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Abstract. Deployed widely and embedding sensitive data, IoT devices
depend on the reliability of cryptographic libraries to protect user in-
formation. However when implemented on real systems, cryptographic
algorithms are vulnerable to side channel attacks based on their exe-
cution behavior, which can be revealed by measurements of physical
quantities such as timing or power consumption. Some countermeasures
can be implemented in order to prevent those attacks. However those
countermeasures are generally designed at high level description, and
when implemented, some residual leakage may persist. In this article
we propose a methodology to assess the robustness of the MbedTLS li-
brary against timing and cache-timing attacks. This comprehensive study
of side-channel security allows us to identify the most frequent weak-
nesses in software cryptographic code and how those might be fixed.
This methodology checks the whole source code, from the top level rou-
tines to low level primitives, that are used for the final application. We
recover hundreds of lines of code that leak sensitive information.

1 Introduction

Formerly known as PolarSSL, MbedTLS library provides many cryp-
tographic implementations and primitives that can be easily used by
developers to design or implement new applications for embedded sys-
tems. However side channel attacks are known to be an efficient way to
break many of those applications. They exploit physical measurements like
power consumption, electromagnetic emanation and even timing duration
to recover the secret key. Using different techniques based on statistical
tools, an attacker is able to extract a secret key using only one (or very few)
measure(s) for non-unprotected implementations. The timing attack is the
first side channel attack presented by P. Kocher [14] in order to recover
the exponent bits of RSA. More perfected versions of timing attack are
derived to break more secured implementations like Square-and-Multiply
Always and Montgomery Ladder. Combined with power acquisition, a key
can be extracted in less than one thousand traces [10].
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Securing implementation against some attacks becomes more and more
challenging for designers and developers. They should take care about
all attacks that use timing properties, inputs dependency [15,6,16] and
different others parameters. However some developers still use different
(already) available library to implement their cryptographic applications.
So, even if they design a (secure) software from the top level description
(loop iterating over the scalar, like Montgomery Ladder, Atomic Multiply
Always, etc.) based on some primitive functions, they usually do not check
whether or not those primitives actually respect the constant-time coding
constraints. In the following we present our results based on MbedTLS
cryptographic library.

2 Previous works

2.1 Timing attacks and cache-timing attacks

Timing attacks exploit the timing variations induced by different inputs.
For example, in asymmetric cryptography, operations like modular mul-
tiplication or division can cause timing variations in the execution time,
which might be exploited to retrieve secret keys. We mention also the
cache-based timing attack [18,19,20,7,11] that exploit difference between
the access time of slow main memory, or RAM, and the much faster pro-
cessor cache. If the value to be accessed depends on secret values, the
number of cache hits and misses can be correlated to the secret values.
This can eventually lead to a full recovery. This kind of attack was first
presented by D. Bernstein in [3], where he targets the OpenSSL tabulated
AES implementation that was supposed to be constant-time. This attack
is a profiled template attack, which exploits the fact the looking up the
same data twice is faster than looking up at two different addresses.

Considering the cache-timing attack, one can distinguish between two
kinds of attacks:

– Passive: Only the inputs can be controlled and no additional process
needs to be run on the targeted device. The timing variations are only
caused by the cache miss and hit of the tabulated computation.

– Active: This attack needs an additional process, that is able to
“erase” the cache contents, which forces the victim process to reload
the data (or instructions) from the main memory (for instance,
FLUSH+RELOAD [20] attack).

