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Abstract

Feature selection targets the identification of which features of a dataset are
relevant to the learning task. It is also widely known and used to improve
computation times, reduce computation requirements, and to decrease the
impact of the curse of dimensionality and enhancing the generalization rates
of classifiers. In data streams, classifiers shall benefit from all the items
above, but more importantly, from the fact that the relevant subset of fea-
tures may drift over time. In this paper, we propose a novel dynamic feature
selection method for data streams called Adaptive Boosting for Feature Se-
lection (ABFS). ABFS chains decision stumps and drift detectors, and as a
result, identifies which features are relevant to the learning task as the stream
progresses with reasonable success. In addition to our proposed algorithm,
we bring feature selection-specific metrics from batch learning to streaming
scenarios. Next, we evaluate ABFS according to these metrics in both syn-
thetic and real-world scenarios. As a result, ABFS improves the classification
rates of different types of learners and eventually enhances computational re-
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sources usage.
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1. Introduction

Feature selection is an essential part of a machine learning pipeline. The
central goal of this task is to identify and retain the subset of features of a
dataset that is relevant to the learning task. Despite its benefits to reduce
computation time by focusing the model training only on a subset of features,
feature selection can have an even bigger impact in diminishing the curse of
dimensionality. This characteristic can enhance the performance of predictive
models. Comparing the feature selection studies from the last 20 years, the
number of dimensions (features) has rapidly grown. For instance, the studies
of [1, 2] tackled datasets described with an average of 40 features. In the age
of Big Data, the number of features has grown tremendously, where hundreds,
thousands [3] or even millions of them are observed in specific domains [4],
and these are called high-dimensional scenarios.

Traditional feature selection techniques are tailored to be part of the pre-
processing step of the batch knowledge discovery process. Nevertheless, a
variety of data mining applications are not static, as data often arrive in
the form of potentially infinite sequences of data, the so-called data streams.
Learning from data streams exhibits not only the challenges from traditional
learning schemes, e.g., missing values and class imbalance; but also concept
drifts. A concept drift occurs when the data distribution changes, possibly
impacting the relationship of features, their values, and the target variable
[5].

Recently, studies on data stream mining shed light on the fact that certain
types of drift affect the importance of features over time. Scenarios where
features become, or cease to be, relevant to the learning task are called feature
drifting data streams, and these are the target of this paper.

In this paper, we propose a novel dynamic feature selection method for
data streams called Adaptive Boosting for Streaming Feature Selection. Our
proposal is tailored to tackle feature drifting high-dimensionality scenarios,
thus allowing classifiers to learn from a reduced number of features. This
method adopts a boosting scheme inspired by the work of [6] with decision
stumps to dynamically identify which features are relevant to the current
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concept of a data stream. Drift detectors are used to flag drifts and enable
quick response to changes in the importance of features. We evaluate our
proposal in a variety of streaming scenarios, and also with different types
of learners. Additionally, we show how metrics from batch feature selection
can be ported to streaming scenarios. These metrics, along with the code for
our proposed method, are made available for the community1 as part of the
Massive Online Analysis (MOA) software [7].

This paper is divided as follows. Section 2 introduces the data stream
classification and feature drifts. Section 3 reviews related work on feature
analysis in data streams. Section 4 introduces our proposal, namely Adaptive
Boosting for Feature Selection (ABFS), while Section 5 conducts an analysis
on how feature selection-specific evaluation metrics can be used in streaming
scenarios. Next, in Section 6, the proposed method is evaluated against
different base learners, showing its efficacy and efficiency in a variety of data
streams and dimensions. Finally, Section 7 concludes this paper.

2. Problem Statement

In this paper, we target the classification task for inductive learning from
data streams. More formally, let S to be a data stream providing instances
(~x1, y1), . . ., (~xt, yt) as t → ∞. We also denote ~xt to be a d-dimensional
feature vector belonging to a feature set F =

⋃d
i=1 {fi}, and Y =

⋃c
i=1 {yi}

to be the set of c possible class labels. In data stream classification, our goal
is to continuously learn and update a model h : ~x → y that maps features
and their values to class labels as new data becomes available.

One of the most important traits of data streams is that their underlying
distribution may change over time. As a result, these changes affect the
concept to be learned; a phenomenon referred to as concept drift. In this
paper, we target a specific type of concept drift that occurs when features
become, or cease to be, relevant to the learning task. In the seminal work of
[5], this type of drift was referred to as contextual concept drift, while more
recent works [8, 9] call it feature drift. In contrast to conventional concept
drifts, where changes occur in the relationship between values or ranges of

1The code for our implementation of ABFS, data generators, evaluation metrics, and
scripts to reproduce the experiments shown in this paper are available at https://github.
com/jpbarddal/moa-abfs.
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variables and the class, feature drifts occur whenever a subset of features
becomes or ceases to be relevant for the current concept to be learned.

Formally, we divide features in two types: relevant and irrelevant accord-
ing to the work of [8]. Assuming Si = F \ {fi}, a feature fi is deemed
relevant iff Equation 1 holds.

∃S ′i ⊂ Si, such that P [Y |fi, S ′i] 6= P [Y |S ′i] (1)

Otherwise, the feature fi is said irrelevant. In practice, if a feature that
is statistically relevant is removed from a feature set, it will reduce overall
prediction power since (i) it is strongly correlated with the class; or (ii) it
belongs to a subset of features that is strongly correlated with the class [10].

According to the previous definitions, if a feature that is statistically
relevant is removed from a feature set, it will reduce overall prediction power.
This definition encompasses two possibilities for a feature to be statistically
significant: (i) it alone is strongly correlated with the class; or (ii) it forms a
feature subset with other features and this subset is strongly correlated with
the class [11, 10].

In streaming scenarios, changes in the relevant subset of features force the
learning process to adapt its model accordingly [12]. Given a feature space
F at a timestamp tj, we denote F∗tj as its ground-truth relevant subset of
features such that ∀fi ∈ F∗tj the aforementioned definition of relevance holds.
Therefore, a feature drift occurs if between two timestamps tj and tk we find
that F∗tj 6= F

∗
tk

.
To overcome this type of drift, a classifier must identify these relevance

changes, and either (i) discard and learn a new model with the newly relevant
features, or (ii) adapt its current model to relevance drifts [12].

3. Related Work

Finding a compact subset of relevant features is a widely tackled problem
of batch learning, yet, the same does not hold for streaming scenarios. At
this point, it is relevant to disclaim that this is different from online feature
selection, which is the task that targets the identification of the best subset of
features in a very high-dimensional space (hundreds of thousands or millions
of dimensions), which is a typical problem of big data [13, 14]. Although both
tasks’ objectives overlap in the sense that both tackle the issue of feature
selection, streaming feature selection receives as input a stream of features
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(not instances), and their inclusion in the model is performed sequentially,
without observing future features [15]. In contrast, our goal in this paper
is to dynamically select features in streaming scenarios where new instances
become available over time and the original feature set is static.

Recently, the works of [16] and [17] surveyed and evaluated different ap-
proaches to tackle this problem. According to these studies, incremental de-
cision trees [18] and its variants [19] are the best performing approaches. De-
cision trees can be regarded as feature selection processes since they continu-
ously select the feature that maximizes a quality metric during the branching
step. For instance, the Hoeffding Tree [18] collects statistics about incom-
ing data, and periodically, according to a grace period parameter, determine
which feature should be used to split the tree and create even more specific
leaf nodes. One of the significant drawbacks of the conventional Hoeffding
Tree learner is that it is purely incremental as it does not check if any of the
previous splits are still accurate. To overcome this issue, the Hoeffding Adap-
tive Tree [19] uses the ADWIN drift detector [20] inside decision nodes to
monitor the internal error rates of the tree, and re-learn branches if needed.

Another recent work that focused on performing feature selection is the
Heterogeneous Ensemble with Feature Drift for Data Streams (HEFT-Stream)
[12]. HEFT-Stream incorporates traditional feature selection into a hetero-
geneous ensemble to adapt to different types of concept and feature drifts.
HEFT-Stream adopts a modification of the Fast Correlation-Based Filter
(FCBF) algorithm so it dynamically updates the selected relevant feature
subset of a data stream. The main shortcoming of HEFT-Stream is that is
processes the data stream using mini-batches, and the determination of the
size of such batches is left to the user. To perform the scoring of features
over sliding windows, the work of [8] proposes a dynamic feature weighting
scheme for the streaming versions of Naive Bayes and k-Nearest Neighbors.
Weights are computed with sliding window formulas for the Symmetrical
Uncertainty scoring operator [21] and are used in the prediction step of the
learners mentioned above. The accuracy gains are noticeable despite the
expense of reasonable processing time and memory usage. Finally, the pro-
posed weighting scheme was used at the leaves of the Hoeffding Adaptive
Tree to improve its prediction rates, again with a computational overhead.

Another relevant approach is given in the work of [22], where authors
proposed an unsupervised approach for feature ranking, and posterior selec-
tion, based on Frequent Directions. In practice, their proposal operates in
a streaming by constructing and maintaining a sketch matrix that shrinks
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the original data in orthogonal vectors. Even though the results obtained in
terms of feature selection are interesting, authors work under the assumption
that the number of features to be selected is known a priori and that the
user is able to provide this number correctly.

