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Abstract

The spectral theory for weakly stationary processes valued in a separable Hilbert space has
known renewed interest in the past decade. However, the recent literature on this topic is often
based on restrictive assumptions or lacks important insights. In this paper, we follow earlier
approaches which fully exploit the normal Hilbert module property of the space of Hilbert-
valued random variables. This approach clarifies and completes the isomorphic relationship
between the modular spectral domain to the modular time domain provided by the Gramian-
Cramér representation. We also discuss the general Bochner theorem and provide useful
results on the composition and inversion of lag-invariant linear filters. Finally, we derive
the Cramér-Karhunen-Loève decomposition and harmonic functional principal component
analysis without relying on simplifying assumptions.

1 Introduction

Functional data analysis has become an active field of research in the recent decades due
to technological advances which makes it possible to store longitudinal data at very high
frequency (see e.g. [22, 31]), or complex data e.g. in medical imaging [18, Chapter 9], [15],
linguistics [28] or biophysics [27]. In these frameworks, the data is seen as valued in an
infinite dimensional separable Hilbert space thus isomorphic to, and often taken to be, the
function space L2(0, 1) of Lebesgue-square-integrable functions on [0, 1]. In this setting, a
functional time series refers to a bi-sequences (Xt)t∈Z of L2(0, 1)-valued random variables and
the assumption of finite second moment means that each random variable Xt belongs to the
L2 Bochner space L2(Ω,F , L2(0, 1), P) of measurable mappings V : Ω → L2(0, 1) such that

E

[
‖V ‖2L2(0,1)

]
< ∞ , where ‖·‖L2(0,1) here denotes the norm endowing the Hilbert space

L2(0, 1).
Spectral analysis of weakly stationary functional time series has been recently considered

in [19, 20, 26] where, in particular, the authors derive a functional version of the Cramér
representation. The functional Cramér representation of [19, 20, 26] relies on a spectral density
operator defined under strong assumptions on the covariance structure of the time series.
Under the same assumption, [20] introduced filters whose transfer functions are valued in a
restricted set of operators and this was latter generalized to bounded-operator-valued transfer
functions in [26, Section 2.5] (see also [29, Appendix B.2.3]). A more general approach is
adopted in [30] where the authors provide a definition of operator-valued measures from which
they derive a functional version of the Herglotz theorem, the functional Cramér representation
and the definition of linear filters with bounded-operator-valued transfer functions.
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On the other hand, to a certain extent, a general spectral theory for weakly stationary
time series has been originally developed in a very general fashion much earlier, starting
from the seminal works by Kolmogoroff, [14], and spanning over several decades, see [11]
and the references therein. These foundations include time domain and frequency domain
analyses, Cramér (or spectral) representations, the Herglotz theorem and linear filters. In
[14, 11] the adopted framework is that of a bi-sequence X = (Xt)t∈Z ∈ HZ valued in a
Hilbert space (H, 〈·, ·〉H) and weakly stationary in the sense that 〈Xs, Xt〉H only depends on
the lag s − t. Taking H to be the L2 Bochner space L2(Ω,F , L2(0, 1),P), this framework
directly applies to functional time series. At first sight, it is thus fair to question the novelty
of the theory developed in [19, 20, 26, 29, 30] in comparison to results seemingly already
available in a very general fashion in the original works that founded the modern theory of
stochastic processes. This novelty issue cannot be unequivocally answered because there are
(many) different approaches to establishing a spectral theory for weakly stationary functional
time series. Moreover, the merits and the drawbacks of a specific approach depend on the
applications that one wishes to deduce from the spectral theory at hand and on the required
mathematical tools in which one is ready to invest in order to rigorously employ it.

In the framework of [11] recalled above, a linear filter is a linear operator on HX onto HX

which commutes with the lag operator UX , where HX is the closure in H of the linear span
of (Xt)t∈Z and UX is the operator defined on HX by mapping Xt to Xt+1 for all t ∈ Z. As
explained in [11, Section 3], a complete description of such a filter is given in the spectral
domain by its transfer function. Let us recall the essential formulas which summarize what this
means. In [11], the spectral theory follows from and start with the canonical representation
of the lag operator UX above, namely

UX =

∫

T

eiλ ξ(dλ) , (1.1)

where T = R/(2πZ) and ξ is the spectral measure of UX (which is a measure valued in
the space of operators on HX onto itself). This corresponds to [11, Eq. (8)] with a slightly
different notation. Then defining X̂ as ξ(·)X0 (thus a measure valued in HX), one gets the
celebrated Cramér representation (see [11, Eq. (13a)] again with a slightly different notation)

Xt =

∫

T

eiλ t X̂(dλ) , t ∈ Z . (1.2)

An other consequence of (1.1) is what is called the Herglotz theorem in [11, Eq. (9)], summa-
rized by the formula

〈Xs, Xt〉H =

∫

T

eiλ (s−t) µ(dλ) , s, t ∈ Z , (1.3)

where µ = 〈ξ(·)X0, X0〉H is a non-negative measure on (T,B(T)). Interpreting the right-hand
side of (1.3) as the scalar product of the two functions es : λ 7→ eiλs and et : λ 7→ eiλt in
L2(T,B(T), µ), Relation (1.3) is simply saying that the Cramér representation (1.2) mapping
et to Xt is isometric. Following this interpretation, one can extend this isometric mapping
to a unitary operator between the two isomorphic Hilbert spaces L2(T,B(T), µ) and HX ,
respectively refered to as the spectral domain and the time domain. In particular the output
of a linear filter with transfer function Φ ∈ L2(T,B(T), µ) is given by

Yt =

∫
eiλt Φ(λ) X̂(dλ) , t ∈ Z , (1.4)

or in other words, Yt is the image of the function etΦ by the extended unitary operator that
maps the spectral domain to the time domain.

