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Abstract—The design flaws and attacks on Cyber-Physical
Systems (CPSs) can lead to severe consequences. Thus, security
and safety (S&S) issues should be taken into account with
functional design as early as possible during the developing
process. However, it’s rare to see “one-size-fits-all” modeling
language and/or design tool. One way to solve this issue is to
integrate different nature models into one model system, but
this requires a unified semantic among modeling languages.
We explore a model-based approach for systems engineering
that facilitates the composition of several heterogeneous artifacts
(called views) into a sound and consistent system model. Rather
than trying to extend either SysML or SysML-sec into more
expressive languages to add the missing features, we extract
proper subsets of both languages to build a view adequate for
conducting a security and safety analysis of Capella (SysML-
based) functional models. Our language is generic enough to
extract proper subsets of languages and combine them to build
views for different experts. Moreover, it maintains a global
consistency between the different views.

Index Terms—CPS, MDE, UML-like, SysML, SysML-Sec,
ARCADIA, TTool, Multi-View Design, Security&Safety.

I. INTRODUCTION

The design of Cyber-Physical Systems (CPS) demands to
combine discrete models of pieces of software (cyber) com-
ponents with continuous models of physical components [1].
Thus, the design of a CPS must involve several views of the
system. Each view relies on specific expertise (i.e., mecha-
nisms, aerodynamics, software, security, hardware, power, . . . )
and different Domain-Specific Modeling Languages (DSMLs).
Different views are connected to each other by explicit
associations that maintain global consistency. The diversity
and heterogeneity of CPS make system design increasingly
complex [2]–[4].

Model-Driven Engineering (MDE) is considered as a well-
established software development approach that uses abstrac-
tion to bridge the gap between problem space and software
implementation [5], [6]. MDE relies on models to describe
complex systems at multiple levels of abstraction. In this
paradigm, models are first-class elements that represent ab-
stractions of a real system, capturing some of its essential
properties. Models are instances of modeling languages which
define their abstract syntax (e.g., using a metamodel expressed
in a class diagram), concrete syntax (e.g., graphical or textual),
and semantics (e.g., operational or denotational by means

of a model transformation) [7]. As an essential issue of
MDE, multi-view modeling integrates different models using
various DSMLs (domain-specific modeling languages) and
abstracting various aspects of systems and sub-systems, such
as security&safety, and functionalities. Therefore, it is critical
to understand the relationship between (meta) models.

In this sense, MDE is suitable for CPSs design as it can
reduce the complexity of the systems and facilitate reasoning
about functional and non-functional requirements [8], [9].
Specifically, MDE shortens development time, facilitates au-
tomated updates, mitigates flaws, and makes system models
more natural to understand.

On one hand, The high complexity of systems requires a
large domain of competencies, and experts in various domains
have to work concurrently on different views/aspects of the
same systems [10]. On the other hand, the security and safety
issues take a vital role in the CPS, especially in some industrial
critical system. In the paper, we thus propose a language-
based approach for combining functional views with security
and safety views, while each view remains exactly the same.
New combined outcomes are exported as (meta) models.
Despite different models of CPSs rely on different DSMLs
and have specific natures, the proposed language can be used
to describe the combined relationships among different models
and to guide engineers to combine them. Finally, the combined
models can be enriched by each other. The selected sub-
models can be recognized by one of their support environments
(tools) to perform verifications and/or simulations. In the end
of this paper, a case study demonstrates how to use SysML-
Sec [11] and its support environment TTool [12], [13] by
combining UML-like models and SysML-Sec-based models.
In this way, the security & safety properties are added to
UML-like models. Then, They are able to perform security
verifications and/or simulations.

Inspired by our previous work on combining Capella and
AADL models [14] that effectively enriched Capella with
AADL’s capabilities so as to perform scheduling verification.
This paper presents a safety and security oriented combination
approach. The paper shows that our combination language
can be effectively used to describe the combined relation-
ships among (meta) models and guide engineers on how to
combine functional models with security/safety models. Thus,



the combined models are capable of verifying security/safety
properties.