At this point, it is worthy to notice that measuring the importance of
features on streaming regression scenarios has also gained traction in the
work of [23], yet, no feature selection proposals are provided. And finally, it
is also relevant to mention that our main goal in this paper is to introduce
a feature selection method for data streams that is not highly dependent of
a user-given window size. This is relevant since, in practice, any traditional
feature selection method can be applied to data streams by partitioning the
arriving data in chunks of size n. At the end of each chunk, traditional
feature selection methods could then be applied to the n previously instances
gathered, thus resulting in a feature set that would be used to build a classifier
to predict the upcoming n instances. Naturally, the biggest issue here is how
to determine an appropriate value for n, and this problem is referred to as the
plasticity-stability dilemma. While short windows reflect the current data
distribution and ensure fast adaptation to drifts (plasticity), they usually
worsen the performance of the system in stable areas. Conversely, larger
windows give better performance in stable periods (stability), however, these
imply in slower reaction to drifts [24].

4. Proposed Method

In this section, we propose a novel method based on Online Boosting [6]
and drift detectors to identify which features are relevant for the classification
task on data streams. We start this section with an introduction to Boosting
methods for both batch and stream learning settings. These methods are at
the core of the proposed method as Boosting allows feature interactions to
be swiftly identified in data streams. The next part describes the proposed
method and discusses its functioning. At this point, it is important to high-
light that even though the proposed method has its foundations borrowed
from [6], it is not tailored for classification as its inner weak learners are not
used during predictions; and no convergence with batch learning is reported
for the same reason.
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4.1. Preliminaries on boosting

In machine learning, Boosting is a family of meta-learning methods that
target the construction of a strong learner by combining multiple weak learn-
ers that, by definition, are slightly better than random guessing.

The most widely used and known implementation of Boosting is Ad-
aBoost [25], and multiple variants of it were proposed throughout the years
[26, 27]. In AdaBoost, a set of weak learners H is trained over a series of
rounds t = 1, . . . , T . During each iteration, a new weak learner ht : ~x → y
is trained over the dataset (~x1, y1), . . . , (~xn, yn) taking into account a distri-
bution of weights Dt for these instances. In the first round, it is assumed
that all instances have the same weight, i.e. D1(i) = 1

n
. The error of a weak

learner in the t-th round is the sum of the weights of misclassified instances,
as shown in Equation 2.

εt = Pri∼Dt

[
ht(~x

i) 6= yi
]

=
∑

∀i,ht(~xi)6=yi
Dt(i) (2)

In each of the following rounds, the weights Dt(i) are updated according
to a parameter αt, which is calculated according to Equation 3.

αt =
1

2
ln

(
1− εt
εt

)
(3)

In practice, αt quantifies how “important” ht is, as αt ≥ 0 if εt ≤ 1/2
and that αt increases with the decrease of εt. According to αt, the weight
distribution can be updated following Equation 4, where Zt =

∑n
i Dt(i) is a

normalization factor to guarantee that Dt is a distribution.

Dt+1(i) =
Dt(i)

Zt
×

{
e−αt if ht(~x

i) = yi

eαt if ht(~x
i) 6= yi

(4)

With this update, the weights of correctly classified instances will de-
crease, while misclassified instances will increase. As a result, this process
highlights hard-to-classify instances for future rounds.

Finally, predictions can be extracted from the final “strong” learner as
depicted in Equation 52.

2The original prediction scheme presented in [28] focuses only on binary classification
tasks and has been extended here to account for multi-class problems. Details about the
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H(~x) = arg max
yi∈Y

(
T∑
t=1

{
αtht(~x) if ht(~x) = yi

0 if ht(~x) 6= yi

)
(5)

Even though AdaBoost is iterative, it works under the assumption that
all instances of the dataset are available at all times so that re-weighting
occurs. Naturally, this is an assumption that does not hold in streaming
scenarios, as each instance should be processed and discarded right after.
Targeting the development of boosting techniques for data streams, different
approaches for classification [6, 29, 30] and regression [31] tasks have been
developed over the years.

In this work, we follow a similar framework proposed in [6], called Oza-
Boost. OzaBoost was tailored to be an approximation of AdaBoost for data
streams. Contrary to AdaBoost, where the number of rounds T determines
the ensemble size, OzaBoost has a predefined number of weak learners M
and counters for correctly (λci , 1 < i < M) and incorrectly (λei , 1 < i < M)
classified instances which are updated as new instances are processed. For
each instance (~xt, yt) drawn from the data stream S, a weight λ = 1 is set.
The instance is then traversed along the weak learners h1, . . . , hM sequen-
tially. For each hi, the instance is tested to check whether if it is correctly
classified or not, i.e. hi(~x

t) = yt or not; and as a result, the counters λci and
λei are incremented with λ (Equations 6 and 7, respectively). Next, the value
of λ is incremented or decremented following Equation 8. This is the same
procedure adopted by AdaBoost in Equations 4 and 5, except the normaliza-
tion factor Zt, which cannot be used in data streams as past instances have
been discarded.

λci ← λci + λ; (6)

λei ← λei + λ; (7)

λ← λ×

{
λci+λ

e
i

2λci
if hi(~x) = yt

λci+λ
e
i

2λei
if hi(~x) 6= yt

(8)

usage of AdaBoost in binary classification tasks and proofs on its error bounds can also
be found in the same paper.
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4.2. Adaptive Boosting for Feature Selection

The properties of boosting have been investigated to improve classifica-
tion rates, but also as a proxy for feature selection in batch scenarios. For
instance, the work of [32] uses gradient boosted regression trees to select fea-
tures. Also, related to our approach, authors in both [33] and [34] proposed
different boosting techniques that use decision stumps to select features in
batch scenarios.

We now propose a novel method based on Boosting to dynamically select
features in streaming scenarios hereafter referred to as Adaptive Boosting for
Feature Selection (ABFS). At this point, it is important to disclaim that
the term Adaptive used here stands for the fact that the proposed method
incrementally selects features as the stream is processed, but it is also able
to detect feature drifts and adapt to them on the fly.

ABFS combines decision stumps and drift detectors to perform dynamic
feature selection. Decision stumps are light-weighted, incremental, easy to
implement and understand, but more importantly, an elegant approach to
identify which feature maximizes a purity criterion and selects a feature ac-
cordingly. Below, we describe each of these components individually and
later how they are chained together to allow dynamic feature selection in
data streams.

4.2.1. Decision stumps

The decision stump implementation used here is the core unit of incre-
mental decision trees, e.g., Hoeffding Trees [18], and receive as input three
parameters: a selection threshold θ, a grace period gp and a purity metric
Ω(·) that we wish to maximize, e.g. Information Gain and Gini Index. By
definition, a decision stump ds gathers statistics on the arriving data until
the grace period gp is reached. After that, all features fi ∈ F are evaluated
according to a criterion Ω(·). Let fα and fβ be the two best-ranked features
according to Ω. As proposed in [18], a decision stump will split on fα if
Ω(fα) − Ω(fβ) > ε, where ε is the Hoeffding bound [35], given by Equation
9, and R is the range of Ω.

ε =

√
R2 ln

(
1
δ

)
2× gp

(9)

As in [18], the Hoeffding bound is used to approximate how many samples
are required to achieve the optimal selection of a feature that would occur if
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the entire data stream was observed. As a result, with probability (1 − δ),
it is statistically valid that fα is the best feature to be selected [18]. It is
also possible that during this evaluation, two or more features show similar
Ω values, and thus, the number of examples required to decide between them
with high confidence may grow indefinitely. Naturally, this is unwanted, as
the gain obtained by either makes little difference, i.e., such features are
likely to be redundant; and thus, the proposed implementation for decision
stumps follows the Hoeffding Tree protocol where a parameter τ is used for
tie-breaking [18]. Following the definition of [18] and [7], the tie-breaking
parameter was set as τ = 0.05 for all of the experiments conducted in this
paper. In practice, the decision stump will select the best-ranked feature fα
if τ > Ω(fα)− Ω(fβ) > ε.

In the proposed method, the decision stump is extended in two aspects.
First, a decision stump will select the most appropriate feature fα from a
subset of features that have not been previously selected by other decision
stumps. The idea on using boosting with decision stumps is that by travers-
ing each instance across all the boosting units, instances that are hard to
classify will be highlighted and will force the decision stump that is about
to split to select a feature that better separates such samples. And second,
the best-ranked feature fα will only be selected if Ω(fα) > θ, which is a user-
given threshold. Naturally, the definition of a selection threshold θ depends
on the data domain being worked on, and different values are evaluated in
Section 6.

4.2.2. Drift detectors

A drift detector is a statistical method that observes a data sequence and
upon on its distribution, flags the occurrence of significant changes. In data
streams, most of the drift detectors are used to monitor the error rates of
a classifier. In this work, we denote ψ to be a drift detector that receives
as input a value of 1 if h(~xt) 6= yt, or 0 otherwise. Evidently, different
realizations of ψ exist, e.g. ADWIN [19], HDDM-A and HDDM-W [36]; and
the impact of different techniques are also assessed in Section 6.

