
HAL Id: hal-02339557
https://telecom-paris.hal.science/hal-02339557

Submitted on 30 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Metropolis-Hastings Algorithms for Estimating
Betweenness Centrality Talel Abdessalem

Mostafa Haghir Chehreghani, Talel Abdessalem, Albert Bifet

To cite this version:
Mostafa Haghir Chehreghani, Talel Abdessalem, Albert Bifet. Metropolis-Hastings Algorithms for
Estimating Betweenness Centrality Talel Abdessalem. 22nd International Conference on Extending
Database Technology EDBT 2019, Mar 2019, Lisbon, Portugal. �10.5441/002/edbt.2019.87�. �hal-
02339557�

https://telecom-paris.hal.science/hal-02339557
https://hal.archives-ouvertes.fr


Metropolis-Hastings Algorithms for Estimating Betweenness
Centrality

Mostafa Haghir Chehreghani

LTCI, Télécom ParisTech

Paris

mostafa.chehreghani@gmail.com

Talel Abdessalem

LTCI, Télécom ParisTech

Paris

talel.abdessalem@

telecom-paristech.fr

Albert Bifet

LTCI, Télécom ParisTech

Paris

albert.bifet@telecom-paristech.fr

ABSTRACT
Recently, an optimal probability distribution was proposed to

sample vertices for estimating betweenness centrality, that yields

the minimum approximation error. However, it is computation-

ally expensive to directly use it. In this paper, we investigate

exploiting Metropolis-Hastings technique to sample based on

this distribution. As a result, first given a networkG and a vertex

r ∈ V (G), we propose a Metropolis-Hastings MCMC algorithm

that samples from the space V (G) and estimates betweenness

score of r . The stationary distribution of our MCMC sampler is

the optimal distribution. We also show that our MCMC sampler

provides an (ϵ,δ )-approximation. Then, given a network G and

a set R ⊂ V (G), we present a Metropolis-Hastings MCMC sam-

pler that samples from the joint space R and V (G) and estimates

relative betweenness scores of the vertices in R. We show that

for any pair ri , r j ∈ R, the ratio of the expected values of the

estimated relative betweenness scores of ri and r j with respect

to each other is equal to the ratio of their betweenness scores.

We also show that our joint-space MCMC sampler provides an

(ϵ,δ )-approximation of the relative betweenness score of ri with
respect to r j .

1 INTRODUCTION
Centrality is a structural property of vertices (or edges) in a net-

work that quantifies their relative importance. For example, it

determines the importance of a person within a social network,

or a road within a road network. Freeman [14] introduced and

defined betweenness centrality of a vertex as the number of short-

est paths from all (source) vertices to all others that pass through

that vertex. He used it for measuring the control of a human over

the communications among others in a social network [14]. Be-

tweenness centrality is also used in some well-known algorithms

for clustering and community detection in social and information

networks [16].

Although there exist polynomial time and space algorithms

for betweenness centrality computation, the algorithms are ex-

pensive in practice. Currently, the most efficient existing exact

method is Brandes’s algorithm [5]. Time complexity of this al-

gorithm is O(nm) for unweighted graphs and O(nm + n2 logn)
for weighted graphs with positive weights, where n andm are

the number of vertices and the number of edges of the network,

respectively. This means exact betweenness centrality compu-

tation is not applicable, even for mid-size networks. However,

there exist observations that may improve the computation of

betweenness scores in practice.
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• First, in several applications it is sufficient to compute

betweenness score of only one or a few vertices. For in-

stance, this index might be computed for only core vertices

of communities [23] in social/information networks or for

only hubs in communication networks. Chehreghani [9]

has discussed some situations where it is required to com-

pute betweenness score of only one vertex. Note that these

vertices are not necessarily those that have the highest be-

tweenness scores. Hence, algorithms that identify vertices

with the highest betweenness scores [21] are not applica-

ble. While exact computation of this index for one vertex

is not easier than that for all vertices, Chehreghani [9]

and later Riondato and Kornaropoulos [21] respectively

showed that this index can be estimated more effectively

for one arbitrary vertex and for k vertices that have the

highest scores.