The contributions of this paper are:
• A security-aware combined modeling approach.
• Propose a language for combining functional and security

views at the metamodel level.
• Well-defined syntax and formal semantics for transforma-

tion rules.
The paper is structured as follows. The next section gives

a brief background of Capella and TTool environments, while
we present our motivations of this work. We introduce the
model combination language in section III, the detailed defi-
nition of syntax and formal semantics are given as well. In
section IV, we analyse the security and safety issues and
related properties. In section V, we illustrate a case study
about ADAS which demonstrates our approach and language
are effective. In the end of this paper, we discuss related work
and conclude this paper in Section VI.

II. BACKGROUND AND MOTIVATION

A. Background

Recent years, the emerging Capella modeling solution [15]
gives a comprehensive open-source framework for systems
engineering design. It can be regarded as a subset of UML
models and diagrams tailored for a given methodology, so-
called ARCADIA (ARChitecture Analysis and Design Inte-
grated Approach). ARCADIA is a model-based engineering
methodology for systems, hardware and software architectural
design. It has been integrated in Capella project and developed
by Thales since 2005 through an iterative process involving
operational architects from all the Thales business domains
(transportation, avionics, space, radar, etc.). It enforces an
approach structured on successive engineering phases which
establishes clear separation between needs (operational need
analysis and system need analysis) and solutions (logical and
physical architectures) [16]) in accordance with the ISO 42001
standard.

TTool is a SysML-Sec support toolkit [11], [13] which can
capture system requirements, model software/hardware parti-
tioning and model embedded software. Models of the different
stages can be formally checked against security and safety
properties. The different stages are linked by retro anotations
that help confirming decisions taken during previous modeling
stages.

TTool offers a press-button approach to verify models and to
automatically retro-annotate models with verification results.

Relying on internal (simulation, model-checkers) and ex-
ternal tools (e.g., ProVerif and UPPAAL), TTool can per-
form simulation and formal verification for safety, security
and performance [12]. Results can help engineer in deciding
whether safety performance and security requirements are
fulfilled [17], [18]. Especially, in TTool, model transformations
translate the SysML models into an intermediate form that
is sent into the underlying simulation and formal verification
utilities. Backtracking to models is then performed to better

inform the users about the verification results. Proofs of safety
involve UPPAAL semantics [19], and security proofs use
ProVerif [20].

B. Motivation

Security and safety issues are significant challenges for CPS
design [21]. The risk of attacks and dangers on CPSs are
growing rapidly, and they can lead to systems and property
damage, even personal injury. Thus, security and safety issues
should be taken into account as early as possible in system de-
velopment processes. Thus, security vulnerabilities and safety
flaws should be detected and mitigated. To this end, people
must identify flaws and vulnerabilities as early as possible
in CPS developement. Despite the large support offered by
Capella, there is no direct native support for dealing with
security and safety issues, while there are now several tools
specifically tailored for security and safety, such as TTool.
Since TTool is based on SysML-Sec, and Capella is also
basically based on a UML profile, they have roughly the same
core content and different specific features (see figure 1). The
similarities between Capella and TTool (SysML-Sec) give us
an intuitive conviction that there is a way to leverage TTool
somehow to enrich Capella’s security and safety analysis ca-
pabilities. The question that we address here is whether we can
benefit from both Capella and security and safety tools without
extending Capella. Extending Capella (integrating security and
safety analysis capabilities into Capella) would make it more
complex to learn and to use, and would raise maintenance
and consistency issues. Rather than trying to extend Capella
to adapt all necessary aspects, we propose to bring together
small subsets of each of langages — Capella and SysML-
Sec — to focus on specific analysis capabilities while keeping
independence and global consistency of all these small pieces.
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Fig. 1. Excerpt of relationships between SysML and SysML-Sec

In this sense, the proposed language is well suitable for
building a set of relationships between Capella and other
security/safety oriented tools at (meta) model level.

In this paper, we choose Capella as engineering modeling
platform and TTool as security and safety analysis tool. Our



approach consists in extracting security and safety features
by using metamodels at a high level and a set of operational
methods. The former is an abstract representation of security
that allows us to identify and verify security and safety
properties formally, and the latter defines the operational pro-
cess that is used to conducting transformation. A high-speed
train controlling system serves as a use case which is used
to demonstrate how engineering modeling design combines
security and safety analysis with our proposed approach.