ADWIN is, by far, the most popular choice for drift detection. It keeps
a variable-length window of recently seen items, with the property that the
window has the maximal length statistically consistent with the hypothesis
“there has been no change in the average value inside the window”. The
ADWIN change detector is parameter- and assumption-free in sense that it
automatically detects and adapts to the current rate of change. In the average
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case, the cost of processing each instance by ADWIN is instantaneous, while
in the worst case it can be of O(logW ), where W is the size of the sliding
window maintained in memory.

More recently, the authors in [36] proposed two variants of the Hoeffding
Drift Detection Method (HDDM) detector: HDDM-A and HDDM-W. Both
the former and the latter are similar to ECDD in the sense that they use
moving averages to detect drifts, yet, only the latter uses an exponentially
weighted procedure to provide higher importance to most recent data. In
both cases, the moving averages are compared to flag concept drifts based
on the misclassification rates of a classifier, where the Hoeffding Bound (see
Equation 9) is used to set an upper bound to the accepted level of difference
between them. In contrast to ADWIN, the complexity for both HDDM-A
and HDDM-W is of O(1) in the worst case.

4.2.3. Chaining decision stumps and drift detectors in a boosting scheme

The rationale behind ABFS is that boosting gives more weight to in-
stances that are hard to classify. By intuition, these instances are either (i)
located at the decision boundaries of classes, or (ii) are noise. If we work
under the assumption that the labels of incoming instances are trustworthy
(not noisy), decision stumps will be able to select the most important fea-
tures according to these hard-to-classify instances as they naturally account
for these weights during the feature selection process. In ABFS, each decision
stump will be responsible for finding the feature that maximizes the merit
function Ω without observing features that have been selected previously.

Since ABFS was tailored for feature selection in classification scenarios
and not for actually training classifiers, we will adopt a slightly different
notation from the boosting schemes presented earlier. ABFS is composed of
a dynamic set of boosting units U such that each unit ui ∈ U is a 4-tuple
in the (dsi, λ

c
i , λ

e
i , ψi) form, where dsi is a decision stump, λci and λei are

counters for correctly and incorrectly classified instances by dsi and ψi is a
drift detector. The functioning of ABFS is detailed in Algorithm 1 and is
divided into 3 steps: initialization, training, and selection.

In the initialization step (lines 1-4 of Algorithm 1), ABFS instantiates
both the set of boosting units U and the subset of selected features F ′ as
empty lists, a candidate decision stump dscandidate that will gather statistics
about incoming data to determine which feature to split on and select.

During the training step (lines 5-31 of Algorithm 1), ABFS updates its
internal structures according to the arrival of an instance (~xt, yt). First, the

11



instance weight λ and an index to store the first layer that detects a drift idrift
are initialized. Next, the arriving instance is sequentially traversed along all
of the boosting units in U . In each boosting unit ui = (dsi, λ

c
i , λ

e
i , ψi), it

is verified if the decision stump is able to correctly predict the class label
(dsi(~x

t) = yt), or not (dsi(~x) 6= yt). Here, AdaBoost’s weighting strategy is
followed (Equations 6, 7 and 8), where higher values of λ will be associated
with instances that are hard to classify. It is also important to highlight that
after the classification of the instance in a unit ui, the selected feature used
in its decision stump dsi is removed from ~x (line 20) so that the candidate
decision stump dscandidate is enforced to select a feature that has not been
selected already by the decision stumps in U .

In addition to the definition of λ, the drift detector is fed with the classifi-
cation result (1 represents an error, while 0 represents a correct classification).
Therefore, each drift detector is used to keep track of the error distribution of
each decision stump. The rationale here is that changes in these distributions
work as a proxy to identify when the importance of a feature changes, and
thus, upon the flagging of a drift, it becomes necessary to re-start the feature
selection process. In practice, if a drift is flagged by ψi, its index i will be
stored in idrift so that this and the following units are removed, and that
the feature selection process can self-adjust upon the new data distribution.
Naturally, depending on the drift, it would be possible that multiple units
flag drifts, and thus, only the first layer that detects such changes is stored.

If no changes are detected (lines 21 to 26), the candidate decision stump
dscandidate is trained3 with (~xt, yt) assuming a weight λ. With the arrival of
multiple instances, the candidate decision stump will reach the grace period
gp, and as a result, it will eventually select a new feature fα according to
the process described earlier. When this condition holds, a new boosting
unit is instantiated with this decision stump, and it is added to U . A new
candidate decision stump is then created to select the next best feature, and
the selected subset of features is incremented with fα.

On the other hand, it is, a feature drift is detected, all boosting units
from the index that detected the change until the end of the list are removed
(loop described by lines 28 and 29), as a boosting unit ui affected the creation
of its following units ∀uj, j ≥ i. Next, and the classifier h is reset to allow

3In decision stumps, whenever an instance (~xt, yt) is used for training with a weight λ,
it means that the same instance has been observed λ times
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Algorithm 1 ABFS pseudocode. We denote h to be a pointer to the classi-
fier, dscandidate a candidate decision stump, F ′ the currently selected subset
of features, θ a selection threshold used in decision stumps, and U the set
of boosting units such that the ui is the i-th unit and it is composed of a
decision stump dsi, a set of counters for correctly (λci) and misclassified (λei )
instances, and a drift detector ψi.

1: procedure INITIALIZE(h, F , θ)
2: U ← ∅;
3: dscandidate ← new DecisionStump(θ);
4: F ′ ← ∅;
5: procedure TRAIN(~xt, yt)
6: λ← 1;
7: idrift ← −1;
8: for i← 1 to |U | do
9: if dsi(~x

t) = yt then
10: λci ← λci + λ;

11: λ← λ× λci+λ
e
i

2λci
;

12: Update ψi with 0;
13: else
14: λei ← λei + λ;

15: λ← λ× λci+λ
e
i

2λei
;

16: Update ψi with 1;

17: if ψi flagged a drift and idrift = −1 then
18: idrift ← i;
19: break;

20: Remove from ~x the feature selected at dsi;

21: if idrift = −1 then
22: Train dscandidate with (~xt, yt) assuming a weight λ;
23: if dscandidate has selected a feature fα ∈ F then
24: U ← U ∪ {new BoostingUnit(dscandidate)};
25: dscandidate ← new DecisionStump(θ);
26: F ′ ← F ′ ∪ {fα};
27: else
28: while |U | > idrift do
29: Remove from F ′ the feature selected in U.last();
30: U ← U \ {U.last()};
31: Reset the learner h;

32: procedure SELECT(~x)
33: return ~x after selecting the features selected in F ′ and dropping the

remainder of the features;
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faster adaptation to the new concept. In practice, the reset of a classifier
stands for the process in which its model is discarded and the learners starts
to learn from scratch.

Finally, the last part is the testing step (lines 32 and 33 of Algorithm
1), ABFS filters the arriving instance ~x so that only the features in F ′ are
selected. This instance can then be passed to the classifier with a reduced
dimensionality equals to |F ′|.

4.2.4. A note on complexity analysis

The initialization step of ABFS is trivial, as it simply instantiates the
required structures, which results in O(1). Naturally, the most computation-
ally intensive part of ABFS is training step. In practice, the upper bound
cost of ABFS is given by the loop described by lines 8 to 20 of Algorithm 1,
which basically loops over all the boosting units in U , which has the same
cardinality as the subset of selected features F ′. Inside this loop, the con-
ditions described by lines 9-12 and 13-16 are mutually exclusive and have
the same cost, which is basically described by the cost of the drift detector
update, which is O(logW ) for ADWIN and O(1) for HDDM-A and HDDM-
W. Next, another important aspect of ABFS occurs in line 22, where the
update of a decision stump has a cost of O(d−U), as it needs to loop over all
the unselected features. Similarly, the condition described in line 23, where
a feature is selected requires (d − U) computations of Information Gain,
but these are precomputed as statistics are incrementally updated, but also
(d− U) log2(d− U) computations so that the features are sorted. Yet, such
computation only occurs every gp instances, and thus, the computational
cost becomes O( (d−U) log2(d−U)

gp
). On the other hand, if a drift is flagged in

line 27, the cost in the worst case occurs with the removal of all features that
have been selected, and thus, the cost is of O(U). Given that, the overall

cost for ABFS is of O(U logW +(d−U)+ (d−U) log2(d−U)
gp

), which after simpli-

fication becomes O(U logW + (d−U) log2(d−U)
gp

). Also, since the average cost of

ADWIN is pessimistic, one could also assume O(U +(d−U)+ (d−U) log2(d−U)
gp

)
instead. Finally, the selection step is also simple, as it builds a new instance
by iterating over the selected subset of features F ′, and thus, with a cost of
O(U).
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5. Evaluating Feature Selection on Data Streams

There are different factors to account for when evaluating feature selection
proposals. Throughout the years, different quantitative measures, such as
accuracy and scalability, and subjective ones, such as ‘ease of use’, have been
used to highlight the efficiency of feature selectors [37]. In this paper, we
define a quantitative framework to evaluate our proposal and future works
on feature selection for data streams. This framework includes (i) accuracy,
(ii) processing time, (iii) memory usage, (iv) selection accuracy; and (v)
stability metrics. Metrics (i) through (iii) are widely used in the area as they
follow traditional data stream evaluation frameworks [38] for the assessment
of classifiers. Metrics (iv) and (v) are absent in streaming scenarios as both
Selection Accuracy and Stability metrics were developed for batch scenarios.
The following sections present these metrics and discuss their computation
on data streams. Along the proposed method, the implementation of these
metrics is also provided to the data stream mining community as part of the
Massive Online Analysis (MOA) software [7].