• Second, in practice, instead of computing betweenness

scores, it is usually sufficient to compute betweenness ratios
or rank vertices according to their betweenness scores [21].
For example, Daly and Haahr [12] exploited betweenness

ratios for finding routes that provide good delivery per-

formance and low delay in Mobile Ad hoc Networks. The

other application is handling cascading failures [1].

While the above mentioned observations do not yield a better

algorithm when exact betweenness scores are used, they may

improve approximate algorithms. In the current paper, we exploit

both of these observations to design more effective approximate

algorithms. In the first problem studied in this paper, we assume

that we are given a vertex r ∈ V (G) and we want to estimate

its betweenness score. In the second problem, we assume that

we are given a set R ⊂ V (G) and we want to estimate the ratios

of betweenness scores of vertices in R. The second problem is

formally defined as follows: given a graph G and a set R ⊂ V (G),
for any two vertices ri and r j in R, we want to estimate the

relative betweenness score of ri with respect to r j , denoted by

BCr j (ri ) (see Equation 8 of Section 4.3 for the formal definition

of relative betweenness score). The ratio of the expected values

of our estimations of BCr j (ri ) and BCri (r j ) is equal to the ratio
of betweenness scores of ri and r j .

In [9], Chehreghani presented the optimal probability distri-

bution for estimating betweenness centrality, that yields the min-

imum approximation error 0. However, this distribution cannot

be directly used, as computing the constant factor of probabil-

ity densities is computationally expensive. A natural solution

for this problem is to use Metropolis-Hastings sampling [18].

In this short paper, we investigate the possibility of using such

a sampling method for the two aforementioned problems and

theoretically analyze the resulted algorithms. More precisely, our

key contributions are as follows.

• Given a graphG and a vertex r ∈ V (G), in order to estimate

betweenness score of r , we develop an MCMC sampler
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that samples from the space V (G). Unlike existing work,
our samples are non-iid and the stationary distribution of

our MCMC sampler is the optimal probability distribution
[9]. We also show that our MCMC sampler provides an

(ϵ,δ )-approximation of the betweenness score of r (ϵ ∈ R+

and δ ∈ (0, 1)).

• Given a graph G and a set R ⊂ V (G), in order to estimate

relative betweenness scores of all pairs of vertices in R,
we develop an MCMC sampler that samples from the joint

space R and V (G). This means each sample (state) in our

MCMC sampler is a pair ⟨r, v⟩, where r ∈ R and v ∈ V (G).
For any two vertices ri , r j ∈ R, we show that our joint-

space MCMC sampler provides an (ϵ,δ )-approximation of

the relative betweenness score of ri with respect to r j .

Techniques similar to our algorithm (the second algorithm

that estimate relative betweenness centrality) have already been

used in statistical physics to estimate free energy differences [3].
However, they are new in the context of network analysis. Our

current work takes the first step in bridging these two domains.

This step can be further extended by proposing algorithms similar

to our work for estimating other network indices. As a result,

a novel family of techniques might be introduced to the field

of network analysis. We leave efficient implementations of our

proposed algorithms and evaluating their empirical efficiency for

future work.

2 PRELIMINARIES
Throughout the paper, G refers to a graph (network). For sim-

plicity and without loss of generality, we assume that G is an

undirected, connected and loop-free graph without multi-edges.

Also, we assume that G is an unweighted graph, unless it is ex-

plicitly mentioned thatG is weighted.V (G) and E(G) refer to the
set of vertices and the set of edges ofG , respectively. For a vertex
v ∈ V (G), byG \v we refer to the set of connected graphs gener-

ated by removing v fromG . A shortest path between two vertices

u,v ∈ V (G) is a path whose size is minimum, among all paths

between u and v . For two vertices u,v ∈ V (G), we use d(u,v), to
denote the size (the number of edges) of a shortest path connect-

ing u and v . By definition, d(u,u) = 0 and d(u,v) = d(v,u). For
s, t ∈ V (G), σst denotes the number of shortest paths between s
and t , and σst (v) denotes the number of shortest paths between s
and t that also pass through v . Betweenness centrality of a vertex

v is defined as:

BC(v) =
1

|V (G)| · (|V (G)| − 1)

∑
s,t ∈V (G)\{v }

σst (v)

σst
.