The spectral theory (1.1)–(1.4) applies to multivariate time series by taking H =
L2(Ω,F ,Cq ,P) = (L2(Ω,F , P))q and to functional time series by taking H =
L2(Ω,F , L2(0, 1),P). However, in [11, Section 7], Holmes argues that important general-
ization are needed for multivariate time series (and for functional time series even more so).
An overview of this multivariate case can be found in [17] where the author stresses the im-
portance of the Gramian structure of the product space H. The Gramian matrix between
two vectors V = (V (1), · · · , V (q)) ∈ H and W = (W (1), · · · ,W (q)) ∈ H is the q × q matrix

[V,W ]H with entries
(〈
V (k),W (l)

〉

H

)

1≤k,l≤q
which coincides with the covariance matrix if
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V or W are centered. Using this Gramian structure, Relations (1.1)–(1.4) are easily adapted
by strengthening the weak stationarity to impose that [Xs, Xt]H only depends on s − t (see
[17, Section 5]). This stronger weak stationarity assumption not only ensures that the lag
operator UX is (scalar product) isometric on HX but also that it is Gramian-isometric on the
larger space Span

(
PXt , t ∈ Z,P ∈ C

q×q
)
. Following the same approach, the development

of a spectral theory of functional time series relies on exhibiting a Gramian structure for
H = L2(Ω,F , L2(0, 1),P) making it a normal Hilbert module and replacing the time domain
space HX by the modular time domain

HX = Span
(
PXt , t ∈ Z, P ∈ Lb(L

2(0, 1))
)
, (1.5)

where Lb(L
2(0, 1)) denotes the space of bounded operators on L2(0, 1) onto itself. In compar-

ison, in the definition of HX used in [11], P is restricted to be a scalar operator. Thus, while
HX is a subspace of H seen as a Hilbert space, HX is a submodule of H seen as a normal
Hilbert module. Based on this simple fact, a natural path for achieving and fully exploiting
a Cramér representation on HX is:

Step 1) Interpret the representation (1.1) as the one of a Gramian-isometric operator on HX

(and not only an scalar product isometric operator on HX).

Step 2) Deduce that the Cramér representation (1.2) can effectively be extended as a Gramian-
isometric operator mapping L2(0, 1) → L2(0, 1)-operator valued functions on (T,B(T))
to an element of HX .

Step 3) As a first consequence, the scalar product isometric relation (1.3) is extended to

[Xs, Xt]H =

∫

T

eiλ (s−t) ν(dλ) , s, t ∈ Z , (1.6)

where, here, ν is an operator valued measure on (T,B(T)). This Gramian-isometric
relationship corresponds to what is called the Herglotz theorem in the functional time
series case.

Step 4) As a second consequence, the Cramér representation (1.4) of a linear filter is extended
to the case where the transfer function Φ is now an L2(0, 1) → L2(0, 1)-operator valued
functions on (T,B(T)) (and not only a scalar valued functions on (T,B(T))). This raises
the question, in particular, of the precise condition required on the transfer function to
replace the condition Φ ∈ L2(T,B(T), µ) of the scalar case.

Step 5) An interesting consequence of Step 4) is to study the composition of linear filters and
deduce when and how it is possible to inverse them.

Step 6) An other interesting consequence of Step 2) is to derive the Cramér-Karhunen-Loève
decomposition and the harmonic principal component analysis for any weakly stationary
functional time series valued in a separable Hilbert space.

In this contribution, we basically follow this path, up to the following slight modifications.

1. We treat the more general case of a stochastic process (Xt)t∈G, where (G,+) is a
locally compact Abelian (l.c.a.) group set of indices and for each t ∈ G,Xt is a random
variable defined on a probability space (Ω,F ,P) and valued in a separable Hilbert space
H0 (endowed with its Borel σ-field). Typical examples for G and H0 are the ones of
functional time series, namely G = Z and H0 = L2(0, 1) but, as far as spectral theory
is concerned, the presentation of the results is not only more general (one can e.g. take
G = R) but also more elegant in this general setting. We recall in Section 2.1 the
definition of the dual group Ĝ of continuous characters on G. Of course, in the discrete
time caseG= Z, any continuity condition imposed on a function defined onG is trivially
satisfied. Such continuity conditions constitute a small price to pay (and the only one)
in order to be able to treat the case of a general l.c.a. group G rather than focusing on
the discrete time case alone.

2. For obvious practical reasons, it is usual to treat the mean of a stochastic process
separately. Therefore we will assume that the process (Xt)t∈G is centered.

3. We will consider the case where the separable Hilbert space G0 in which the output of the
filter is valued is different from H0, the one of the input, that is, we replace P ∈ Lb(H0)
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in (1.5) by P ∈ Lb(H0,G0), the space of bounded operators from H0 to G0. This makes
the results directly applicable in the case of different input and output spaces, especially
in the case where they have different dimensions (so that they are not isomorphic).

The approach to derive a spectral theory following Step 1)– Step 4) is essentially contained in
[13, 16, 12]. Our main contribution concerning these steps is to introduce all the preliminary
definitions required to understand them, to select the most important results, to provide
detailed proofs of the key points and to bring forward this approach in order to promote
what we believe to be a more powerful, complete and easy to exploit approach than the more
recently proposed ones in [19, 20, 26, 29, 30]. A very useful benefit of the Gramian-isometric
approach is that it allows a concrete description of the spectral domain rather than relying
on the completion of a pre-Hilbert space or on the compactification of a pointed convex cone
as used in [26, Section 2.5] and [30], respectively. A greater benefit, however, is to make the
Cramér representation much easier to exploit for deriving useful general results. This will be
made apparent when establishing the composition and inversion of filters of Step 5), which
to our best knowledge, appear to be novel in this degree of generality. Similarly, our versions
of the Cramér-Karhunen-Loève decomposition and harmonic functional principal component
analysis are not restricted to the case where the spectral density operator has none or finitely
many points of discontinuity as in [26, 30].