III. MODEL COMBINATION LANGUAGE

The proposed language is a dedicated (meta) language to
extend and enrich one the capability of a DSML with the
capability of another DSML. With our combination language,
an integration engineer can explicitly capture combination
scenarios at language level. Combination pattern can be used
to specify different combination relationships. Specific op-
erators are provided to build up Transformation Rule Ex-
pressions (TRE). A set of TRE defines a Transformation
Rule Library (TRL) which specifies how to combine different
(meta) models’ elements. Once a TRL has been completed,
it can be parsed by an automatic tool. Then, the tool can
perform model transformation automatically. The concept of
combination language is illustrated in figure 2.
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Fig. 2. Concept of Combination Language

A. Specification

A specification consists of combination patterns and cor-
responding TRL. It defines what and how elements from
different models are combined. Once it is specified, integration
experts can share this specification thus allowing the reuse
and tuning of TRLs. As a specification can explicitly describe
combination relationship, it can be also used to decompose
models by bi-directional techniques for some decomposition
needs.

B. Combination patterns

We have predefined several essential combination patterns,
which provide all the declarations used in all the following
examples. However, thanks to our language, designers can
build other combination patterns depending on their problems
and requirements. Of course, it is very likely that essential
combination patterns must be extended for a given problem..

1) Association: The association pattern is the most common
and easy tool to understand since it is used to indicate
that one element is associated to another element and their
related sub-elements (for example, its embedded element
or associated attributes).

2) Removal: The removal pattern specifies situations where
some elements are not considered for new models accord-
ing to requirements.

3) Correspondence The Correspondence pattern captures an
equivalence relationship among a set of elements.

4) Notation: The notation pattern aims to hint people to
add some extra information missing in the model. For
example, the dependency relationship among the model’s
elements, and the nature of the elements.

C. Abstract syntax of Combination Language

The abstract syntax of our Combination Language is de-
scribed with a metamodel expressed in a class diagram (shown
in figure 3). The major element of Combination Language is
a specification that contains Patterns, Operators and TRL. The
specification requires importing at least two (meta) models.
The imported (meta) models serve as a source of a set
of candidate elements for following operations. An operator
selects the elements and their attributes from imported (meta)
models, and it also specifies how to combine selected elements
with a clear relationship.

Each operator contains a Transformation Rule Expression
which relies on a strict definition by EBNF (Extended Backus-
Naur Form). Symbols are used to construct the TRE. For
instance, for adding security properties to a logical component
of Capella, the rule shall specify the corresponding element
and their related attributes in SysML-Sec.
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Fig. 3. A simplified view of abstract syntax of combination language

D. Meta symbol and notations rule expression

In this subsection, we firstly introduce some notations and
meta symbols which are fundamental elements for construct-
ing the well-defined Transformation Rule Expressions (see
table I). In order to have non-ambiguous Transformation Rule



Expression patterns, we use EBNF to define TRE. EBNF is
a notation technique for context-free grammars which often
used to describe the syntax of languages [22].

TABLE I
SYMBOLS OF TRANSFORMATION RULE EXPRESSION

Symbol Meaning
Γ Beginning of transformation Rule
; End of transformation rule
: Separate elements
=> Transforming
<> Parent node
{ } Attribute
[ ] Optional value
| Alternative
+ Object to be created
¬ Ignoring
@ Notation

The detail literal meaning of symbols are below:
1) A Transformation Rule Expression begins with “Γ” and

ends with “;”. The symbol “Γ” also can be considered
as a boolean function, if Γ(source, target) is true, means
there are interrelationships between source and target.

2) The symbol “=>” indicates a transforming action.
3) A transforming action contains the source elements

which in the left side of “=>” and the target elements
in the right side. A simple example is as bellow:

Γ < parent > source => target;

4) Symbol “:” separates each part of TRE. e.g,
Port{Direction} : {Type} : {Secure}

5) An angle brackets “<>” encloses the parent node if the
element has one or more parent nodes.

6) A parentheses “{ }” enclose attributes
7) A square braces “[ ]” delimit optional elements.
8) The alternative value is separated by a pipe “|”. For exam-

ple, The port has a directional attribute called Direction
which could be in or out shown as:

Port{Direction[in|out]}

9) Symbol “@” indicates the notations which are used to
add some extra informations such as dependency and
nature. The extra informations are handled as the same
as operational value: enclosed in [ ]; separated by “,”. For
example, Port@[ModelA,Security] means element Port
belongs to ModelA and is used for Security purpose
(view). In such situation, it makes tools automatically
display or hide the element Port which is in modelA and
for security view in the following process.