A notion which is widely used for counting the number of short-

est paths in a graph is the directed acyclic graph (DAG) con-

taining all shortest paths starting from a vertex s (see e.g., [5]).
In this paper, we refer to it as the shortest-path-DAG, or SPD
in short, rooted at s . For every vertex s in graph G, the SPD
rooted at s is unique, and it can be computed in O(|E(G)|) time

for unweighted graphs and inO (|E(G)| + |V (G)| log |V (G)|) time

for weighted graphs with positive weights [5]. Brandes [5] in-

troduced the notion of the dependency score of a vertex s ∈

V (G) on a vertex v ∈ V (G) \ {s}, which is defined as: δs•(v) =∑
t ∈V (G)\{v,s } δst (v), where δst (v) =

σst (v)
σst .We have: BC(v) =

1

|V (G) | ·( |V (G) |−1)

∑
s ∈V (G)\{v } δs•(v).

A Markov chain is a sequence of dependent random variables

(states) such that the probability distribution of each variable

given the past variables depends only on the last variable. An

MCMC has stationary distribution if the conditional distribution

of the k + 1
th

state given the kth state does not depend on k .
Let P[x] be a probability distribution defined on the random

variable x . When the function f (x), which is proportional to

the density of P[x], can be efficiently computed, the Metropolis-

Hastings algorithm is used to draw samples from P[x]. In a simple

form (with symmetric proposal distribution), the Metropolis-

Hastings algorithm first chooses an arbitrary initial state x0. Then,
iteratively: i) let x be the current state. It generates a candidate

x ′ using the proposal distribution q(x ′ |x), and ii) it moves from

x to x ′ with probability min

{
1,

f (x ′)

f (x )

}
. The proposal distribution

q(x ′ |x) defines the conditional probability of proposing a state

x ′ given the state x . In the Independence Metropolis-Hastings
algorithm, q(x ′ |x) is independent of x , i.e., q(x ′ |x) = д(x ′).

3 RELATEDWORK
Brandes [5] introduced an efficient algorithm for computing be-

tweenness centrality of a vertex, which is performed inO(|V (G)| |E(G)|)
and O(|V (G)| |E(G)| + |V (G)|2 log |V (G)|) times for unweighted

andweighted networkswith positiveweights, respectively. Çatalyürek

et. al. [7] presented the compression and shattering techniques

to improve efficiency of Brandes’s algorithm for large graphs.

The two natural extension of betweenness centrality to sets of

vertices are group betweenness centrality [13] and co-betweenness
centrality [8]. Brandes and Pich [6] and Bader et.al. [2] proposed

approximate algorithms based on selecting k source vertices

and computing dependency scores of them on the other ver-

tices in the graph. To estimate betweenness score of vertex v ,
Chehreghani [9] presented a non-uniform sampler, defined as

follows: P[s] = 1/d (v,s)∑
u∈V (G )\{v } 1/d (v,u)

, where s ∈ V (G)\{v}. Similar

to these algorithms, our proposed algorithms are source vertex
samplers, too. However, they use a new mechanism for sampling

which is based on the Metropolis-Hastings algorithm. Riondato

and Upfal [22] introduced a pair sampler for estimating between-

ness scores of all (or top-k) vertices in a graph. Riondato and

Kornaropoulos [21] and Borassi and Natale [4] presented shortest
path samplers for estimating betweenness centrality of all ver-

tices or the k vertices that have the highest betweenness scores.

The algorithm of [4] uses balanced bidirectional BFS (bb-BFS) to

sample shortest paths. In bb-BFS, a BFS is performed from each of

the two endpoints s and t , in such a way that they are likely to ex-

plore about the same number of edges. Finally, Chehreghani et.al.

[11] presented exact and approximate algorithms for computing

betweenness centrality in directed graphs.