As previously mentioned, each approach has its drawbacks and the main drawback of the
one we are presenting here is probably that it requires lengthier, although not intrinsically
difficult, preliminaries. In particular we need to precisely recall definitions of operator valued
measures, operator valued functions (and the various notions of measurability related to them)
and Gramian-isometric operators on normal Hilbert modules. All these basic definitions are
assembled in Section 2 along with the useful facts about l.c.a. groups. Section 3 contains
some preliminaries paving the way for describing the modular spectral domain. In particular,
we explain how to use normal Hilbert modules for defining Gramian-orthogonally scattered
measures. Section 4 contains the main results: 1) we offer a synthesis of the results of
[13, 16, 12] providing a natural and complete spectral theory for weakly stationary processes
valued in a separable Hilbert space; 2) then, this approach is exploited to address Step 5)
and Step 6) above, successively; 3) in light of these results, we re-examine the differences with
the approaches proposed in [26, 30]. All the postponed proofs are provided in Section 5 along
with additional useful results.
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2 Basic definitions and notation

2.1 Locally compact Abelian groups

A topological group is a group (G,+) (with null element 0) endowed with a topology for
which the addition and the inversion maps are continuous in G×G and G respectively. If
G is Abelian (i.e. commutative) and is locally compact, Hausdorff for its topology, then it is
called a locally compact Abelian (l.c.a.) group. A character χ of G is a group homomorphism
from G to the unit circle group U := {z ∈ C : |z| = 1} that is χ : G → U and for all
s, t ∈ G, χ(s+ t) = χ(s)χ(t). The dual group Ĝ of an l.c.a. group G is the set of continuous
characters of G. In particular, χ(0) = 1 and χ(t) = χ(t)−1 = χ(−t) for all t ∈ G. Ĝ is a
multiplicative Abelian group if we define the product of χ1, χ2 ∈ Ĝ, as χ1χ2 : t 7→ χ1(t)χ2(t),
the identity element as ê : t 7→ 1 and the inverse of χ ∈ Ĝ as χ−1 : t 7→ χ(t)−1 = χ(t). Ĝ
becomes an l.c.a. group when endowed with the compact-open topology, that is the topology
for which χn → χ in Ĝ if and only if for every compact K ⊂ G, χn → χ uniformly on K i.e.
supt∈K |χn(t)− χ(t)| −−−−−→

n→+∞
0.

A result known as the Pontryagin Duality Theorem (see [24, Theorem 1.7.2]) states that

G and
ˆ̂
G are isomorphic via the evaluation map G → ˆ̂

G

t 7→ et
where et : χ 7→ χ(t) in the

sense that this map is a bijective continuous homomorphisms with continuous inverse. In

particular, this means that {et : t ∈ G} is the set of characters of Ĝ (i.e.
ˆ̂
G).

If G = Z endowed with the addition of integers, the dual set Ẑ of characters contains
all Z → U-functions χ : t 7→ zt for some z ∈ U. Since the compact sets of Z are the finite
subsets of Z, the compact-open topology on Ẑ is the same as the one induced by pointwise
convergence. It is then easy to show that Ẑ, U and T = R/(2πZ) are isomorphic (from Ẑ to
U take χ 7→ χ(1) and from T to U take λ 7→ eiλ). In this case we identify Ẑ with T, often
represented as (−π, π] in the time series literature. This means that an integral on χ ∈ Ẑ is
replaced by an integral on λ ∈ T (or λ ∈ (−π, π]) with χ(t) replaced by eiλ t for all t ∈ Z.

The other classical example of l.c.a. group is R endowed with usual addition and topology.
Then the dual set R̂ contains all R → U-functions χ : t 7→ eitλ for some λ ∈ R (see for example
[6, Theorem 9.11.]). Then R̂ and R are isomorphic via the mapping λ 7→ (t 7→ eitλ) and it is
usual to identify R̂ with R.

2.2 Operator spaces

In this section, we recall basic definitions on linear operators which can be found, for example,
in [32]. Let H and G be two (complex) Hilbert spaces. The scalar product and norm, e.g.
associated toH, are denoted by 〈·, ·〉H and ‖·‖H. LetO(H,G) denote the set of linear operators
P from H to G whose domains, denoted by D(P), are linear subspaces of H. We then denote
by Lb(H, G) its subset of continuous operators, by K(H, G) its subset of compact continuous
operators and, for all p ∈ [1,∞), by Sp(H, G) the Schatten-p class of compact operators with
ℓp singular values. If G = H, we omit G in the notation of these operator sets. We denote
by ‖·‖ the operator norm on Lb(H,G) and by ‖·‖p the Schatten-p norm on Sp(H, G). For
all P ∈ S1(H), we denote the trace of P by Tr(P). Schatten-1 and Schatten-2 operators
are usually referred to as trace-class and Hilbert-Schmidt operators respectively. For any
P ∈ Lb(H,G) we denote its adjoint by PH (which is compact if P is compact). An operator
of Lb(H) is said to be auto-adjoint if it is equal to its adjoint. For all x ∈ H and y ∈ G, we
denote by x⊗ y the trace-class operator from G onto H defined by (x⊗ y)z = 〈z, y〉G x for all
z ∈ G. As usual, we identify an element x ∈ H with the mapping z 7→ zx from C onto H, so
that xH : y 7→ 〈y, x〉H is seen as an operator of H onto C. In particular, we can write for x ∈ H
and y ∈ G, x⊗ y = xyH. An operator P ∈ Lb(H), is said to be positive (denoted by P � 0) if
for all x ∈ H, 〈Px, x〉H ≥ 0 and we denote by L+

b (H), K+(H) and S+
p (H) the sets of positive,

positive compact and positive Schatten-p operators. Any positive operator is auto-adjoint. If
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P ∈ K+(H) then there exists a unique operator of K+(H), denoted by P1/2, which satisfies

P =
(
P1/2

)2
. We define the absolute value of P as the operator |P| :=

(
PHP

)1/2
∈ K+(H).