A fewdetailed examples of Transformation Rule Expressions
are shown in the listing 1.

Remarks:
• The symbol Γ in function expression does not have

the same meaning as the meaning it has when put is

at the beginning of transformation rules. To distinguish
the function and the transformation rules, the formula is
underlined in the following text.

• Relationships are defined in subsection III-F1

E. Abstract syntax of rule expression in EBNF

As we mentioned in the previous subsection, the TRE
consists of one or more sequences of symbols. We list here
the context-free syntax in EBNF in this subsection.
〈expression〉 ::= Γ 〈term〉 => 〈term〉;|
〈expression〉:〈term〉;|
〈operator〉 〈term〉;

〈term〉 ::= 〈element〉|
〈operator〉〈element〉|
〈element〉〈operator〉〈element〉

〈operator〉 ::= ’@’ | ’+’ | ’¬’ |’=>’

〈element〉 ::= 〈element〉|〈attribute〉 |〈optional value〉

F. Operators and semantics

The context-sensitive syntax and the operational rules could
also be considered as semantics instead of syntax. For ex-
ample, the context-sensitive syntax is called static semantics
in the UML specification documents from OMG [23]. In
our case, it specifies how an instance of a construct can be
meaningfully connected to other instances.

In order to define TREs is a more precise way, we formally
define a set of relationships. Additionally, we propose a set
of operators to build up TRE, which represents operations
between (meta) models (e.g., transforming, creating, ignoring)
in a systematic way. Both may also help users to understand
the following TRE examples.

1) Definition of relationships: Here we define a set of
essential relationships, which are used to describe the logical
links between two model elements. Let A and B be sets of
elements respectively, with a, b, c and x, y, z: elements of
model, written as A ) a,b,c and B ) x,y,z.
• Relationship: If the ordered pair (a,x) has a relationship,

we written as R (a,x) or aR x for simplicity with R
being a boolean relation function. ”R (a,x) is true” means
existing a relation between a and x, which implies that a
can be transformed into x. It is written as:

R (a,x) =⇒ Γ(a,x)

Obviously, the “Relationship” differs from its literal
meaning. It is a function keyword used to indicate the
existing of transformable relationship between elements.

• Equivalence: E(a,x) is a boolean function that is true if
and only if a is semantically equivalent to x. If function
E(a,x) is thrue, then

R (a,x)∧E(a,x) =⇒ Γ(a,x)

.
• NotIn: ¬a is a boolean function. If it is true, then it means

that there are no corresponding elements in set of x,y,z,



which neither have a relationship with a, nor semantically
equivalent to a. Formally,

¬R (a,{x,y,z})∨¬E(a,{x,y,z})
=⇒ ¬Γ(a,x),¬Γ(a,y),¬Γ(a,z)

2) Definition of Operators:
(a) Transforming operator: =⇒ . For example, a => x

means that a transforms to x, if and only if E(a,x) is true,
in other words, a and x have an Equivalence relationship.

(b) Creating operator: the name of an attribute within paren-
theses with plus “{ }+” indicates the creation of an
element with the creation options following the ”+”. For
example, Γa => x{t}+, means that a transforms to x
wit the addition of attribute t, if and only if x ) t and
E(a,x)∧R (a, t)∧R (x, t) is true.
For instance, in the following rule, the function port
Port f un is transformed to a communicating port Portcomm,
and a new attribute Type is created. The latter associates
to communicating port portcomm three optional values
(data, event, data and event). :

ΓPort f un => Portcomm{Type[data|event|dataevent]}+;

(c) Ignoring operator: used to ignore elements. It is denoted
with symbol “¬” beforean element. For example, ¬a, it
means a is NotIn object for a set B, in other words,
we can neither find out Relationship nor Equivalence
between a and B. Formally,

¬R (a,B)∨¬E(a,B)

(d) Notation Operator: used to tag the nature of an attribute
of an element e.g. to catalog an element fir displaying or
selection.
For instance, Port@[ModelA,Security] states gives two
tags to Port . One tag is ModelA, indicating that the ele-
ment Port belongs to ModelA. In other words, It represents
a dependency relationship between this element Port and
element ModelA or element Security.