5.1. Selection Accuracy

Selection Accuracy (SA) is a classifier-independent score that quantifies
to what extent a selected subset of features matches the ground-truth relevant
ones [39]. Given a feature set F , its relevant subset of features F∗ and the
selected set F ′ ⊆ F , SA is given by Equation 10, where γ ∈ [0; 1] is a
weighting factor and its output is also bounded in [0; 1].

SA(F ,F∗,F ′) = γ

RRF︷ ︸︸ ︷(
|F∗ ∩ F ′|
|F∗|

)
+(1− γ)

(
1− |(F \ F

∗) ∩ F ′|
|F| − |F∗|

)
︸ ︷︷ ︸

CCP

(10)

A score of SA = 1 corresponds to a perfect selection, where all the relevant
set of features is selected, and no extraneous features are retained; whereas
SA = 0 represents the opposite, i.e., a selection with no relevant features and
all extraneous ones selected. One of the main advantages of SA is that the
information on the degree to which a model has been correctly or incorrectly
specified is combined into a single value, thus making the comparison between
several feature selection proposals clear and classifier-independent.
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The computation of SA also requires an appropriate γ. This choice is
subjective and depends on how much one wants to favor accuracy over par-
simony or vice-versa. Hereafter, the two components that compose the SA
formula are referred as Recall of Relevant Features (RRF ) and Complement
of Complexity Penalty (CCP ). A suitable value for γ should reflect the fact
that choosing an extraneous feature is usually better than missing a relevant
one, something that can be achieved by selecting γ, such that γ

|X∗| >
1−γ

|X|−|X∗|
[39]. On the other hand, γ should not be too large, as that would result
in insignificant penalties for unnecessarily complex models. Authors in [37]
provided an empirical evaluation of different values of γ and claimed that 0.7
is an appropriate value since it satisfies the condition mentioned above while
being sufficiently less than 1 to appropriately penalize unnecessary complex-
ity.

The advantage of computing Selection Accuracy scores is that they ex-
press the degree to which a selection model over- or under-specifies. It is
important to mention, however, that this metric is affected by the dimen-
sionality of the problem, as the cardinality of the relevant and extraneous
feature sets are taken into account directly in the formula.

Evidently, computing a Selection Accuracy score after each instance is
unfeasible as its running time scales with the dimensionality d. Therefore,
these scores are computed every n instances, where n is the user-given window
evaluation size.

5.2. Stability

Another important trait of feature selectors that deserves attention is
stability. Stability measures the sensitivity of the feature selection solution
given perturbations in input data. The goal is to provide evidence that the
selected features are consistent across different data samples. Therefore, sta-
ble feature selection algorithms are preferable when compared to those with
highly volatile outputs. It is important to highlight that stability, however,
does not relate to the performance of the selected features as it indices how
unstable a feature selection algorithm is w.r.t. perturbations in input data,
and not on how accurate the selection is.

In batch learning, stability is often measured by repeatedly perform-
ing feature selection over k different bootstraps of disjoint folds of a static
dataset, leading to a set of feature selection results. Let F ′i be the subset
of features selected over the ith samples of instances extracted from a static
dataset. The stability of a feature selection algorithm can be computed by
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averaging the similarity coefficient φ for each of the possible pairs of (F ′i ,F ′j)
of selected features, as stated in Equation 11.

S =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

φ(F ′i ,F ′j) (11)

Although several similarity metrics (φ) for stability do exist, until re-
cently, there has not been an agreement on which one to use [40]. Recently,
the work of [41] has provided insights on the main properties a stability
measure should possess. First, it should be fully defined, as a stability
measure should be defined regardless of the selected feature sets and respec-
tive lengths. Also, it must have pre-defined upper and lower bounds to
facilitate the comparison between selectors. The third trait is the relation-
ship called Deterministic Selection⇔Maximum Stability: if a selector
always selects the same k features, then it should present maximum stabil-
ity. The converse should also hold, i.e., the stability is maximum only if the
selection is deterministic. Finally, it should have chance correction, so if
the selector is random, its stability should be 0. Even though these traits are
rather simple, the analysis conducted in [41] shows that most approaches do
not fulfill these criteria. More importantly, in the same work, authors show
that the Pearson coefficient overcomes this problem. This coefficient is given

by Equation 12, where d = |F|, ri,j = |F ′i ∩ F ′j|, and vi =
√

ki
d

(
1− ki

d

)
with

ki = |F ′i |.

φPearson(F ′i ,F ′j) =
ri,j − kikj

d

d vivj
(12)

Finally, the last challenge to be tackled here regards how stability scores
can be calculated in streaming scenarios. A naive proposition to select sam-
ples of a stream would be to adopt a landmark windowing scheme, where
every m instances would be grouped and inputted to a feature selection al-
gorithm. After performing feature selection over n batches, the stability
could then be computed. The major drawbacks of such proposal are that
it assumes that (i) the feature selection algorithm is not dynamic and that
(ii) the underlying data distribution is static since the selected subset of fea-
tures for each batch is expected to be the same. As discussed in the previous
sections of this paper, none of the latter assumptions hold or are preferable,
thus, evaluating with landmarks is not reasonable.
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To overcome such limitations, we propose to adapt the Prequential Cross-
Validation (Preq-CV) scheme presented in [42] for stability computation.
Following the original Preq-CV, three different k-fold approaches can be
used to evaluate the stability of a feature selector: cross-validation, split-
validation and bootstrapping. The first strategy updates (k − 1) folds,
while the second updates only one of the k folds. Finally, the bootstrap-
ping approach updates each of the k folds using a weight obtained with a
Poisson distribution with a parameter λ = 1. In this scheme, the probabil-
ity of an instance being used in each fold is approximately two thirds, as
P [x > 0] = 1 − P [x = 0] = 1 − e−1

x!
≈ 63% and the same value depicts the

intersection of instances used in each pair of folds.
Similarly to Selection Accuracy, calculating a Stability score is computa-

tionally intensive as it requires k(k−1)
2

pairwise similarity computations, and
thus, these are only calculated according to an user-given evaluation window
size. Also, even though this score is calculated only every n instances, it
is important to notice that the actual feature selection process occurs in-
crementally, which causes the process to be different from performing batch
feature selection and conventional stability computation.

6. Analysis

In this section we analyze the proposed method in light of the evaluation
metrics presented in Section 5 in both synthetic and real-world scenarios.
First, we report the experimental protocol adopted, followed by the discussion
on synthetic experiments, and finally, on real-world datasets.

6.1. Experimental Protocol

In the following sections, ABFS is applied to different classifiers on both
synthetic and real-world data. In Table 1 we show the synthetic experiments
conducted, including the number of instances, average number of relevant
features and number of irrelevant features appended. Regarding synthetic
experiments, AGR represents the AGRAWAL [43] generator and AN is the
Asset Negotiation generator [44]. BG1, BG2 and BG3 are synthetic gen-
erators based on binary features proposed in [45] that were recently used
to synthetize feature drifts in [17]. Finally, the Random Tree Generator
(RTG) was used to create more complex concepts (where the number of rel-
evant features is bigger), while SEA [46] concepts depend on only 2 features.
All of the aforementioned synthetic experiments are reported in different
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Table 1: Details on the synthetic experiments conducted. Each of the synthetic experi-
ments has been repeated where drifts were abrupt and gradual.

Experiment Type
# of

Instances
Avg. # of

Relevant Features

# of Irrelevant
Features

Appended
# of Redundant Features

AGR Synthetic 200,000 3.66∗ 100/200/500 –
AN Synthetic 200,000 2 100/200/500 –

BG1 Synthetic 200,000 3 100/200/500 –
BG2 Synthetic 200,000 3 100/200/500 –
BG3 Synthetic 200,000 3 100/200/500 –
RTG Synthetic 200,000 6 100/200/500 15/30/40
SEA Synthetic 200,000 2 100/200/500 –

* - The AGR experiment has three concepts, such that the first has 4 relevant features,
the second only 3, and the last another 4.

variants. First, all synthetic data streams have 2 equally distributed drifts
along the stream, i.e. each occurring at 66,666 and 133,333 instances, and
each of these drifts is gradual with a window of 10,000 instances. As a re-
sult, drifting regions of synthetic experiments are located at 61,666-71,666
and 128,333-138,333 [7]. Second, a different number of irrelevant features
were appended (100, 200 and 500), such that half are numeric and the other
half categorical. The proposed strategy to append irrelevant features is to
increment the attribute set F of a data stream with numeric or categorical
attributes. In the first case, values for a numeric attribute are sampled from
a uniform distribution bounded in [0; 1], with no regard to the instance out-
come. The procedure for categorical features is similar, where new irrelevant
attributes possess m different values, such that m is a user-given value and
the probability of each partition being used in an instance equals 1

m
. Also, the

RTG experiment was changed so that redundant features were also added.
Redundant features are synthesized by copying the value of another feature
with 95% probability, while the remainder 5% result in a value drawn from
a uniform distribution of the other possible values for that specific feature.