Many cache-timing attacks have been published in 2018. They all exploit
timing differences in either in the control flow or the data access patterns.
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See a reasoned presentation of cache-timing attacks (as of December 2019)
in Fig. 1. We focus on such attacks in this paper.
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Fig. 1. Genealogy of cache-timing attacks

Algorithm 1: ECSM fast implementation: Double-and-Add—
Prone to cache-timing attacks
1 // Input :

– P : base point
– k = (k0 . . . kn−1)2: scalar

Output: [k]P
2 Q← O ; O is the point at infinity
3 i = n− 1
4 while i > −1 do
5 Q← [2]Q ; Point Doubling
6 if ki = 1 then
7 Q← Q+ P ; Point Addition
8 end
9 i = i− 1

10 end

11 return Q
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In Algorithm 1 we give the high level description of a naive implemen-
tation of Elliptic Curve Scalar Multiplication (ECSM). The bits of k are
scanned from left to right, and a conditional point addition is performed
in order to deal with bit values at 1. If an attacker is able to probe the
cache memory, he can recover the bits of k by measuring the access time
to an intruction in the addition function which was initially flushed from
the cache. If the access is long, then the victim code has not called the
point addition. Otherwise, it has. When the ECSM is used to perform a
signature generation or any other private operation, the secret key will be
recovered.

Cache vulnerabilities are not only caused by conditional operations.
As the size of the cache memory is limited to few thousand of bytes,
the contents needs to be erased and reloaded from the main memory. A
concrete example of such a situation is when the processor deals with
relatively big tables. As mentioned in the section 2.1, the cause of the
leakage is that the tables of AES cannot be fully loaded into the cache.
Therefore, when different indexes of the array are accessed, data needs to
be reloaded, which causes non-constant time execution.

Cache timing attacks can be prevented at various levels:

– Source code: by balancing the control flow, by fetching all values
from a table, etc.

– Compilation time: by alignment constraints of tables to minimize
cache effect (since cache lines are nowadays quite large); refer for in-
stance to the following declaration of aligned table T: unsigned char
T[256] __attribute__((aligned));

– Assembly code: with cmov and setcc constant-time operations.

2.2 Existing tools

Our goal is to identify the lines of code which can produce timing leak-
ages when executed on a processor. Those leakages can be caused by a
conditional operation, non-constant time operations and also cache access.

Some debugger tools were recently used for side channel analysis, like
gdb and Valgrind [5,4]. Some of the identified vulnerabilities depend on
the target device, but others are actually present in the source code. In the
first case, the code should be fixed at low level (assembly instructions). In
the second case, this can be done at high level source code (C).
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3 Our Methodology

3.1 Leakage types

The cache vulnerabilities are exploited by time measurements. These vari-
ations are caused when the data requested by the processor is present or
not in the cache memory. This data can be simple variables, arrays or even
functions. The last two are the most vulnerable cases. In fact, if the array
is relatively large, accessing different indexes will cause time variation. If
those indexes can be controlled in some way, an attacker can correlate it
with the sensitive data. In the case of functions, the same method can be
applied, by guessing which functions have been executed, and correlating
the observed time measurements with the sensitive data.

3.2 Principle of the tool

Evaluation of a source code against timing and cache-timing attacks
should track the sensitive variables over all sub-routines, and check if any
time variation can be caused by conditional branching or array access.
The static analysis tool is based on four main steps:

1. Input Preparation. To analyze a source code, we need to specify
the sensitive variable involved in computation.

2. Dependency & Vulnerability.
(a) Dependency Analysis. The specified variable will be tracked

over all sub-functions and if any dependency is detected, it will be
logged.

(b) Vulnerability Identification. All the dependency of the code
with the sensitive data is built and analyzed. The instruction are
filtered by keeping only some patterns that cause time variation
(conditional branch), or array access (cache vulnerabilities).

3. Vulnerability Analysis. A post-processing is then applied on the
reported leakages to classify them, remove the potential false positives
(see Sec. 3.3) and produce a report readable to the designer.

The global work flow is illustrated in figure 2.

3.3 False positives

The tool can report false positives in those cases:

– The incriminated line of code is not called in the execution context
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Fig. 2. Static analysis tool principle

– The vulnerability leaks too little:
• either too little times;
• or the leakage is too local, e.g., a table access where the table is so

small it fits in a line of cache;
• At the opposite, the leakages are too frequent in time, thereby

making it challenging, if not impossible, to catch them all and/or
to synchronize with them.