G. Operational transformation rules

The following example better explains transformation rules
(Please refer to the TRE table which is in the listing 1).

1 ΓPort{Direction[in|out]} => PrimitivePort{Direction [ in|out]}:
{Type[data|event|data event]}+;

2 Γ Function => <CompositeComponent>PrimitiveComponent{
AccessIdentifier}+:{InitialValue}+:{Type[natrul|boolean]}+;

3 Γ¬Port{ordering};
4 ΓEx f un{Source} => <connections>:connection:{source};
5 ΓEx f un:{Target} => <connections>:connection:{target};

Listing 1. The example of transformation Rule Expressions

In line 1, the rule transforms an element port (it has
direction attribute) of source model to an target object element
port, adding a new attribute Type with three optional value
(date, event or data event). These “type value” qre expected to
be known by target model’s DSML and the their support tool.
The added attribute can be used to continue further design.

In line 2, it is similar to previous one, but the object element
function has a parent node called CompositeCpmponent which
is enclosed in a pair of angle brackets.

Then, in line 3, an element of the source model is ignored
because it has no correspondence in the target model, or the
source element is not needed by the target model.

Finally, in line 4 and 5, a Equivalence relationship between
the source elements and the target elements gives a one by
one transformation e.g. “Source” to “source” and “Target” to
“target”, respectively.

IV. MULTI-VIEW MODELING APPROACH FOR
SECURITY/SAFETY DESIGN

In the industrial field, domain experts usually design several
(meta) models (e.g. functional and architectural) to deal with
the requirements of stakeholders at the design stage. Tradi-
tional functional models describe only two types of functions:
physical and cyber. Functions interact with each other through
flows that may reflect the non-directional exchange of energy,
data or signal flows. These flows carry real physical and
cyber properties such as mechanical, electrical, thermal energy,
and data. Thus, existing functional models naturally leak
information that can be used to attack the system via the
signal flows in the cyber domain or energy/material flows
in the physical domain. We extend the functional modeling
concept and combine different domain (meta) models by using
proposed language which is presented in the above sections.
In this section, we introduce a security/safety-oriented multi-
view modeling approach, with the objective to analyze the
cyber security of Capella artifacts, as well as the possible
countermeasures and their impact on the performance of the
system, with TTool as the underlying proof framework.

A. Security and Safety scopes

Security Requirements describe which system elements
must not be recoverable or modifiable by the attacker. Also,
the system must deny unidentified access or unknown mod-
ified command/data. Typical security requirements refer to
Confidentiality, Authenticity/Integrity, Availability, and Non-
Repudiation.

Safety refers e.g. to the inability for a system to reach dead-
locks/livelocks, error states, and delayed reactions to safety-
critical events. Ensuring the safety of users or bystanders
involves considering multiple factors. Conventional safety sug-
gests that a system should not contain software and hardware
flaws which can prevent it from correct function. “Safety of
the Intended Function” involves avoiding the situations where
the system or its components cannot handle, such as adverse
extreme environmental conditions. Timing can be critical for
certain real-time systems as it will need to respond to certain
events as quickly as possible, such as obstacle avoidance
and reducing speed, within a set period to avoid dangerous
situations. Any extra delay (with regards to deadlines) may
results in a quite severe consequence.



B. Properties to Verify

To ensure that the system works as designed, safety and
security verifications are useful means, and they have to
be performed. There are some safety properties that can
be checked through safety verification, such as reachability,
liveness. These properties can be formalized and checked
by the model-checker such as UPPAAL or with reachability
graphs [24]. TTool is able to transfer those formal properties to
model-checker and get results from model-checker to notify
users [25]. As for security properties, such as authenticity,
confidentiality and Access Control etc. We also can rely on
TTool to verify these security properties. This is also the
reason that we chose TTool to complete Capella’s capability.

We give some definitions of safety and security properties
as below:
• Reachability is a property that can determine if a func-

tion or condition is present in at least one execution path
of the system. It also can indicate if the model is correct
and all the functions and conditions can be executed as
good as designed.