Regarding real-world datasets, depicted in Table 2, it is impossible to
tell whether and when drifts occur. Nevertheless, five different datasets were
still used to verify how ABFS behaves when applied to real-world datasets
with a reasonable number of features. The first is the Forest Covertype [47]
dataset (COVTYPE), which is widely used to evaluate data stream learning
algorithms. This dataset represents the problem of determining the forest
covertype given characteristics (features) of forest areas. Another dataset
used was the Internet Advertisements (IADS) [48], which targets the clas-
sification of whether images on a website are advertisements or not. Next,

19



Table 2: Details of the real-world datasets used during the experiments.

Experiment Type
# of

Instances
# of Features Feature Types Reference

COVTYPE Real-world 581,012 54 Mixed [47]
IADS Real-world 3,279 1,558 Numeric [48]

NOMAO Real-world 34,465 118 Mixed [49]
PAMAP2 Real-world 1,942,872 52 Numeric [50]

SPAM Real-world 9,324 39,917 Binary [51]

the NOMAO dataset (NOMAO) [49] was introduced during the ECML-
PKDD’12 challenge as part of a deduplication task for determining whether
two spots should have their data merged or not. The Physical Activity Mon-
itoring dataset (PAMAP2) contains data of 18 different physical activities
performed by 9 subjects wearing 3 inertial measurement units and a heart
rate monitor [50]. The goal of this dataset is to determine which activity each
subject is performing over time, such as walking, cycling, playing soccer, and
so forth. Another traditional dataset is the Spam Corpus (SPAM), which is
the result of a text mining process of an e-mail dissemination system which
targeted initially the determination of whether each e-mail was spam or not
[51]. It is also important to highlight that other datasets that are commonly
used in data stream studies, e.g., Pokerhand and Electricity; were not used
here due to the small number of features or because traditional feature se-
lection has already been applied before these datasets were made publicly
available.

The latter experiments are used to benchmark ABFS with different types
of classifiers. In this testbed, we verify how ABFS works in conjunction with
Naive Bayes, k-Nearest Neighbors (kNN), Hoeffding Tree [18], and Hoeffd-
ing Adaptive Tree [19] classifiers. All of the classifiers parameters’ were set
following the default values used in the Massive Online Analysis framework,
except for the window size in kNN, which was set to 500 to make it viable as
larger window sizes impact on larger processing times as the number of dis-
tance computations per instance grows according to the number of instances
buffered. The parameters for ABFS will be discussed in Sections 6.2 and
6.3 as multiple combinations have been empirically tested, and as the char-
acteristics of synthetic and real-world experiments strongly vary, different
sets of parameters have been adopted. Also, due to the lack of techniques
that dynamically select features during the processing of data streams, we
compare our method against a theoretical upper bound hereafter referred to
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as the “oracle”4, which always selects the relevant features and ignores the
irrelevant ones resulting in SA = 1. Also, every time a change in the relevant
subset of features is detected, the classifier is reset. We refer to this selector
as ORACLE in the following experiments.

Evaluation of the classifiers with and without the proposed method has
been conducted regarding accuracy, processing time, and memory consump-
tion. Accuracy is measured following the Prequential test-then-train [38]
procedure, processing time is the time that the methods spend in the CPU
(in seconds), and memory consumption is given in RAM-Hours, where 1
RAM-Hour corresponds to 1 GB of memory spent in 1 hour of processing.
We also use Selection Accuracy and Stability metrics to evaluate ABFS and
show how accurate it is during the feature selection process and how stable
this method is given perturbations in the input data. All of the above-cited
metrics are computed every 5% of the experiment.

All experiments reported in this paper have been coded and conducted
on the Massive Online Analysis (MOA) software. The results were obtained
in a computer with 40 Intel(R) Xeon(R) CPU E5-2660 v3 2.60GHz cores and
with 64 GB of RAM devoted to the experiments. Statistical tests have been
conducted with Wilcoxon’s test [52], or a combination of Friedman [53] and
Nemenyi’s [54] hypothesis tests following the protocol of [55], according to
the number of hypotheses being tested. In the sections below, the synthetic
experiments have been performed 30 times by changing the random seed in
the data generation process and by randomly shuffling real-world datasets.
The results of the statistical reports are then performed with the average
results obtained from these executions and under a 95% confidence level.

6.2. Synthetic experiments

In this section, we show how different classifiers behave with and without
ABFS in synthetic experiments. In contrast to real-world datasets, synthetic
experiments allow greater flexibility. As depicted in the previous section, we
target the dimensionality aspect of data streams, where 100, 200, and 500
features are appended to each of the experiments. The rationale behind this
process is to verify how each learner and ABFS behave when noisy features
are added to a data stream regarding accuracy, processing time, and memory
consumption.

4The term oracle is borrowed from dynamic selection methods in ensemble learning.
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We start this section by investigating how different values for each of the
main parameters of ABFS impact final classification accuracy and selection
accuracy rates. Our investigation targets the parameters and values detailed
below, whereas each one will be analyzed individually w.r.t. classification
accuracy and selection accuracy metrics, and finally, the best parametriza-
tion will be chosen as the default one. In practice, this analysis will be
conducted across all experiments, meaning that we are trying to find a good
parametrization that works reasonably well across different datasets, which
is different from tuning our method to each experiment individually. The
parameters analyzed are as follows:

• Grace period (gp): This parameter controls how “fast” the candidate
decision stump will attempt to select a feature. Smaller values of gp al-
low the decision stump to branch quicker, yet, the sample distribution
obtained during this grace period is expected to be less precise com-
pared to the samples obtained with greater grace periods. The values
of 100, 200, 500 and 1,000 were tested for this parameter.

• Selection threshold (θ): This parameter determines the minimum
value of Ω so that a feature is selected. In practice, if the candidate
decision stump determines that fα is the most appropriate feature to
be selected, it will only select it if Ω(fα) ≥ θ. Three different values
were tested for this parameter: 0.01, 0.05 and 0.1.

• Drift detector (ψ): this parameter determines which type of drift
detector is used in each boosting unit. Three different competitive
methods have been tested here, namely ADWIN [19], HDDM-A and
HDDM-W [36].

As a result, 36 different configurations for ABFS were tested in associa-
tion with Naive Bayes, KNN, Hoeffding Tree and Hoeffding Adaptive Tree
classifiers, culminating in a total of 144 configurations per stream, which were
then repeated 30 times by changing the random seed of the experiments. Be-
low, we use box-plots to report the results obtained across different classifiers,
streams, and parameter values.

In Figure 1 we see the results obtained by different grace period values
across experiments grouped by the number of irrelevant features appended.
Even though no clear difference is observable across different grace period
concerning accuracy (Figure 1a), the highest results are obtained when the
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(a) Accuracy (%) (b) Selection Accuracy

(c) Recall of Relevant Features (d) Complement of Complexity Penalty

Figure 1: Results obtained across different grace period values.

grace period is set to either 500 or 1000, showing that higher grace periods are
preferable. Nevertheless, the results observed in Figures 1b, 1c and 1d show
the results for Selection Accuracy and its components, where gp = 500 is the
most stable and preferred value regardless of the experiment dimensionality
in terms of Selection Accuracy and Recall of Relevant Features.

Naturally, an important aspect here is the high variance observed in the
results, as the rates go from 50% up to 90% or more. This high variance
occurs mainly because of the BG3 and RTG experiments. If we analyze the
classification and selection accuracy rates, depicted in Figures 5a and 5b,
respectively; we observe that these experiments result in rates that are much
lower than the rest. The explanation is that these concepts are much more
complex than the others, as BG3 is a XOR-like classification problem [45],
and RTG has complex interactions between the features [17]. In practice,
the Selection Accuracy rates obtained in the BG3 and RTG experiments are
below the expected baseline of 0.7. This is relevant since if one selects all
features, it would incur in a SA baseline of 0.7, regardless of the selection of
the extraneous features since γ = 0.7.
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(a) Accuracy (%) (b) Selection Accuracy

(c) Recall of Relevant Features (d) Complement of Complexity Penalty

Figure 2: Results obtained across different selection threshold (θ) values.

In Figure 2 we conduct a similar analysis for the selection threshold (θ)
parameter. From the accuracy results shown in Figure 2a, the three thresh-
old values behave similarly in terms of variance, yet smaller values, i.e., 0.01
and 0.05, show higher accuracy rates. When analyzing Selection Accuracy
rates (Figure 2b) and its components (Figures 2c and 2d), we observe a trade-
off between θ and the accuracy of the selection process. In practice, higher
threshold values are more ‘selective’ as less irrelevant features are selected
(higher Complement of Complexity Penalty rates), while it misses the rele-
vant ones (lower Recall of Relevant Features values). Overall, both θ = 0.01
and θ = 0.05 seem reasonable as they are able to correctly identify rele-
vant features in all the tested dimensionalities (Figure 2c), while reasonably
ignoring the irrelevant ones (Figure 2d).