Finally, we recall the definition of the weak operator topology (w.o.t.). A sequence
(Pn)n∈N ∈ Lb(H, G)

N converges to an operator P ∈ Lb(H,G) in w.o.t. if for all x ∈ H and
y ∈ G, limn→+∞ 〈Pnx, y〉G = 〈Px, y〉G . Using the polarization identity

〈Pnx, y〉G =
1

4

(
〈Pn(x+ y), (x+ y)〉G − 〈Pn(x− y), (x− y)〉G

+i 〈Pn(x+ iy), (x+ iy)〉G − i 〈Pn(x− iy), (x− iy)〉G
)
,

to get the convergence in w.o.t., it is sufficient to show that lim
n→∞

〈Pnx, x〉G = 〈Px, x〉G for all

x ∈ H.

2.3 Integration of functions valued in a vector or operator space

Let (Λ,A) be a measurable space and (E, ‖·‖E) be a Banach space. A function f : Λ 7→ E is
said to be measurable if it is the pointwise limit of a sequence of E-valued simple functions,
i.e. a sequence valued in Span (1Ax : A ∈ A, x ∈ E) . When E is separable, this notion is
equivalent to the usual Borel-measurability, (i.e. to having f−1(A) ∈ A for all A ∈ B(E),
the Borel σ-field on E) and to the measurability of φ ◦ f for all φ ∈ E∗ (where E∗ is the
continuous dual of E). This last equivalence is known as Petti’s measurability theorem and is
proven in [21]. We denote by F(Λ,A, E) the space of measurable functions from Λ to E. For
a non-negative measure µ on (Λ,A) and p ∈ [1,∞], we denote by Lp(Λ,A, E, µ) the space of
functions f ∈ F(Λ,A, E) such that

∫
‖f‖pE dµ (or µ-essup ‖f‖E for p = ∞) is finite and by

Lp(Λ,A, E, µ) its quotient space with respect to µ-a.e. equality. The corresponding norm is
denoted by ‖·‖Lp(Λ,A,E,µ). The Bochner integral is defined on L1(Λ,A, E, µ) by linear and
continuous extension of the mapping 1Ax → µ(A)x defined for x ∈ E and A ∈ A such that
µ(A) < ∞.

In the particular case where E is a space of linear operators between two Hilbert spaces
H and G, we introduce the following weaker notion of measurability.

Definition 2.1 (Simple measurability). A function Φ : Λ → Lb(H,G) is said to be simply
measurable if for all x ∈ H, λ 7→ Φ(λ)x is measurable as a G-valued function. The set of such
functions is denoted by Fs (Λ,A,H, G) or simply Fs (Λ,A,H) if G = H.

Note that for all Banach spaces E which are continuously embedded in Lb(H,G) (e.g.
Sp(H, G) for p ≥ 1 or K(H,G)), the following inclusions hold

F(Λ,A, E) ⊂ Fs (Λ,A,H, G) . (2.1)

When H and G are separable, the converse inclusion holds for E = K(H,G) and for E =
Sp(H, G) with p ∈ {1, 2}, see Lemma 5.1.

The space O(H,G), is not a Banach space but we can still define measurability in the
following sense, which we slightly adapted from [16], [12, Section 3.4].

Definition 2.2 (O-measurability). A function Φ : Λ → O(H,G) is said to be O-measurable
if it satisfies the two following conditions.

(i) For all x ∈ H, {λ ∈ Λ : x ∈ D(Φ(λ))} ∈ A.

(ii) There exist a sequence (Φn)n∈N valued in Fs (Λ,A,H, G) such that for all λ ∈ Λ and
x ∈ D(Φ(λ)), Φn(λ)x converges to Φ(λ)x in G as n→ ∞.

We denote by FO (Λ,A,H, G) the space of such functions Φ.

Clearly, we have Fs (Λ,A,H, G) ⊂ FO (Λ,A,H,G).

2.4 Vector valued and Positive Operator Valued Measures

A measure µ defined on the measurable space (Λ,A) and valued in the Banach space (E, ‖·‖E)
is an A → E-mapping such that, for any sequence (An)n∈N ∈ AN of pairwise disjoint sets,
µ
(⋃

n∈N
An

)
=
∑

n∈N
µ(An), where the series converges in E, that is,

lim
N→+∞

∥∥∥∥∥µ
(
⋃

n∈N

An

)
−

N∑

n=0

µ(An)

∥∥∥∥∥
E

= 0 .
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For such a measure µ, the mapping

‖µ‖E : A 7→ sup

{
∑

i∈N

‖µ(Ai)‖E : (Ai)i∈N ∈ AN is a countable partition of A

}

defines a non-negative measure on (Λ,A) called the variation measure of µ. For instance,
if E = S1(H), we write ‖µ‖1 since we use ‖·‖1 to denote the Shatten-1 norm. Integrals of
functions in L1(Λ,A, ‖µ‖E) with respect to µ are defined by first considering simple functions
and by extending the obtained linear form to the whole space L1(Λ,A, ‖µ‖E) by continuity,
see [9, P. 120]. When Λ is a locally-compact topological space and A is the Borel σ-field, an
E-valued measure µ is said to be regular if for all A ∈ A and ǫ > 0, there exist a compact set
K ∈ A and an open set U ∈ A with K ⊂ A ⊂ U such that ‖µ(U \K)‖E ≤ ǫ. The definition of
regularity for non-finite (non-negative) measures is similar but the property is only required
for A such that µ(A) < +∞. From the straightforward inequality ‖µ(A)‖E ≤ ‖µ‖E(A) for
all A ∈ A, we get that if µ is an E-valued measure with finite and regular variation, then µ
is regular.