4 MCMC ALGORITHMS FOR ESTIMATING
BETWEENNESS CENTRALITY

In this section, we present our MCMC sampler for estimating

betweenness score of a single vertex; and our joint-space MCMC

sampler for estimating relative betweenness scores of vertices in

a given set.

4.1 Betweenness centrality as a probability
distribution

Chehreghani [9] presented a randomized algorithm that admits

a probability mass function as an input parameter. Then, he pro-

posed an optimal sampling technique that computes betweenness

score of a vertex r ∈ V (G)with error 0. In optimal sampling, each
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vertex v is chosen with probability

Pr [v] =
δv•(r )∑

v ′∈V (G) δv ′•(r )
(1)

In other words, for estimating betweenness score of vertex r , each
source vertex v ∈ V (G) whose dependency score on r is greater
than 0, is chosen with probability P [v] defined in Equation 1.

In the current paper, for r ∈ V (G) we want to estimate BC(r )
and also for all pairs of vertices ri , r j in a set R ⊂ V (G), the ra-

tios
BC(ri )
BC(r j )

. For this purpose, we follow a source vertex sampling
procedure where for each vertex r , we consider Pr [·] defined in

Equation 1 as the target probability distribution used to sample

vertices v ∈ V (G). It is, however, computationally expensive to

calculate the normalization constant

∑
v ′∈V (G) δv ′•(r ) in Equa-

tion 1, as it gives the betweenness score of r . However, for two
vertices v1,v2 ∈ V (G), it might be feasible to compute the ratio

Pr [v1]

Pr [v2]
=

δv
1
•(r )

δv
2
•(r )

, as it can be done in O(|E(G)|) time for un-

weighted graphs and in O(|E(G)| + |V (G)| log |V (G)|) time for

weighted graphs with positive weights. This motivates us to pro-

pose Metropolis-Hastings sampling algorithms that for a vertex

r , sample each vertex v ∈ V (G) with the probability distribution

Pr [v] defined in Equation 1.

4.2 A single-space MCMC sampler
In this section, we propose an MCMC sampler, defined on the

space V (G), to estimate betweenness centrality of a single vertex

r . Our MCMC sampler consists of the following steps:

• First, we choose a vertex v0 ∈ V (G), as the initial state,
uniformly at random.

• Then, at each iteration t , 1 ≤ t ≤ T :
– Let v(t) be the current state of the chain.
– We choose vertex v′(t) ∈ V (G), uniformly at random.

– With probability min

{
1,

δv′(t )•(r )
δv(t )•(r )

}
we move from state

v(t) to the state v′(t).

The sampler is an iterative procedure where at each iteration

t , one transition may occur in the Markov chain. Let M be the

multi-set (i.e., the set where repeated members are allowed) of

samples (states) accepted by our sampler. In the end of sampling,

betweenness score of r is estimated as

ÞBC(r ) =
1

(T + 1)(|V (G)| − 1)

∑
v ∈M

∑
u ∈V (G)\{v }

σvu (r )

σvu
. (2)

This estimation does not give an unbiased estimation of BC(r ),
however as we discuss below, by increasingT , ÞBC(r ) can become

arbitrarily close to BC(r ). In the rest of this section, we show that

our MCMC sampler provides an (ϵ,δ )-approximation of BC(r ),
where ϵ ∈ R+ and δ ∈ (0, 1).

Theorem 4.1. Let δ (r ) be the average of dependency scores of

vertices in V (G) on r , i.e., δ (r ) =
∑
v∈V (G ) δv•(r )

|(V (G) |
, and ∆(r ) be the

maximum dependency score that a vertex in G has on r . Let also
µ(r ) denote ∆(r )

δ (r )
. Then, for a given ϵ ∈ R+, by our MCMC sampler

and starting from any arbitrary initial state, we have

P
[
| ÞBC(r ) − BC(r )| > ϵ

]
≤ 2 exp

{
−
T

2

(
2ϵ(|V (G)| − 1)

µ(r )∆(r )
−

3

T

)
2

}
.