Finally, the results for different drift detectors are reported in Figure 3.
Regarding classification accuracy, depicted in Figure 3a, the use of different
drift detectors barely impact the overall results regardless of the dimensional-
ity of the experiments. Yet, when analyzing the results for Selection Accuracy
and its components (Figures 3b through 3d), we observe that HDDM-A is
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(a) Accuracy (%) (b) Selection Accuracy

(c) Recall of Relevant Features (d) Complement of Complexity Penalty

Figure 3: Results obtained across different drift detectors.

slightly better in overall Selection Accuracy rates, while experiments with
ADWIN are better at retaining the relevant features, and HDDM-W is the
best performing in terms of ignoring the irrelevant features. It is important
to note that even though these drift detectors are not part of the feature
selection process, they indirectly impact the entire process, as they may flag
drifts at different moments, which cause the feature selection process adapt
itself at different regions of the stream. As a result, ABFS becomes more or
less precise according to each of the metrics mentioned above depending on
the drift detector being used.

To determine whether these results are reasonable, we also report in Fig-
ure 4 the results obtained by a random feature selection process. These
results were obtained across different 30 executions, such as the remainder
of the experiments. In this figure, we report the selection accuracy rates and
its components across different proportions where different proportions of the
features available in the dataset are randomly selected. From these results,
we observe that the Selection Accuracy rates obtained are quite volatile,
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(a) Selection Accuracy (b) Recall of Relevant Fea-
tures

(c) Complement of Complex-
ity Penalty

Figure 4: Results obtained by ABFS and a random feature selection algorithm.

mostly since the recall of relevant features highly varies, whereas the rates
for the complement of complexity penalty are stable since the number of irrel-
evant features is much higher than the relevant ones. When these results are
compared to the results given in Figures 1, 2, and 3, it becomes evident that
the results are significantly better than random guessing for feature selection
on all of the components of Selection Accuracy computation.

(a) Accuracy (%) (b) Selection Accuracy (%)

Figure 5: Classification and selection accuracy rates obtained per experiment.

Naturally, since the goal of classification is to achieve the highest classifi-
cation rates possible, we show in Figure 6 the 10 best-ranked configurations
of ABFS. In this figure, we corroborate the values identified in the previ-
ous analyses, as the best performing parametrization, in average, for ABFS
in synthetic experiments was (gp = 500, θ = 0.01, ψ = ADWIN), and this
configuration is assumed for comparisons against the base learners and the
ORACLE feature selector. We highlight, however, that this configuration is
not the optimal one for each of the experiments conducted, and thus, these
parameters’ values must not be assumed to be the result of a tuning process.
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Figure 6: Accuracy rates (%) obtained across the 10-best ranked ABFS configurations in
synthetic experiments.
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Accuracy rates. The accuracy rates obtained by the classifiers without
feature selection, with the ORACLE selector and ABFS are reported in Ta-
bles 3, 4 and 5. Focusing on the accuracy rates obtained in experiments with
100 irrelevant features, we observe that ABFS can improve the classification
rates of the NB, KNN and HT classifiers in all scenarios. In average, the
improvements for NB, KNN and HT classifiers are of 7.67%, 11.95%, and
4.64%, respectively. On the other hand, the combination of ABFS with the
HAT classifier results in accuracy decreases in most scenarios with an average
of -5.76%, which shows that combining two adaptive approaches that con-
comitantly select features jeopardizes the learning process. The comparison
of the ABFS results against the ORACLE show that there is still room for
improvements and other feature selection methods for data streams since the
ORACLE feature selector overcomes ABFS in 1.46% for the NB classifier,
8.18% for KNN, 0.03% for HT, and 5.83% for HAT.

In Figure 7 we report the relationship between Selection Accuracy and
classification accuracy rates obtained by different learners in the different ex-
periments. From this visualization, we see that: (i) different learners benefit
differently when fed with the same subset of features, (ii) there is an in-
teresting relationship between achieving higher selection accuracy rates and
classification accuracy, and finally (iii) that most of the results obtained by
ABFS are located in regions of high Selection Accuracy and classification
accuracy rates, thus showing the efficacy of the proposed method.

The results obtained in experiments with 200 and 500 irrelevant features,

(a) Naive Bayes (b) K-Nearest Neigh-
bors

(c) Hoeffding Tree (d) Hoeffding Adap-
tive Tree

Figure 7: Relationship between Selection Accuracy and classification accuracy rates across
different classifiers with ABFS. The results plotted in this figure report the rates obtained
with different ABFS configurations and stream dimensionalities (100, 200, and 500).
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reported in Tables 3 and 4, follow the same behavior as noticed in Table 3,
where NB, KNN, and HT classifiers benefit from ABFS, while HAT has its
accuracy rates decreased. As an important disclaimer, we highlight that the
experiments using 100, 200, and 500 features are not the same, as each one is
created with a different concept generator scheme, and thus, the ORACLE
results differ. Analyzing the results in quantitative terms, accuracy changes
of 8.25% and 7.99% for NB, 11.11% and 9.24% for KNN, 5.11% and 5.21%
for HT, -3.19% and -2.35% for HAT, are observed in experiments with 200
and 500 irrelevant features, respectively. Similarly as before, the ORACLE
method overcomes ABFS in 1.15% for the NB classifier, 10.68% for KNN,
0.03% for HT, and 3.66% for HAT, when focusing on the experiments with
200 irrelevant features. The rates obtained with 500 irrelevant features are
also similar, with 1.18% for NB, 15.60% for KNN, 0.03% for HT, and 3.00%
for HAT.
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Table 3: Average accuracy (%) obtained by different classifiers and feature selection methods in experiments with 100 irrelevant
features. Results in bold highlight the best accuracy rates per classifier and underlined results are the best across learners and
selectors.

Experiment NB NB-ORACLE NB-ABFS KNN KNN-ORACLE KNN-ABFS HT HT-ORACLE HT-ABFS HAT HAT-ORACLE HAT-ABFS
AGR 67.27 77.13 76.10 50.62 85.38 73.30 77.38 85.95 85.90 91.15 91.19 81.38

AN 81.52 92.71 91.20 64.57 75.59 70.05 92.92 93.66 93.63 94.33 94.36 93.61
BG1 80.17 88.78 86.96 70.94 81.48 76.92 86.41 88.82 88.79 89.09 89.17 89.13
BG2 74.11 89.51 88.56 57.63 83.18 75.98 79.91 88.58 88.55 88.06 88.08 84.76
BG3 55.84 61.91 60.94 53.11 75.26 65.46 70.46 72.18 72.17 85.61 85.63 67.31
RTG 59.22 66.83 65.93 54.57 68.07 55.64 66.09 74.53 74.48 88.56 88.59 80.01
SEA 79.15 84.35 81.33 59.14 82.52 76.90 84.05 86.25 86.22 86.41 86.68 86.66

Table 4: Average accuracy (%) obtained by different classifiers and feature selection methods in experiments with 200 irrelevant
features. Results in bold highlight the best accuracy rates per classifier and underlined results are the best across learners and
selectors.

Experiment NB NB-ORACLE NB-ABFS KNN KNN-ORACLE KNN-ABFS HT HT-ORACLE HT-ABFS HAT HAT-ORACLE HAT-ABFS
AGR 67.19 76.82 75.67 50.55 85.38 61.62 77.53 86.10 86.06 91.07 91.12 81.39

AN 81.58 92.22 91.21 61.15 75.75 69.67 92.53 93.88 93.85 94.36 94.41 93.12
BG1 79.72 87.89 86.81 65.87 81.56 75.38 85.87 88.81 88.76 89.11 89.23 89.22
BG2 74.11 90.09 89.09 55.41 83.00 69.01 79.01 89.13 89.11 88.02 89.17 89.12
BG3 55.47 61.52 60.52 51.90 75.32 65.29 68.56 71.12 71.11 86.22 86.24 78.70
RTG 59.22 68.02 66.18 55.78 66.47 57.66 63.25 70.00 69.98 91.01 91.04 84.07
SEA 79.04 85.63 84.63 56.79 82.51 76.58 82.52 86.23 86.18 84.69 86.60 86.56

Table 5: Average accuracy (%) obtained by different classifiers and feature selection methods in experiments with 500 irrelevant
features. Results in bold highlight the best accuracy rates per classifier and underlined results are the best across learners and
selectors.