As for functions, the special case of operator-valued measures is of interest. In particular
Positive Operator Valued Measures (p.o.v.m.’s) which are widely used in QuantumMechanics.
Here, we provide useful definitions and results for our purpose and refer to [3] for details.

Definition 2.3 (Positive Operator Valued Measures (p.o.v.m.)). Let (Λ,A) be a measurable
space and H be a Hilbert space. A Positive Operator Valued Measure (p.o.v.m.) on (Λ,A,H)
is a mapping ν : A → L+

b (H) such that for all sequences of disjoint sets (An)n∈N ∈ AN,

ν

(
⋃

n∈N

An

)
=
∑

n∈N

ν(An) (2.2)

where the series converges in L+
b (H) in w.o.t.

It is interesting to note that, due to properties of positive operators, the convergence of the
series in (2.2) in w.o.t. implies its convergence in s.o.t.(see [3, Proposition 1]). However, the
series does not necessarily converge in operator norm which implies that, in this definition,
a p.o.v.m. does not need to be an Lb(H)-valued measure. Therefore the above definitions of
integrals and regularity cannot be applied. This is circumvented by noting that a p.o.v.m. is
entirely characterized by the family of non-negative measures

{
νx : A 7→ xHν(A)x : x ∈ H

}
.

Based on this characterization, we introduce two definitions related to p.o.v.m.’s, the first one
about the regularity property and the second one about integrals of bounded scalar valued
function.

Definition 2.4 (Regular p.o.v.m.). Let Λ be a locally-compact topological space with Borel
σ-field A and H be a Hilbert space. Then a p.o.v.m. ν on (Λ,A,H) is said to be regular if
for all x ∈ H, the non-negative measure νx : A 7→ xHν(A)x is regular.

An alternative equivalent definition of regular p.o.v.m.’s is [3, Definition 14], see also
Theorem 20 in the same reference. We now define the integral of bounded function with
respect to a p.o.v.m.. This will be used in the general Bochner theorem (later stated as
Theorem 4.6).

Definition 2.5 (Integral of a scalar valued function with respect to a p.o.v.m.). Let (Λ,A)
be a measurable space, H be a Hilbert space, ν be a p.o.v.m. on (Λ,A,H) and define for all
x ∈ H, the non-negative measure νx : A 7→ xHν(A)x. Let f : Λ → C be a bounded and
measurable function. Then the integral of f with respect to ν is the unique operator in Lb(H),
denoted by

∫
f(λ) ν(dλ), such that for all x ∈ H,

xH

(∫
f(λ) ν(dλ)

)
x =

∫
f(λ) νx(dλ) .

The existence of the autoadjoint integral operator
∫
f(λ) ν(dλ) in Definition 2.5 through

the mapping x 7→ xH
(∫
f(λ) ν(dλ)

)
x is straightforward, see [3, Theorem 9]. The integral in

Definition 2.5 is only valid for bounded functions. Generalizing this integral to unbounded
functions is complicated. Nevertheless, when dealing with spectral operator measures of
weakly stationary processes valued in a separable Hilbert space, we can rely on the additional
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trace-class property, which makes all the previous definitions easier to handle and extend.
Hereafter, if H0 is a separable Hilbert space, we provide the definition of a trace-class p.o.v.m.,
derive its interpretation as an S1(H0)-valued measure, state the Radon-Nikodym property
that they enjoy and extend the definition of the integral of a scalar valued function in this
context.

Definition 2.6 (Trace-class p.o.v.m.). Let (Λ,A) be a measurable space, H0 be a separable
Hilbert space and ν be a p.o.v.m. on (Λ,A,H0). We say that ν is a trace-class-p.o.v.m. if it
is S+

1 (H0)-valued.

The first advantage of a trace-class p.o.v.m. is that it fits the framework of vector-valued
measures, namely, we have the following result, whose proof can be found in Section 5.1.

Lemma 2.1. Let (Λ,A) be a measurable space and H0 be a separable Hilbert space. Then
a p.o.v.m. ν on (Λ,A,H0) is trace-class if and only if ν(Λ) ∈ S1(H0). In this case, ν is
an S1(H0)-valued measure (in the sense that (2.2) holds in ‖·‖1-norm) with finite variation
measure ‖ν‖1 : A 7→ ‖ν(A)‖1. Moreover, regularity of ν as a p.o.v.m. is equivalent to regularity
of ν as an S1(H0)-valued measure which is itself equivalent to regularity of ‖ν‖1.

Another advantage of trace-class p.o.v.m.’s is that they satisfy the following Radon-
Nikodym property, whose proof can be found in Section 5.1.

Theorem 2.2. Let (Λ,A) be a measure space, H0 a separable Hilbert space and ν a trace-
class p.o.v.m. on (Λ,A,H0). Let µ be a σ-finite non-negative measure on (Λ,A). Then
‖ν‖1 ≪ µ (i.e. for all A ∈ A, µ(A) = 0 ⇒ ‖ν‖1(A) = 0), if and only if there exists
g ∈ L1(Λ,A,S1(H0), µ) such that dν = g dµ, i.e. for all A ∈ A,

ν(A) =

∫

A

g dµ . (2.3)

In this case, g is unique and is called the density of ν with respect to µ and we write

g =
dν

dµ
.