(3)

Due to space limitations, in this short paper we omit all the

proofs. However, the interested reader may find them in a longer

version of this text in [10]. In general, our (ϵ,δ )-approximation

proofs are based on a theorem presented in [17] for the concen-

tration analysis of MCMC samples and a theorem presented in

[19] for the uniformly ergodicity of Independence Metropolis-

Hastings algorithms.

Note that Inequality 3 does not depend on the initial state.

Furthermore, in Inequality 3 it is not required to discard an initial

part of the chain, called burn-in. More details on this can be found

in [10]. T is usually large enough so that we can approximate
3

T
by 0. Hence, Inequality 3 yields that for given values ϵ ∈ R+ and

δ ∈ (0, 1), if T is chosen such that

T ≥
µ(r )2∆(r )2

2ϵ2(|V (G)| − 1)2
ln

2

δ
(4)

our MCMC sampler will estimate the betweenness score of r
within an additive error ϵ with a probability at least 1 − δ .

4.3 A joint-space MCMC sampler
In this section, we present an MCMC sampler to estimate the

ratios of betweenness scores of the vertices in a set R ⊂ V (G).
Each state of this sampler is a pair (r, v), where r ∈ R and v ∈

V (G). Since this sampler is defined on the joint space R andV (G),
we refer to it as joint-space MCMC sampler. Given a state s of the

chain, we denote by s.r the first element of s, which is a vertex in

R; and by s.v the second element of s, which is a vertex in V (G).
Our joint-spaceMCMC sampler consists of the following steps:

• First, we choose a pair ⟨r0, v0⟩, as the initial state, where r0
and v0 are chosen uniformly at random from R and V (G),
respectively.

• Then, at each iteration t , 1 ≤ t ≤ T :
– Let s(t) be the current state of the chain.
– We choose elements r(t) ∈ R and v(t) ∈ V (G), uniformly

at random.

– With probability min

{
1,

δv(t )•(r(t ))
δs(t ).v•(s(t ).r)

}
we move from

state s(t) to the state ⟨r(t), v(t)⟩.

Techniques similar to our joint-space MCMC sampler have

been used in statistical physics to estimate free energy differences
[3]. Our joint-space MCMC sampler is a Metropolis-Hastings

algorithm that possesses a unique stationary distribution [15, 20]

defined as follows:

P [r ,v] =
δv•(r )∑

r ′∈R
∑
v ′∈V (G) δv ′•(r ′)

. (5)

All samples that have a specific value r for their r component

form an Independence Metropolis-Hastings chain that possesses

the stationary distribution defined in Equation 1. Samples drawn

by our MCMC and joint-space MCMC samplers are non-iid. In

Theorem 4.2, we showhow our joint-spaceMCMC sampler can be

used to estimate the ratios of betweenness scores of the vertices

in R.

Theorem 4.2. In our joint-space MCMC sampler, for any two
vertices ri , r j ∈ R, we have:

BC(ri )

BC(r j )
=
EPrj [v]

[
min

{
1,

δv•(ri )
δv•(r j )

}]
EPri [v]

[
min

{
1,

δv•(r j )
δv•(ri )

}] (6)

whereEPri [v] (respectivelyEPrj [v]) denotes the expected value with
respect to Pri [v] (respectively Pr j [v]).

The proof of Theorem 4.2 is based on the detailed balance
property of Metropolis-Hastings algorithms and can be found in

[10].
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Let ri , r j ∈ R, andM(i) andM(j) be the multi-sets of samples

taken by our joint-space MCMC sampler whose r components

are respectively ri and r j . Equation 6 suggests to estimate
BC(ri )
BC(r j )

as the ratio:

1

|M (j) | ×
∑
s∈M (j)min

{
1,

δs.v(ri )
δs.v(r j )

}
1

|M (i) | ×
∑
s∈M (i)min

{
1,

δs.v(r j )
δs.v(ri )

} . (7)

We use Equation 7 to estimate the ratio of the betweenness
scores of ri and r j . We then define the relative betweenness score
of ri with respect to r j , denoted by BCr j (ri ), as follows:

BCr j (ri ) =
1

|V (G)|

∑
v ∈V (G)

min

{
1,
δv•(ri )

δv•(r j )

}
. (8)