– Leakages sometimes happily disappear at compilation, e.g., when a
structure such as if(s){y=a;}, which is compiled with a conditional
move (cmov) instruction

– Leakages which occur in in exploitable places, e.g., in the middle of a
hash function (which clearly cannot been related simply to the sensis-
tive variable due to difficulty of preimage finding problem).

4 Evaluating MbedTLS source code

In this section we present our results on the main cryptography implemen-
tations: RSA, ECDSA, AES, DES and other block ciphers, fromMbedTLS
version 2.14.1. Our tool, named Catalyzr, analyzes the whole source and
detects all the conditional branches and array accesses (called also pointer
dereferencing) that depend on the specified (sensitive) parameters. The
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full results with graph dependency and leakage location are given in ap-
pendix A.

4.1 Analysis of the RSA implementation

It is known that the naive implementation of RSA is vulnerable against
side channel attacks [2,17,1]. Similar attacks also exist in the case of ECC
[9]. MbedTLS implements countermeasures against some of these attacks,
like Address-Bit DPA [12,13], timing and power analysis, etc. Indeed, those
protections work pretty well, but some sensitive parts of the code can
be exploited by an attacker in order to easily disturb the device, like in
the case of cache-timing attack. As described in the figure 2, we take
the self test function (Mbedtls_rsa_self_test) in the library and tag
the sensitive variable (namely the secret key) to track (rsa.D). All the
conditional branches depending on the tagged variable are listed by the
tool.

Fig. 3. Source of vulnerabilities detected on RSA signature

The designer should carefully analyze each result in order to deter-
mine if such warning is really exploitable in his use case. The figure 3
summarizes the source of such a dependency. In the case of private oper-
ation the (protected) Mbedtls_mpi_exp_mod function performs modular
exponentiation based on sliding window, Montgomery Multiplication and
Montgomery Reduction.

The Montgomery Reduction performs fake subtraction to prevent tim-
ing attacks (see figure 4), when the result is lesser than the modulus N.
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Fig. 4. Extra reduction in the Montgomery Modular Multiplication-bignum.c file

Fig. 5. Carry leakage for ECDSA and RSA

The figure 5 shows the vulnerable line code in the mpi_sub_help
function. This kind of vulnerabilities can be exploited by an attacker by
chosen inputs, which may induce time variation induced by the carry
propagation.

4.2 Analysis of ECDSA implementation

In the case of ECDSA signature, we have analyzed the Mbedtls_ecdsa_sign
function. We tagged the scalar r used to sign the message. As in the pre-
vious section, we note that these leakages are found in the primitives that
implement the arithmetic field operation using big integers.

The figure 6 shows a vulnerable code line that breaks out of the loop
when the number of limbs has been determined. Such an optimization
induces also a time variation (non-constant time implementation), which
is susceptible to a timing attack.

As we can see, the variable n is then passed to the mpi_sub_help
function which performs subtraction using only the n first limbs. The
loop is therefore flagged as potential timing vulnerability, as shown in
figure 7. This function is used in both RSA and ECDSA signatures, and
this vulnerability is common for both. The more interesting leakage is the
manner how we deal with the carry in the subtraction function.

In fact, we have tested the Mbedtls_mpi_exp_mod function with
real data, to simulate actual algorithm execution times. The first identified
leakage (figure 6) may not be significant as the size of inputs remains the



9

Fig. 6. Vulnerable code location for ECDSA and RSA

Fig. 7. Vulnerable code location and annotation for ECDSA and RSA: subtraction
function

same, and no variation is observed. However the total time to perform
the subtraction is different due to the second vulnerability (figure 5). The
feasibility of a timing attack depends on the ability of an attacker to
measure the time of a decryption with high accuracy, which is the case in
most of embedded platforms.

4.3 Analysis of AES implementation

In the MbedTLS AES implementation, the SubBytes operation is per-
formed using a table of 256 bytes (Sbox). If the size of the cache is large
enough, the whole table Sbox can be fully loaded. Regarding the cache
vulnerabilities, no time variation should occur in this case. However, in
the case of active attack, an attacker can probe the cache contents, and
gain knowledge about the lines and banks accessed during the Sbox com-
putation.
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The tool has also listed some vulnerabilities in the key-scheduling step
(mbedtls_aes_setkey_enc), where the Sbox accesses depend directly on
the key value.