Moreover, the following assertions hold.

(a) For µ-almost every λ ∈ Λ, g(λ) ∈ S+
1 (H0).

(b) The mapping g1/2 : λ 7→ g(λ)1/2 belongs to L2(Λ,A,S2(H0), µ).

(c) The density of ‖ν‖1 with respect to µ is ‖g‖1. In particular, g = dν
d‖ν‖

1

‖g‖1 µ-a.e. and

if µ = ‖ν‖1, then ‖g‖1 = 1 µ-a.e.

(d) Let f : Λ → C be measurable. Then f ∈ L1(Λ,A, ‖ν‖1) if and only if λ 7→ f(λ) g(λ) ∈

L1(Λ,A,S1(H0), µ), and we have

∫
f(λ) ν(dλ) =

∫
f(λ) g(λ) µ(dλ).

In Assertion (d), the first integral is that of a scalar-valued function with-respect to the
S1(H0)-valued measure ν as recalled above for general vector-valued measures with finite
variation and the second is the (Bochner) integral of an S1(H0)-valued function with-respect
to the non-negative measure µ as recalled in Section 2.3. Of course, if f is bounded on Λ, these
integrals coincide with the integral of f with respect to ν of Definition 2.5 in which ν is seen
as a p.o.v.m. The Radon-Nikodym property of trace-class p.o.v.m.’s is a key step to extend
such integrals to operator valued functions, hence allowing us to use a handy definition of the
integral of an operator valued function with respect to an operator valued measure, in the
particular case where this measure is a trace-class p.o.v.m. This will be done in Definition 3.3.

2.5 Normal Hilbert modules

Modules extend the notion of vector spaces to the case where scalar multiplication is replaced
by a multiplicative operation with elements of a ring. The case where the ring is Lb(H0)
for a separable Hilbert space H0 is of particular interest for H0-valued random variables.
In short, a normal Hilbert Lb(H0)-module is a Hilbert space endowed with a module action
and a Gramian. A Gramian [·, ·] is similar to a scalar product but is valued in the space
S1(H0) and is related to scalar product by the relation 〈·, ·〉 = Tr([·, ·]). Notions such as
sub-modules, Gramian-orthogonality, Gramian-isometric operators are natural extensions of
their counterparts in the Hilbert framework. We give such useful definitions hereafter and
refer to [12, Chapter 2] for details.
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Definition 2.7 (Lb(H0)-module). Let H0 be a separable Hilbert space. An Lb(H0)-module
is a commutative group (H,+) such that there exists a multiplicative operation (called the
module action)

Lb(H0)×H → H
(P, x) 7→ P • x

which satisfies the usual distributive properties : for all P,Q ∈ Lb(H0), and x, y ∈ H,

P • (x+ y) = P • x+ P • y,

(P + Q) • x = P • x+Q • x,

(PQ) • x = P • (Q • x),

IdH0
• x = x.

Next, we endow an Lb(H0)-module with an Lb(H0)-valued product.

Definition 2.8 ((Normal) pre-Hilbert Lb(H0)-module). Let H0 be a separable Hilbert space.
We say that (H, [·, ·]H) is a pre-Hilbert Lb(H0)-module if H is an Lb(H0)-module and [·, ·]H :
H×H → Lb(H0) satisfies, for all x, y, z ∈ H, and P ∈ Lb(H0),

(i) [x, x]H ∈ L+
b (H0),

(ii) [x, x]H = 0 if and only if x = 0,

(iii) [x+ P • y, z]H = [x, z]H + P[y, z]H,

(iv) [y, x]H = [x, y]HH.

If moreover, for all x, y ∈ H, [x, y]H ∈ S1(H0), we say that [·, ·]H is a Gramian and that H is
a normal pre-Hilbert Lb(H0)-module.

Note that an Lb(H0)-module is a vector space if we define the scalar-vector multiplication
by αx = (αIdH0

) • x for all α ∈ C, x ∈ H and that, in the particular case where [·, ·]H is
a Gramian, then 〈·, ·〉H := Tr[·, ·]H is a scalar product. Hence a normal pre-Hilbert Lb(H0)-
module is also a pre-Hilbert space. We can now define the following.

Definition 2.9 (normal Hilbert Lb(H0)-module). A normal pre-Hilbert Lb(H0)-module is
said to be a normal Hilbert Lb(H0)-module if it is complete (for the norm defined by ‖x‖2H =
〈x, x〉H =

∥∥[x, x]H
∥∥
1
).

Definition 2.10 (Submodules and Lb(H0)-linear operators). Let H0 be a separable Hilbert
space and H, G be two Lb(H0)-modules. Then a subset of H is called a submodule if it is an
Lb(H0)-module. An operator F ∈ Lb(H,G) is said to be Lb(H0)-linear if for all P ∈ Lb(H0)
and x ∈ H, F(P •x) = P • (Fx). In the case where H is a normal pre-Hilbert Lb(H0)-module,

we denote, for any E ⊂ H, Span
H
(E) the smallest linear subspace of H which contains E

and is closed for the norm ‖·‖H. It is a submodule of H.

Definition 2.11 (Gramian-isometric operators). Let H0 be a separable Hilbert space, H, G be
two pre-Hilbert Lb(H0)-modules and U : H → G an Lb(H0)-linear operator. Then U is said
to be

(i) Gramian-isometric if for all x, y ∈ H, [Ux,Uy]G = [x, y]H,

(ii) Gramian-unitary if it is bijective Gramian-isometric.

The space H is said to be Gramian-isometrically embedded in G (denoted by H ⊆
∼ G) if

there exists a Gramian-isometric operator from H to G. The spaces H and G are said to be
Gramian-isometrically isomorphic (denoted by H ∼= G) if there exists a Gramian-unitary
operator from H to G.