When we want to compare betweenness centrality of vertices ri
and r j , using relative betweenness score makes more sense than

using the ratio of betweenness scores. In relative betweenness

centrality, for each v ∈ V (G), the ratio of the dependency scores

of v on ri and r j is computed and in the end, all the ratios are

summed. Hence, for each vertex v independent from the others,

the effects of ri and r j on the shortest paths starting from v are

examined. Note that the notion of relative betweenness score can
be further extended and presented as follows:

BCr j (ri ) =

∑
v ∈V (G)

∑
t ∈V (G)\{v } min

{
1,

δvt (ri )
δvt (r j )

}
|V (G)| · (|V (G)| − 1)

.

In the following, we show that the numerator of Equation 7,

i.e.,

1

|M(j)|

∑
s∈M (j)

min

{
1,
δs.v(ri )

δs.v(r j )

}
,

can accurately estimateBCr j (ri ).We refer to this value as ÞBCr j (ri ).
For a pair of vertices ri , r j ∈ R, in Theorem 4.3 we derive an error

bound for ÞBCr j (ri ).

Theorem 4.3. Let ri , r j ∈ R, M(j) be the multi-set of samples
whose r components are r j , and δ (r j ) be the average of dependency

scores of vertices inV (G) on r j , i.e., δ (r j ) =
∑
v∈V (G ) δv•(r j )

|(V (G) |
. Suppose

that there exists some value µ(r j ) such that for each vertexv ∈ V (G),
the following holds: δv•(r j ) ≤ µ(r j ) × δ (r j ). Then, for a given
ϵ ∈ R+, by our joint-space MCMC sampler and starting from any
arbitrary initial state, we have

P
[
| ÞBCr j (ri ) − BCr j (ri )| > ϵ

]
≤ 2 exp

{
−
|M(j)| − 1

2

(
2ϵ

µ(ri )
−

3

|M(j)| − 1

)
2

}
. (9)

Similar to Inequality 3, Inequality 9 does not depend on the

initial state and it holds without need for burn-in. Furthermore,

for given values ϵ ∈ R+ and δ ∈ (0, 1), if we have

|M(j)| ≥
µ(r j )

2

2ϵ2
ln

2

δ
,

then our joint-space MCMC sampler can estimate relative be-

tweenness score of ri with respect to r j within an additive error

ϵ with a probability at least 1 − δ .

5 CONCLUSION
In this paper, first given a network G and a vertex r ∈ V (G), we
proposed a Metropolis-Hastings MCMC algorithm that samples

from the space V (G) and estimates betweenness score of r . We

showed that ourMCMC sampler provides an (ϵ,δ )-approximation.

Then, given a network G and a set R ⊂ V (G), we presented a

Metropolis-Hastings MCMC sampler that samples from the joint

space R and V (G) and estimates relative betweenness scores of

the vertices in R. We showed that for any pair ri , r j ∈ R, the ra-
tio of the expected values of the estimated relative betweenness

scores of ri and r j with respect to each other is equal to the ratio

of their betweenness scores. We also showed that our joint-space

MCMC sampler provides an (ϵ,δ )-approximation of the relative

betweenness score of ri with respect to r j . We leave efficient im-

plementations of our proposed algorithms and evaluating their

empirical efficiency for future work.

ACKNOWLEDGMENTS
This work has been funded by the ANR project IDOLE.

REFERENCES
[1] Manas Agarwal, Rishi Ranjan Singh, Shubham Chaudhary, and Sudarshan

Iyengar. 2014. Betweenness Ordering Problem : An Efficient Non-Uniform

Sampling Technique for Large Graphs. CoRR abs/1409.6470 (2014). http:

//arxiv.org/abs/1409.6470

[2] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. 2007. Approximating

betweenness centrality. In WAW. 124–137.

[3] C. H. Bennett. 1976. Efficient estimation of free energy differences from

Monte-Carlo data. J. Comput. Phys. 22 (1976), 245.
[4] Michele Borassi and Emanuele Natale. 2016. KADABRA is an ADaptive

Algorithm for Betweenness via Random Approximation. In ESA. 20:1–20:18.
[5] U. Brandes. 2001. A faster algorithm for betweenness centrality. Journal of

Mathematical Sociology 25, 2 (2001), 163–177.