• Liveness is a property that can not be violated in a finite
execution of an embedded system. For example, after one
event occurs, another event will always be trigged. A
good event should only occur at some time after execution
ends.

• Confidentiality is a property that indicates whether an
attacker or unauthorized person can get and read the
communicating data in the system. If the attacker can
only get the data, but can not read it. The communicating
data is proved confidential, and it also proves that the
encryption algorithms are effective.

• Authenticity is a property that indicates whether com-
municating data within a system can be modified by an
attacker or an unauthorized person.

• Availability is a metric that measures the system’s usabil-
ity. In other words, it indicates if a system is not failed
or on a repairing status when it needs to be used. For
example, if the system can provide services immediately
when requested by authorized users.

• Access Control is a security technique that allows only
authorized entities to use resources or perform specific
actions in the computing system. It can be related to both
Confidentiality and Authenticity [24], as an unauthorized
entity is not able to access confidential data, and should
not be able to modify any code of a system and invoke
any internal components of the system. Access control
techniques should prevent insecurity actions and deny
unauthorized service requests. It is a fundamental concept
in security that minimizes risk to the system.

C. Transformation rule Library for security & safety

By using the proposed combination language, we can
construct a set of relationships between functional meta-
models and security/safety-oriented meta-models. The set of
relationships is called TRL, which we mentioned in the above
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Fig. 4. A simple schema of relationships between security meta-model of
TTool and functional meta-model of Arcadia

sections. Once the TRL is established, the following process
of generating could be automatic by the tool. As the combined
models include both the functional and security parts, we
can import those models to TTool for security/safety analysis
(simulation, verification). The results can be traced back to the
functional design part. A simplified schema of relationships
between Arcadia meta-model and TTool meta-model is shown
in figure 4. The green flash links to two functional elements.
They are the equivalence relationship. The red flash links
two security-related elements, because ”connection” and its
sub-element ”port” have some attribute which can associate
some encryption techniques (i.e., AES). In the red box on
the left bottom of the figure, there are two parameters in
TTool for formal verification and simulation. They associate
with the channel component in TTool, and this “channel”
can be linked to “interconnection” in Capella (SysML) and
added new properties. If the “confidentiality” is checked,
the corresponding algorithm will be applied to encrypt the
data which is sent by this channel. As to “Authenticity”, it’s
the same as “confidentiality”. In other words, the functional
components in Capella can be seen as they have additional
security and safety properties as long as they are linked to a
TTool (SysML-Sec) component using our proposed language.

1) An instance of TRL: TRL serves transforming meta-
model of Capella into a new meta-model, which is added a
part of TTool’s meta-model.

Duo to space limitations, the detailed TRL is not presented
here, as most of them are written in the same way as the
following listing of a piece of TRL 2:

1 Γ Function => PrimitiveComp;
2 Γ Interaction => Connection;
3 Γ Port => <Connection>Port{Type[request|event|channel]}+

: Port{Origin[Destination|Origin]}+;
4 Γ Port => <Port>channel{confidentiality[true| f alse]}+

:<Port>channel{authenticity [true| f alse]}+;
5 ...

Listing 2. An example of Transformation Rule Library for security purpose



V. CASE STUDY

ADAS (Advanced driver-assistance systems) are typical
CPSs and play an important role for autonomous vehicle. Con-
ventional ADAS technology can detect some obstacle, alert the
driver of hazardous road conditions, in some cases, slow or
stop the vehicle. This level of ADAS is great for applications
like blind-spot monitoring, lane-centering assistance, obstacle
avoiding, and forward collision warning. It means that the
“driver is disengaged from physically operating the vehicle
by having driver’s hands off the steering wheel and foot off
the pedal at the same time”. However, the liberating driver
also brings great risks, e.g, the underlying flaws are used
by attackers to hijack the vehicle such as getting the remote
control, delaying system response time.

In this case study, we demonstrate how to add safety and
security verification abilities for Capella’s functional design by
using proposed approach. SysML-Sec further adds the safety
and security properties for functional design. Then, we can
perform verification to check if security and safety properties
are satisfied. All the results get back to Capella to correct or
adjust functional design.