Fig. 8. Vulnerable code location and annotation for AES

In figure 8, all the lines from 595 to 598 are listed as vulnerable. The
exploitation of this vulnerability depends on the ability of an attacker to
probe the cache content [18,20]. More leaking code was found in the en-
cryption and decryption functions, mbedtls_internal_aes_encrypt and
mbedtls_internal_aes_decrypt respectively, as the cache behaviour de-
pends on a controllable parameter(plaintext or ciphertext).

Fig. 9. AES leakage tracking and code location
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The figure 9 shows the inter-procedural graph that gives all the leak-
ages. The bubble-shape gives the function name, and the tables list
the leaking code with the line number (first column). The correspond-
ing file is shown in the arrow title. At the top figure, we have the
mbedtls_aes_crypt_ecb function that calls either

– mbedtls_internal_aes_encrypt (line 918), or
– mbedtls_internal_aes_decrypt (at line 916)

in the aes.c file. The lowest tables show the leaking lines (first column),
that depend on the input. In this case, the attack is less difficult, because
we need to probe only one Sbox at each encryption, and by repeating at
most 256 time the same (or wisely chosen) message, we can deduce the
key value. If Sbox table cannot be fully loaded into cache memory, time
variation can be observed. With chosen inputs, this variation can be con-
trolled and leads to high correlation between those inputs and encryption
time. This is equivalent to the attack described in [3].

4.4 Analysis of DES implementation

The MbedTLS DES implemention uses eight tables for SubBytes oper-
ation, each has 16 × 4 half-bytes. In order to analyze this algorithm we
have tagged the des3_test_keys in the file des.c.

Fig. 10. DES graph with leakage dependency: mbedtls_des_self_test function
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The figure 10 shows all the vulnerabilities listed by the tool. In the left
side we have the two encryption functions based on simple DES and triple
DES. In this case we have the DES_ROUND macro that perform the
SubBytes operation, which depends on the secret data ctx.sk and SK. In
the right side the lines 437 to 440, and 442 to 444 show the vulnerable part
in the key-schedule function. The first leakage is related to the encryption
datapath and as explained in the previous section, it is less difficult to
exploit. The second one is present only at the key schedule step, which
make it very difficult to exploit.

4.5 Analysis of Blowfish implementation

Blowfish is a symmetric algorithm also based on Sbox-tables to perform
the SubBytes operation. Four tables of 256 32-bits word are used to per-
form this operation. This leads to 4 KB of data. Loading the whole table
in cache memory may not be possible on constrained devices. This func-
tion is called F , and it is called from the blowfish_enc function that
encrypts a plaintext x using a secret key. We tagged the key (ctx.P ) as
a sensitive variable to track, and the tool has pointed four vulnerabilities
in the F function.

Fig. 11. Vulnerable code location and annotation for Blowfish

The figure 11 shows the first leaking code line, which contains two ar-
ray accesses. The tool has pointed two times the line 89, and one time line
90 and 89. The variables a, b, c, and d, depend on the input x of the func-
tion F , which are actually xored with the secret key in the blowfish_enc
function. Regarding the cache-timing attacks, it is difficult to exploit such
vulnerabilities. For example, to identify the value of a (b, c or d), the
attacker need to probe cache line to see which word is loaded, and hence
deduce the value of the key if the input (or the output) is known.

4.6 Analysis of Camellia implementation

For the Camellia algorithm, we have tagged variable camellia_test_ecb_key
that is used as a secret key. Similar to the previously presented algorithm,
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Camellia resorts to a table for the SubBytes operation. Four different
tables of size 256 bytes are used for this purpose, which leads to 1 KB
memory.