[6] U. Brandes and C. Pich. 2007. Centrality estimation in large networks. Intl.
Journal of Bifurcation and Chaos 17, 7 (2007), 303–318.

[7] Ümit V. Çatalyürek, Kamer Kaya, Ahmet Erdem Sariyüce, and Erik Saule.

2013. Shattering and Compressing Networks for Betweenness Centrality. In

Proceedings of the 13th SIAM International Conference on DataMining. 686–694.
[8] Mostafa Haghir Chehreghani. 2014. Effective co-betweenness centrality com-

putation. In Seventh ACM International Conference on Web Search and Data
Mining. 423–432.

[9] Mostafa Haghir Chehreghani. 2014. An Efficient Algorithm for Approximate

Betweenness Centrality Computation. Comput. J. 57, 9 (2014), 1371–1382.
[10] Mostafa Haghir Chehreghani, Talel Abdessalem, and Albert Bifet. 2017.

Metropolis-Hastings Algorithms for Estimating Betweenness Centrality in

Large Networks. CoRR abs/1704.07351 (2017). arXiv:1704.07351 http:

//arxiv.org/abs/1704.07351

[11] Mostafa Haghir Chehreghani, Albert Bifet, and Talel Abdessalem. 2018. Effi-

cient Exact and Approximate Algorithms for Computing Betweenness Central-

ity in Directed Graphs. In Advances in Knowledge Discovery and Data Mining
(PAKDD). 752–764.

[12] Elizabeth M. Daly and Mads Haahr. [n. d.]. Social Network Analysis for

Information Flow in Disconnected Delay-Tolerant MANETs. IEEE Trans. Mob.
Comput. 8, 5 ([n. d.]), 606–621.

[13] M. Everett and S. Borgatti. 1999. The centrality of groups and classes. Journal
of Mathematical Sociology 23, 3 (1999), 181–201.

[14] L. C. Freeman. 1977. A set of measures of centrality based upon betweenness,

Sociometry. Social Networks 40 (1977), 35–41.
[15] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. 1996 (ISBN: 0-412-05551-1).

Markov Chain Monte Carlo in Practice. Chapman and Hall, London.

[16] M. Girvan and M. E. J. Newman. 2002. Community structure in social and

biological networks. Natl. Acad. Sci. USA 99 (2002), 7821–7826.

[17] Krzysztof Łatuszyński, Błażej Miasojedow, and Wojciech Niemiro. 2012.

Nonasymptotic Bounds on the Mean Square Error for MCMC Estimates via
Renewal Techniques. Springer Berlin Heidelberg, Berlin, Heidelberg, 539–555.

[18] K. L. Mengersen and R. L. Tweedie. 1996. Rates of convergence of the Hastings

and Metropolis algorithms. Ann. Statist. 24, 1 (02 1996), 101–121.
[19] K. L. Mengersen and R. L. Tweedie. 1996. Rates of convergence of the Hastings

and Metropolis algorithms. The Annals of Statistics 24, 1 (Feb. 1996), 101–121.
[20] S. P. Meyn and R. L. Tweedie. 1993. Markov chains and stochastic stability.

Springer-Verlag, London.

[21] Matteo Riondato and Evgenios M. Kornaropoulos. 2016. Fast approximation

of betweenness centrality through sampling. Data Mining and Knowledge
Discovery 30, 2 (2016), 438–475.

[22] Matteo Riondato and Eli Upfal. 2016. ABRA: Approximating Betweenness

Centrality in Static and Dynamic Graphs with Rademacher Averages. In KDD.
1145–1154.

[23] Y. Wang, Z. Di, and Y. Fan. 2011. Identifying and Characterizing Nodes

Important to Community Structure Using the Spectrum of the Graph. PLoS
ONE 6, 11 (2011), e27418.

689


	Metropolis-Hastings Algorithms for Estimating Betweenness CentralityMostafa Haghir Chehreghani, Talel Abdessalem, Albert Bifet