The well-known isometric extension theorem can be straightforwardly generalized to the
case of Gramian-isometric operators as stated in the following proposition.

Proposition 2.3 (Gramian-isometric extension). Let H0 be a separable Hilbert space, H be
a normal pre-Hilbert Lb(H0)-module, and G be a normal Hilbert Lb(H0)-module. Let (vj)j∈J

and (wj)j∈J be two collections of vectors in H and G respectively with J an arbitrary index
set. If for all i, j ∈ J, [vi, vj ]H = [wi, wj ]G then there exists a unique Gramian-isometric
operator

S : Span
H
(P • vj ,P ∈ Lb(H0), j ∈ J) → G
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such that for all j ∈ J, Svj = wj . If moreover H is complete then

S
(
Span

H
(P • vj ,P ∈ Lb(H0), j ∈ J)

)
= Span

G
(P • wj ,P ∈ Lb(H0), j ∈ J)

Let us introduce three examples of normal Hilbert Lb(H0)-modules that will be of interest
in the following.

Example 2.1 (Normal Hilbert module L2(Λ,A,S2(H0,G0), µ) for a non-negative measure µ).
Let µ be a non-negative measure on (Λ,A) and H0,G0 be two separable Hilbert spaces. Then
L2(Λ,A,S2(H0,G0), µ) is an Lb(G0)-module with module action defined for all P ∈ Lb(G0) and
Φ ∈ L2(Λ,A,S2(H0,G0), µ) by P •Φ : λ 7→ PΦ(λ). For all Φ,Ψ ∈ L2(Λ,A,S2(H0,G0), µ), we
have ΦΨH ∈ L1(Λ,A,S1(H0), µ), and thus

[Φ,Ψ]L2(Λ,A,S2(H0,G0),µ)
:=

∫
ΦΨH dµ

is well defined in S1(H0). It is easy to show that it is Gramian and that(
L2(Λ,A,S2(H0,G0), µ), [·, ·]L2(Λ,A,S2(H0,G0),µ)

)
is a Lb(G0)-module normal Hilbert module.

Taking G0 = C in the previous example amounts to replace S2(H0,G0) by H0, which, in
the specific case where (Λ,A, µ) is a probability space leads to the following.

Example 2.2 (Normal Hilbert module M(Ω,F ,H0,P)). Let (Ω,F , P) be a probability space
and H0 be a separable Hilbert space. The Bochner space L2(Ω,F ,H0,P) is the space of H0-

valued random variables Y such that E

[
‖Y ‖2H0

]
< +∞. Then the expectation of Y is the

unique vector E [Y ] ∈ H0 satisfying

〈E [Y ] , x〉H0
= E

[
〈Y, x〉H0

]
, for all x ∈ H0 ,

and the covariance operator between Y,Z ∈ L2(Ω,F ,H0,P) is the unique linear operator
Cov (Y,Z) ∈ Lb(H0), satisfying

〈Cov (Y,Z) y, x〉H0
= Cov

(
〈Y, x〉H0

, 〈Z, y〉H0

)
, for all x, y ∈ H0 .

The space M(Ω,F ,H0,P) of all centered random variables in L2(Ω,F ,H0,P) is a nor-
mal Hilbert Lb(H0)-module for the module action defined for all P ∈ Lb(H0) and X ∈
M(Ω,F ,H0,P) by P •X = PX, and the Gramian

[X,Y ]M(Ω,F,H0,P)
= Cov (X,Y ) .

Our last example is a more general formulation of the space of transfer functions used in
[26, Section 2.5] and [29, Appendix B.2.3] for filtering functional time series and is a natural
extension of [17] where the case of (finite dimensional) multivariate time series is considered
(see the definition of L2,M in this reference).

Example 2.3 (Normal pre-Hilbert module
(
L2(Λ,A,Lb(H0,G0), ‖ν‖1), [·, ·]ν

)
for a trace-class

p.o.v.m. ν.). Let (Λ,A) be a measurable space, H0,G0 be two separable Hilbert spaces and ν a
trace-class p.o.v.m. on (Λ,A,H0) with density f with respect to its finite variation ‖ν‖1. Then
L2(Λ,A,Lb(H0,G0), ‖ν‖1) is a normal pre-Hilbert Lb(G0)-module with module action defined
for all P ∈ Lb(G0) and Φ ∈ L2(Λ,A,Lb(H0,G0), ‖ν‖1) by P • Φ : λ 7→ PΦ(λ), and Gramian
defined for all Φ,Ψ ∈ L2(Λ,A,Lb(H0,G0), ‖ν‖1) by

[Φ,Ψ]ν :=

∫
Φ f ΨH d‖ν‖1 . (2.4)

Note that the S1(H0)-valued Bochner integral in the right-hand side of (2.4) is well de-
fined because by Theorem 2.2 (c), we have ‖f‖1 = 1, ‖ν‖1-a.e. and thus

∥∥ΦfΨH
∥∥
1

≤

‖Φ‖Lb(H0,G0)
‖Ψ‖Lb(H0,G0)

, ‖ν‖1-a.e., which implies Φ f ΨH ∈ L1(Λ,A,S1(H0), ‖ν‖1).
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For all Φ,Ψ ∈ L2(Λ,A,Lb(H0, G0), ‖ν‖1), we denote by 〈Φ,Ψ〉ν the scalar product associ-
ated to the Gramian [Φ,Ψ]ν . It is different from the scalar product 〈Φ,Ψ〉L2(Λ,A,Lb(H0,G0),‖ν‖1)

endowing the same space. In particular we have that, for all Φ ∈ L2(Λ,A,Lb(H0,G0), ‖ν‖1),

‖Φ‖2ν = Tr

∫
Φ f ΦH d‖ν‖1 =

∫
Tr
(
Φ f ΦH

)
d‖ν‖1

≤

∫
‖Φ‖2Lb(H0,G0)

d‖ν‖1 = ‖Φ‖2L2(Λ,A,Lb(H0,G0),‖ν‖1)
, (2.5)

where we used again that ‖f‖1 = 1, ‖ν‖1-a.e. It is easy to find Φ’s for which the inequality is
strict.