Experiment NB NB-ORACLE NB-ABFS KNN KNN-ORACLE KNN-ABFS HT HT-ORACLE HT-ABFS HAT HAT-ORACLE HAT-ABFS
AGR 66.97 76.12 75.78 50.41 85.38 52.49 75.60 85.07 85.02 90.80 90.85 81.44

AN 81.56 92.33 91.31 56.99 75.75 70.12 92.74 93.61 93.58 94.39 94.40 93.00
BG1 79.49 87.98 86.81 60.18 81.43 73.53 85.84 88.74 88.71 89.04 89.29 89.25
BG2 73.84 89.89 88.19 53.28 83.18 63.93 77.57 85.84 85.79 87.50 88.50 88.48
BG3 55.85 60.12 59.72 50.85 75.20 54.61 67.51 71.94 71.91 85.46 85.48 83.22
RTG 68.08 77.67 76.59 58.84 74.99 62.50 70.17 77.83 77.81 89.93 89.96 82.14
SEA 79.05 84.95 82.39 53.90 82.43 71.99 82.28 85.36 85.34 81.81 85.02 84.98
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Computational resources. In addition to the comparisons conducted
in terms of classification accuracy and selection accuracy, it is also impor-
tant to verify if the introduction of ABFS in the data stream classification
process is not computationally prohibitive, or in the best case scenario, im-
proves the processing time and memory consumption rates of learners. For
the sake of brevity, we only compare the computational resources required
for the biggest experiments, i.e., those with 500 irrelevant features, as they
are the most computationally intensive. In Table 6, we report the process-
ing times obtained by classifiers both with and without ABFS. From these
results, we observe that the introduction of ABFS impacts different learners
differently. For instance, NB has its processing times significantly improved
in all scenarios, while KNN has the opposite behavior. Regarding KNN,
such processing time decreases are expected as the complexity of computing
distances between instances with reduced dimensionality are faster than com-
puting distances with the entire set of features. It is also worthy to highlight
that even decision trees have their processing times decreased in a handful
of scenarios.

Similarly, the results obtained for memory consumption are reported in
Table 7. Regarding the NB and HAT classifiers, the introduction of ABFS
introduces significant overheads in memory consumption rates, while KNN
highly benefits from it, as the buffered instances are stored in reduced di-
mensionality. Next, the results for the HT classifier show that in most cases
ABFS does introduce a relatively small overhead, yet, some improvements
are also observed. The overheads observed for memory consumption are ex-
pected since all learners (with the exception of KNN) still allocate memory
assuming the existence and availability of the original feature set, but is
trained only on the selected ones. This is an implementation gap that should
be further examined in future implementations.

Finally, it is important to highlight that when analyzing the computa-
tional resource metrics mentioned above, the technology in which the method
is implemented on is important. As the implementation of ABFS evaluated
here has been performed on the Massive Online Analysis framework, it is im-
portant to highlight that when a classifier is fed with an instance for training,
it still loops over all the original feature set F and not only over the selected
subset F ′. As a result, the overall processing times are expected to be incre-
mented, but this behavior may change if the base learners allow sparse data
representations. Similarly, the NB, HT and HAT classifiers still instantiate
data structures for each of the original features in F and not only for F ′,
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Table 6: Average processing time (s) obtained by different classifiers and feature selection
methods in experiments with 500 irrelevant features. Results in bold highlight the smallest
times per classifier and underlined results are the best across learners and selectors.

Experiment NB NB-ABFS KNN KNN-ABFS HT HT-ABFS HAT HAT-ABFS
AGR 32.03 58.81 818.80 525.66 178.27 98.85 165.19 215.49

AN 69.53 117.76 1827.45 1023.79 392.34 267.95 395.43 367.15
BG1 13.08 51.10 612.49 570.14 44.27 75.90 45.93 80.55
BG2 11.55 30.86 606.38 387.84 45.24 52.23 51.92 59.97
BG3 12.78 38.11 596.88 437.59 43.52 45.00 50.33 70.55
RTG 52.23 71.95 698.87 422.32 187.92 148.03 145.52 117.78
SEA 27.01 28.86 656.02 259.64 85.78 53.86 195.08 79.92

Table 7: Average RAM-Hours (GB-Hour) obtained by different classifiers and feature
selection methods in experiments with 500 irrelevant features. Results in bold highlight
the smallest memory consumption rates per classifier and underlined results are the best
across learners and selectors.

Experiment NB NB-ABFS KNN KNN-ABFS HT HT-ABFS HAT HAT-ABFS
AGR 1.76 × 10−6 7.82× 10−4 6.63× 10−3 1.23 × 10−4 1.21 × 10−3 1.45× 10−3 4.05 × 10−4 3.68× 10−3

AN 7.87 × 10−6 8.33× 10−4 7.04× 10−3 5.32 × 10−4 4.73× 10−3 2.60 × 10−3 2.65 × 10−3 4.53× 10−3

BG1 6.03 × 10−7 2.40× 10−4 2.65× 10−3 9.01 × 10−5 7.84 × 10−5 4.21× 10−4 3.69 × 10−5 4.04× 10−4

BG2 5.32 × 10−7 8.40× 10−5 1.04× 10−3 8.92 × 10−5 8.53 × 10−5 1.71× 10−4 5.14 × 10−5 1.81× 10−4

BG3 5.90 × 10−7 3.36× 10−4 3.77× 10−3 8.80 × 10−5 7.46 × 10−5 4.21× 10−4 4.47 × 10−5 6.88× 10−4

RTG 2.97 × 10−6 2.69× 10−4 1.62× 10−3 1.03 × 10−4 2.24× 10−3 1.32 × 10−3 4.15 × 10−4 6.58× 10−4

SEA 1.61 × 10−6 5.89× 10−4 5.16× 10−3 9.53 × 10−5 3.13 × 10−4 1.18× 10−3 1.03 × 10−3 1.95× 10−3

and as a result, the introduction of ABFS negatively impacts the memory
consumption rates of these learners.

Stability. Determining how ABFS behaves when fed with different in-
puts of data is another important trait that must be analyzed. In Figure 8
we report the stability rates obtained by ABFS across synthetic experiments,
following bootstrap-, split- and cross-validation schemes in a 10-fold valida-
tion environment. At first, it is important to highlight that the stability
rates achieved by ABFS vary according to the experiment conducted, but
more importantly, according to the validation process adopted. Naturally,
the highest stability rates are achieved using the cross-validation scheme, as 9
out of the 10 folds are updated with the arrival of each instance, thus making
the selection process much more uniform across the folds. The same ratio-
nale can be applied to explain the rates obtained by the boostrap-validation
experiments, as each instance is used to update the feature selection process
allocated in each fold approximately 66% of the times. Finally, the results
obtained with the split-validation process are the lowest, as only 1 out of
the 10 folds are updated with the arrival of each instance. We also highlight
at this point that it is hard to tell how ‘stable’ ABFS is due to the lack of
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Figure 8: Stability results obtained for synthetic data streams.

competing techniques, and as a result, the results reported here may serve
as baselines for future works on the area.

Number of selected features. To finalize the discussion on synthetic
experiments, we highlight two examples on the number of selected features
over the processing of streams. In Figure 9 we show the number of features
that were selected by HT and HAT classifiers with and without ABFS in
BG1 and SEA experiments. We target these experiments as these are cases
where the overall accuracy of tree-based learners has improved with ABFS. In
Figure 9a we observe that the number of features used by the Hoeffding Tree
(HT) classifier continuously increases, while the Hoeffding Adaptive Tree
(HAT) can discard features when drifts occur, which are the areas highlighted
in the plot. It is important to remember that in this experiment, only 3
features are relevant, and thus, both HT and HAT are rapidly growing and
selecting features as new instances become available. In contrast to this
behavior, we observe that the same classifiers with ABFS selects up to 4
features and quickly flags and adapts to drifts, which are marked as a vertical
line in the plot. A different behavior is observed in Figure 9b, where HAT
has the same behavior of a conventional incremental HT, as the number
of selected features continuously increases, showing the HAT is unable to
discard features that become irrelevant after drifts. Again, ABFS shows a
limited number of selected features, which result in much smaller decision
trees, thus improving their readability and understandability.

ABFS on scenarios with a high number of relevant features.
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(a) BG1 (b) SEA

Figure 9: Number of features selected and used by decision tree models with and without
ABFS in experiments with 500 irrelevant features. Grayed areas are drifting regions and
vertical black lines depict the moments where drifts have been flagged by ABFS. The drift
moments for HT-ABFS and HAT-ABFS match as ABFS is classifier independent.

The experiments conducted and discussed during this section show a small
number of relevant features. Therefore, it becomes of interest to determine
how ABFS behaves when confronted with data stream scenarios where a
relatively high number of features is required for classification. To achieve
this, we conducted a variation of the RTG experiment, where 100 relevant
features out of the 500 available are relevant. The results obtained by the 3
best-ranked ABFS configurations presented in Figure 6 are reported in Table
8, whereas the accuracy rates obtained by classifiers using all the 500 features
available are given in Table 9.

First, it is important to note the selection accuracy rates obtained by
ABFS, which are competitive with the results obtained in the previous ex-
periments, only a smaller number of features was relevant. This, accompanied
by the number of features selected, shows that ABFS is able to scale to sce-
narios where more features are required for the classification task. In terms
of classification accuracy rates, and comparing the rates shown in Tables 8
and 9, we are able to see that ABFS continues to improve NB and KNN
learning schemes, whereas decision trees marginally benefit from the features
selected by ABFS or even have their accuracy rates prejudiced.

6.3. Real-world datasets

As conducted in the synthetic experiments, the different configurations
of ABFS were ranked across all the real-world experiments according to the
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Table 8: Results obtained by different configurations of ABFS and base learners in the RTG
experiment with 100 relevant features. Classification accuracy improvements compared to
the results obtained by the same classifier when using all features are reported in bold.

