blocked transistor, a photocurrent I ph is induced between its drain and the bulk (connected to ground). This is illustrated by the red elements in Figure 12. As a consequence, its bitline is pulled down to ground. Even though the word-line activates a floating-gate transistor that stores charges (see left-hand side of Figure 12), then the bit-line would still be pulled to ground by the laser-induced photocurrent. There is no physical mechanism to explain how a laser shot could prevent photocurrent from being drawn. Assuming a logic 1 stored in memory is encoded as a low voltage on the bit-line, this explains the asymmetry of the fault model which shows only bit-sets.

This physical mechanism can be applied to any floatinggate transistor of the flash memory. Assuming that bitlines are horizontal and word-lines are vertical, it explains why we can sweep over the bits of a fetched instruction as we move the laser spot along the y-axis, affecting the bit-lines one after the other. However, moving along the x-axis affects transistors connected to the same bit-line, setting the same bit. This explains why moving along the y-axis allows targeting specific bits, independently of the x-coordinate as shown in Figures 3a and4a.

Finally, the power dependency of the photocurrent spatial distribution explains why two adjacent bits can be faulted with sufficient power, as shown in Figure 5. By affecting transistors connected to different adjacent bit-lines, adjacent bits can be set.

B. Limitations 1) Mono-spot laser:

The fact that the laser we use has only one spot limits the number of bits that can be simultaneously set in the instruction. We observed either a single bit-set or two adjacent bit-sets. A multi-spot laser setup is thus useful to set multiple non-adjacent bits and extend the range of reachable modified instructions.

2) Bit-set only: The observed fault model only consists of bit-sets. We do not observe laser induced bit-reset in this region of the circuit. Even though this limits the range of reachable modified instructions, Section V shows that this fault model has numerous applications.

3) Control flow corruption mostly: As demonstrated by two examples in Section V, faulting the control flow of a program is feasible. However, given our fault model, faulting the data is impossible most of the time while targeting the flash memory. Indeed, data is not hard-coded in the instructions but instead stored in RAM and fetched when needed. For example, it is impossible to perform safe-error attacks on AES encryption [START_REF] Blömer | Fault based cryptanalysis of the advanced encryption standard (AES)[END_REF] since the AES round-key bytes are not hard-coded in the instructions.

Altering the control flow is already an effective way to lower the security of algorithms though. In future works, some arithmetic operations could be modified to actually alter the data. However, this is very algorithm-specific and must be investigated for each case.

C. Reproducibility with a new target code and an identical microcontroller

Performing extensive characterisation and exploration of laser parameters to perform a correct fault injection is a time-consuming process and can take months. However, reproducing these results on a new target code and an identical microcontroller would be much faster. It would first require to decapsulate the chip and mount it on a suitable board for back-side laser injection. Then, the code shown in Listing 1 with a laser power of 0.5 W and duration of 200 ns can be used to find the y coordinates at which each individual bit is set. Access to the assembly code of the target application is needed to identify the target instruction. After that, the ARM Architecture Reference Manual is used to find out a valid faulty instruction. Finally, the delay injection parameter must be tuned.

VII. CONCLUSION

This article presented a new laser fault injection attack on the flash memory of a 32-bit microcontroller. Provided the right injection parameters, an attacker can set individual bits of the words fetched from flash memory in a very predictable manner. Based on our characterisation results, we provided practical examples of control flow and data corruption affecting common security algorithms. Finally, we discussed how the hardware features of a NOR flash memory can explain the observed fault model. Future works on the topic will focus on examining stateof-the-art software countermeasures such as control flow integrity that may be relevant against the attacks that we demonstrated on the PIN verification and AES algorithms.

 1 https://github.com/newaetech/chipwhisperer/tree/develop/ hardware/victims/cw308_ufo_target (a) Picture of the custom target board. The decapsulated chip mounted below with the silicon substrate visible is circled in red. Tiled infrared picture of the target microcontroller. The flash memory is framed in red.

Fig. 2 :

 2 Fig. 2: Target microcontroller on the custom board.

6 #

 6 Reading back R0

1 # 2 # 3 MOVW 10 #

 12310 Initialising registers R0, R1, R4, R5, R6, R8 and R9 to 0xFFFFFFFF Reading back the registers memory area allows to precisely target the bits of the fetched data one after the other. Conversely, moving along the x-axis (shortest side) does not change the affected bit.

 (a) Position to set the bits of the fetched data.

 1650

Fig. 3 :

 3 Fig. 3: Influence of the x, y and delay parameters on the fault injection on aligned data.

 Position in to set the bits of the fetched data.

 1650

Fig. 4 :

 4 Fig. 4: Influence of the x, y and delay parameters on the fault injection on unaligned data.

Fig. 5 :Fig. 6 :

 56 Fig. 5: Fault occurrence rate and types of faults for two laser injection parameters: power and duration.

Algorithm 1

 1 Constant-time 4-digit VerifyPIN with hard-

Fig. 8 :

 8 Fig. 8: C and assembly code for an if branch.

Fig. 10 :

 10 Fig. 10: C and assembly code for two nested for loops.

Fig. 12 :

 12 Fig. 12: Schematic of a bit-line in a NOR flash memory. The red elements indicate the effect of the laser shot.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc. subset.architecture.reference/index.html

ACKNOWLEDGEMENT

The authors would like to thank Colin O'Flynn from NewAE Technology Inc. for his help in providing the reference designs and bill of materials for the custom ChipWhisperer target board. We thank the Micro-PackS platform too for the PCB design and chip decapsulation.