We start with meta-models combination at meta-model
phase (as shown in Figure 5 on left). Using our proposed
language to build up TRL, which is presented in IV-C. Once
the TRL has been done, we enter model phase for functional
design on Capella (shown in middle of figure). All of the
sensors (radar, camera, etc) and ADAS’s control system tasks
(Perception and Navigation) are designed as functions on the
Capella, while model all the function exchanges.

Next, leveraging TRL, we can transform Capella models
into SysML-Sec models for further safety & security de-
sign and analysis. All the required attributes and properties
would be filled in TTool/SysML-Sec such as port’s properties
(direction, type etc). For example, according to the TRL
(see listing 2), firstly, we write a TRE is “Γ Function =>
PrimitiveComp”, while all the component which is classified
as function will be found in Capella’s model, and then,
they are transformed to PrimitiveComp in TTool’s model
with their name. Secondly, the next TRE is “Γ Interaction
=> Connection”, as the first one, all the Interaction com-
ponents will be transformed to Connection in TTool. Next,
we transform Port to Port, and add two new attributes Type
and Origin for Port in SysML-Sec, according to the TRE
“Γ Port => <Connection>PortType[request|event|channel]+:
PortOrigin[Destination|Origin]+”. The new concrete TTool
model are generated once those rules of transformation have
been successfully traversed. To do this automatically, we
are developing a model combination tool1 which is able to
transform the components according to TRL.

For security verification, we have to set up the security
properties in TTool such as cryptographic configuration, and
further design associated activities. TTool then performs veri-
fication automatically, and gives a feedback as long as the the
verification process is finished. Similarly, safety properties can

1Ongoing development tool, refer to https://github.com/conanbos/MTool

be verified from the same SysML-Sec model: Reachability,
Liveness, and absence of deadlocks.

VI. RELATED WORK

Multi-View approach allows to develop both software and
hardware from different domains by quickly and effectively in-
tegrating different domain expert artefacts to build up a sound
and consistent system. A lot of work is devoted to providing
efficient dedicated (meta) language for integrating issues. For
instance, Muller et al [26] proposed to use aspect-oriented
modeling to build an executable meta-language by composing
action metamodels, and Jézéquel worked at model weaving
approach [27]. In contrast to their languages or approaches, our
approach is dedicated to seamlessly combine different models
of views at high-level, it is easier to use and understand. Other
approaches addressed modeling consistencies from constraint-
based [28] or from architecture models [29]. On our side, we
tackle this problem with an efficient yet simple combination
of (meta) models.

Jörg Kienzle et al proposed a composition technique which
was implemented in a tool called Kompose [30]. Kompose
focused mainly on the merging of class diagrams. In their
proposition, the model elements to be composed must be of
the same syntactic type, that is, they must be instances of the
same meta model class.

Degueule et al [31] also provided a so-called ”Melange”
meta-language. This language can weave two DSLs to produce
new DSLs that integrated the syntax and semantics of the two
languages. Our approach is not to get a new language, but
to take advantage of other tools to complete our needs by
combining (meta) models.

In Thramboulidis et al [32] paper, they introduced a UML-
based approach adapted to Internet of Things (IoT), so-called
uml4Iot, which can automatically generate the process which
is required for cyber-physical component to be integrated into
the manufacturing environment. Our approach relies on well-
defined language and focus more on security/safety aspects
of embedded systems (including industrial control system,
IoT and smart manufacturing, etc). Based on the metamodel
combination method, it makes our approach more flexible.

VII. CONCLUSION AND DISCUSSION

In this paper, we proposed a language-based multi-view ap-
proach for combing functional and safety&security models of
CPSs. The syntax of the language is well-defined in EBNF, for-
mal semantics is given as well. The proposed language is used
to describe the combined relationships among models, which
have specific natures and rely on different DSMLs. By using
this, system-level modeling and verification of safety&security
are enabled during the concept design stage of CPSs. With
the proposed approach, combined models can be enriched and
leveraged by each other so as to perform combinational ver-
ification and/or simulations. A safety&security-aware design
case of autonomous vehicle system has demonstrated how the
functional models equip safety&security capabilities by using
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Fig. 5. Work flow of ADAS design from meta-model combination phase to Verification phase for security and safety purposes

the proposed language, and performing combinational safety&
security verifications and/or simulations by TTool toolchain.
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