Fig. 12. Vulnerable code location and annotation for Camellia

The tool has underlined the array access in camellia_feistel function
as shown in figure 12. Depending on the cache size, the time to access
those tables may differs from one message to another. We note also that,
for each byte position, a different Sbox table is used, which leads to high
probability of cache miss events.

5 Discussion

In section 4.1, 4.2, we present some of our results that we hope will be
taken into account in future release of the library. Those vulnerabilities are
not necessarily known by developers, as they implement new applications
based on already existing software for low-level primitives. We designed
the tool in order to help such developers to check their implementations, as
an end-to-end workflow integration check. We see that in most cases, the
top level functions are well protected against the cited attacks. However,
leakages are detected at the low level primitives, that are not updated in
order to respect the specified constraints. We have seen that some of those
leakages can be exploited by a simple timing analysis.

In the case of symmetric implementations, most leakages are related to
array accesses. In fact, those vulnerabilities are target dependent. They
should be analyzed by considering the cache specification. Since caches
might be shared by different applications, cache vulnerabilities can arise
even when the SBoxes might fit into cache, because less memory is avail-
able for each application. This can lead to the vulnerabilities mentioned in
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sections 4.3, 4.5, 4.6. In all cases, we have identified all the array accesses
that depend on the sensitive parameter. The most interesting parts are
those depending also on the encryption datapath, like Sbox access, in the
encryption functions. The vulnerabilities which depend only on the key
are very difficult to exploit (case of key-schedule), because the attacker
would need to repeat many times the cache probing to have only some in-
formation about the line accessed and then the value that was processed.
Besides, in most of the optimized implementations this step is performed
once, which makes the attack almost impractical.
In table 1 we summarize the details about the leakages reported by each

Table 1. Summary of leakage reported

Function # Leakage # Functions # Lines
mbedtls_rsa_self_test 11131 40 147
mbedtls_ecdsa_sign 12588 34 124

mbedtls_aes_self_test 95 4 59
mbedtls_des_self_test 85 3 16

blowfish_enc 4 1 3
mbedtls_camellia_self_test 83 2 13

function (named in the first column). In the second column we give the to-
tal number of reported leakages. Those are all the possible paths through
the control flow graph (this estimation is optimistic, since not all paths
are exercised—more precisely, the paths can be taken, but are maybe not
depending on the inputs). The third one shows the number of leaking
functions (that induce the leakage). And the last one corresponds to the
number of leaking code lines. This information can be deduced from the
inter-procedural graph given in appendix A.

6 Conclusion and perspectives

In this paper we have presented some (automated) static analysis on
MbedTLS library. The reported leakages are either related to a non-
constant time implementation (as it was supposed to be), or to a potential
cache vulnerability. In the first case, we have seen that a simple timing
attack is possible, not only for the analyzed algorithms, but also for the
future applications that will be based on the same routines. Exploiting the
sensitive parts by a cache-active attack may be very difficult or impracti-
cable in some cases. This depends on the ability of an attacker (in terms
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of speed, regularity, etc.) to probe the cache. However in some conditions,
equivalent time variation could occur and reveal information about the
processed data. This is the case when the cache size is limited, or when
the machine is so loaded that it is shared with other threads.

As a perspective, we intend to attribute each identified leakage to
existing attacks, such as exploitation of “extra-reductions” in RSA/ECC
Montgomery Modular Multiplication [10] or the exploitation of the corre-
lation between the computation duration and the length of the nonce in
ECDSA signature generation algorithm [8].
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Appendix A

Here we give all the inter-procedural graphs that show the dependency
and the leakage location for each algorithm.

Fig. 13. Full RSA graph with leakage dependency for mbedtls_rsa_private function

Fig. 14. Part of ECDSA graph with leakage dependency for mbedtls_ecdsa_sign
function
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Fig. 15. Full AES graph with leakage dependency: mbedtls_aes_self_test

Fig. 16. Full DES graph with leakage dependency: mbedtls_des_self_test function
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Fig. 17. Full Blowfish graph with leakage dependency: blowfish_enc function

Fig. 18. Full Camellia graph with leakage dependency: mbedtls_camellia_self_test
function