ABFS Configuration
Classifier Avg. Accuracy (%) Avg. SA Avg. RRF Avg. CUCP Avg. # of features selected

ψ gp θ
ADWIN 500 0.01 NB 64.13%

0.735 0.66 0.91 102
ADWIN 500 0.01 KNN 58.58%
ADWIN 500 0.01 HT 66.89%
ADWIN 500 0.01 HAT 68.11%
ADWIN 1000 0.01 NB 62.93%

0.516 0.36 0.88 84
ADWIN 1000 0.01 KNN 58.52%
ADWIN 1000 0.01 HT 65.49%
ADWIN 1000 0.01 HAT 66.61%

HDDM-A 1000 0.01 NB 60.54%

0.569 0.41 0.94 65
HDDM-A 1000 0.01 KNN 58.48%
HDDM-A 1000 0.01 HT 60.97%
HDDM-A 1000 0.01 HAT 62.17%

Table 9: Results obtained by different classifiers in the RTG experiment with 100 relevant
features.

Classifier Avg. Accuracy (%)
NB 58.46%

KNN 51.83%
HT 61.22%

HAT 73.53%

accuracy rates obtained. The 10 best configurations among the 36 tested are
reported in Figure 10 with the accuracy results. In contrast to what was
observed for synthetic experiments, smaller grace periods combined with the
ADWIN drift detector dominate the top positions, and as a result, we select
gp = 100, θ = 0.05 and ADWIN as the default configuration for real-world
experiments.

In Table 10 we compare the average accuracy rates obtained by different
classifiers with and without ABFS across the 30 executions performed. Here,
we note that the NB and HT classifiers benefit from ABFS in all experi-
ments (at least marginally, as we note in COVTYPE), whereas they match
or improve for KNN. The observed increases are relevant as they broaden
1.61% to 19.45% for NB and up to 7.10% for HT. Similarly, the results for
HAT show no difference for IADS, while a significant decrease of 4.66% is
observed in NOMAO, another decrease for COVTYPE of 1.86%, and an in-
crease of 1.47% for SPAM. Following the outcome of the Wilcoxon test, both
NB and HT classifiers are significantly improved regarding accuracy in these
scenarios, whereas the remainder are not significantly affected.

In Table 11 we compare the processing times of the classifiers with and
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Table 10: Average accuracy rates (%) obtained by different classifiers and ABFS in real-
world experiments. Results in bold are the highest accuracy rates obtained per classifier
type.

Experiment NB ABFS-NB KNN ABFS-KNN HT ABFS-HT HAT ABFS-HAT
COVTYPE 70.41 83.20 81.23 84.64 83.77 84.31 82.75 80.89

IADS 80.55 100.00 100.00 100.00 92.90 100.00 82.80 84.00
NOMAO 83.36 93.52 94.10 94.43 91.43 94.55 93.67 89.01
PAMAP2 97.11 98.72 99.91 99.91 97.66 98.85 86.72 87.91

SPAM 75.78 87.76 86.15 94.14 83.49 88.81 83.45 84.92

without ABFS. Here, we observe similar behavior to what has been observed
for synthetic data, where the processing time rates of all classifiers have
increased, except for KNN. Here, the Wilcoxon test showed that ABFS sig-
nificantly improves the KNN running times, while NB is worsened, and the
results obtained for the remainder of the classifiers are rendered inconclusive.
The memory consumption results, depicted in Table 12, show that ABFS also
introduces overheads to all classifiers. This is a similar behavior to the one
observed in the previous section, as the actual classification models still allo-
cates memory to keep track of statistics about all the original features, even
though they only update those for the selected ones. One exception worthy

Figure 10: Accuracy rates (%) obtained across the 10-best ranked ABFS configurations
in real-world experiments.
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Table 11: Average processing time (s) rates obtained by different classifiers and ABFS in
real-world experiments. Results in bold are the smaller rates obtained per classifier type.

Experiment NB ABFS-NB KNN ABFS-KNN HT ABFS-HT HAT ABFS-HAT
COVTYPE 8.71 10.45 82.16 52.96 11.02 15.62 15.42 20.91

IADS 4.06 9.74 48.82 28.11 5.89 10.91 6.78 12.52
NOMAO 3.42 7.81 33.50 22.96 4.95 10.01 7.14 11.19
PAMAP2 13.32 82.37 114.42 81.46 14.97 89.71 13.15 89.74

SPAM 563.71 586.39 8074.61 3062.64 686.41 716.89 739.11 1277.18

Table 12: Average RAM-Hours (GB-Hour) rates obtained by different classifiers and ABFS
in real-world experiments. Results in bold are the smaller rates obtained per classifier type.

Experiment NB ABFS-NB KNN ABFS-KNN HT ABFS-HT HAT ABFS-HAT
COVTYPE 1.17 × 10−7 4.29× 10−6 7.97 × 10−6 2.01× 10−5 1.06 × 10−6 5.49× 10−6 5.04 × 10−7 6.97× 10−6

IADS 7.78 × 10−7 7.25× 10−4 1.48 × 10−4 1.73× 10−3 1.87 × 10−6 7.95× 10−4 2.62× 10−6 6.16 × 10−9

NOMAO 5.59 × 10−8 2.80× 10−5 6.38 × 10−6 5.64× 10−5 7.32 × 10−7 3.02× 10−5 5.70 × 10−7 3.43× 10−5

PAMAP2 1.71 × 10−7 9.11× 10−6 7.34× 10−6 1.20 × 10−6 9.54× 10−7 2.90 × 10−7 2.90× 10−7 2.88 × 10−7

SPAM 4.09 × 10−3 9.15× 10−2 6.32× 10−1 4.82 × 10−1 8.51 × 10−3 1.26× 10−1 1.28 × 10−2 2.22× 10−1

to mention is that memory consumption of HAT in the IADS experiment,
which has significantly decreased, while the accuracy rate was maintained.
Again, the Wilcoxon test was used, and its outcomes show that both NB
and HT are significantly penalized when combined with ABFS, while the
remainder of the classifiers is not.

Finally, we highlight the improvements observed in the SPAM experi-
ment, which are important as it is the experiment with the highest dimension-
ality. In this experiment, all classifiers have their accuracy rates significantly
improved (Table 10), while their processing time and memory consumption
rates decreased (Tables 11 and 12). To understand the impact of ABFS in
the SPAM experiment, we show in Figure 11 the average number of features
selected by ABFS and used by decision tree-based classifiers. Here, we ob-
serve that out of the nearly 40 thousand features, and only 16 were used by
the HAT alone, while the maximum number of features used by the same
classifier with ABFS was 5. A similar behavior can be observed for the HT
classifier, which used 10 features, while its version with ABFS used only 5.
These results are particularly interesting as it shows that despite the fact
that decision trees select a small subset of features to build its predictive
model, they can still be further simplified so that their models are smaller
and achieve higher generalization rates.
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Figure 11: Number of features selected and used during the SPAM experiment.

7. Conclusion

In this paper, we introduced ABFS, an adaptive boosting-based feature
selection algorithm for data streams. ABFS includes strategies to select
features over data streams and to detect and adapt to concept drifts. The
proposed method is classifier-independent, and results show that ABFS can
improve all types of classifiers in different scenarios. Despite performing
interesting cuts to the dimensionality of data streams, ABFS still increases
the processing time and memory consumption of Bayesian and decision tree-
based types of learners. An important exception is the KNN classifier, in
which the results show that both processing times and memory consumption
rates are improved.

In addition to the proposed method, we expect that the contributions on
feature selection evaluation and the framework added to the Massive Online
Analysis software to help in the assessment and comparison of future works
in the area. Feature selection-specific metrics, such as Selection Accuracy
and Stability have been introduced to streaming scenarios, and the results
reported here can be assumed as baselines in future works of the area.

As future works, we highlight the following:

• Feature selection based on decision trees and random forests:
generally speaking, decision trees can be seen as a feature selection
process are they iteratively select features to maximize some ‘purity’
metric. Nevertheless, as observed in some of the experiments conducted
in this paper, original Hoeffding Trees are prone to overfitting, as they
tend to (i) branch over irrelevant features, and (ii) they are unable
to prune poor performing branches (except the Hoeffding Adaptive
Tree). For instance, the works of [56, 57] are two of many studies
where only the k-best features used on the first branches of decision
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trees are used and improve the classification rates of different learners.
Also, if the dimensionality of the stream is too big, another important
investigation would be to perform feature selection based on Adaptive
Random Forests [58], as previously conducted on batch scenarios on
the works of [59, 60].

• Distributed feature selection: feature selection and dimensionality
reduction are of the utmost importance when the number of features in
a data stream grows up to thousands or millions. Therefore, proposing
feature selection techniques that can be paralleled and scaled up to
these extreme scenarios is another important gap to be pursued.

• Feature selection on semi-supervised, unsupervised and de-
layed labelling learning schemes: in real-world scenarios the as-
sumption that all instances are labeled is unlikely to hold. Thus, it
is important to tailor feature selection techniques that can accurately
select features with very few or even no labels at all (for clustering sce-
narios). Closely related to this topic, feature selection methods should
also be able to handle delayed labelling scenarios, where the labels of
instances become available, but after a delay of n instances.
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