Example 2.3 is pivotal for defining the modular spectral domain of a weakly stationary
process with spectral operator measure ν. However, it does not suffice to describe the whole
spectral domain because, as already noted in [26, Section 2.5] in a similar case, this space, in
general, is not complete. As a result, unfortunately, the spectral domain is more complicated
for functional time series than for (finite dimensional) multivariate time series. Of course, as
proposed in [26, Section 2.5], it is always possible to use topological completion under a well
chosen norm. These ideas are in fact very similar to the ones of [13, 16, 12] with the exception
that the latter references provide a more general framework and lead to a modular spectral
domain which is an explicit set of operator-valued functions. We will follow this approach in
Section 3.2.

3 Preliminaries

3.1 Countably additive Gramian-orthogonally scattered
(c.a.g.o.s.) measures

In this section, we introduce the notion of random c.a.g.o.s. measures which will have an
important role in the construction provided by [13, 16, 12]. The terminologies c.a.o.s. and
c.a.g.o.s. are borrowed from Definition 3 in [12, Section 3.1]

Definition 3.1 ((Random) c.a.o.s. measures). Let H be a Hilbert space and (Λ,A) be a
measurable space. We say that W : A → H is a countably additive orthogonally scattered
(c.a.o.s.) measure on (Λ,A,H) if it is an H-valued measure on (Λ,A) such that for all
A,B ∈ A,

A ∩B = ∅ ⇒ 〈W (A),W (B)〉H = 0 .

In this case, the mapping
νW : A 7→ 〈W (A),W (A)〉H

is a finite non-negative measure on (Λ,A) called the intensity measure of W and we have
that, for all A,B ∈ A,

νW (A ∩B) = 〈W (A),W (B)〉H . (3.1)

We say that W is regular if νW is regular. When H is the space M(Ω,F ,H0,P) of Exam-
ple 2.2, we say that W is an H0-valued random c.a.o.s. measure on (Λ,A,Ω,F ,P).

The generalization to a normal Hilbert module is straightforward.

Definition 3.2 ((Random) c.a.g.o.s. measures). Let H0 be a separable Hilbert space, H be a
normal Hilbert Lb(H0)-module and (Λ,A) be a measurable space. We say that W : A → H is
a countably additive Gramian-orthogonally scattered (c.a.g.o.s.) measure on (Λ,A,H) if it
is an H-valued measure on (Λ,A) such that for all A,B ∈ A,

A ∩ B = ∅ ⇒ [W (A),W (B)]H = 0 .

In this case, the mapping
νW : A 7→ [W (A),W (A)]H

is a trace-class p.o.v.m. on (Λ,A,H0) called the intensity operator measure of W and we have
that, for all A,B ∈ A,

νW (A ∩ B) = [W (A),W (B)]H . (3.2)

We say that W is regular if ‖νW ‖1 is regular. When H = M(Ω,F ,H0,P) of Example 2.2, we
say that W is an H0-valued random c.a.g.o.s. measure on (Λ,A,Ω,F , P).
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The following remark will be useful.

Remark 3.1. Recall that any H-valued measure W is σ-additive in the sense that for any
finite or countable collection (Aj)j∈J ∈ ΛJ of pairwise disjoint sets we have

W

(
⋃

j∈J

Aj

)
=
∑

j∈J

W (Aj) ,

where, in the case where J is countably infinite, the infinite sum converges in H incondition-
ally. When W is a c.a.o.s., the summands are moreover orthogonal. When it is a c.a.g.o.s.,
they are Gramian-orthogonal.

It is easy to show that a c.a.o.s. measure W as in Definition 3.1 can be equivalently seen
as the restriction of an isometric operator I from L2(Λ,A, νW ) onto H by setting

W (A) = I(1A) , A ∈ Λ .

This simply follows by interpreting the left-hand side of (3.1) as the scalar product between
1A and 1B in L2(Λ,A, νW ) so that I above can be defined as the unique isometric extension
from L2(Λ,A, νW ) to H of the isometric mapping defined by 1A 7→ W (A) for A ∈ Λ. This
observation gives a rigorous meaning to the integral in the Cramér representation (1.2) where
X̂ is c.a.o.s. (see [11, Section 2]). Similarly, if W is a c.a.g.o.s. measure as in Definition 3.2,
the mapping defined by 1AP 7→ PW (A) for A ∈ Λ and P ∈ Lb(H0) is Gramian-isometric
from the normal pre-Hilbert module L2(Λ,A,Lb(H0), ‖νW ‖1) defined in Example 2.3 onto
H. Using Proposition 2.3, we get a Gramian-isometric extension on the whole space. In
the case where H0 has finite dimension, this observation is a key step to derive a Cramér
representation of the type (1.2) where (Xt)t∈Z is a multivariate time series and X̂ is c.a.g.o.s.
(see [17]). In the infinite dimensional case, this Gramian-isometric extension is more useful
if, before that, we complete the normal pre-Hilbert module L2(Λ,A,Lb(H0), ‖νW ‖1), that
is, we exhibit the smallest normal Hilbert module containing it. To do this, we will rely on
the space L

2(Λ,A,O(H0, G0), ν) defined for a trace-class p.o.v.m. ν in the following section.
Before that, let us note that in the case of random c.a.g.o.s. measure W , by definition of
H = M(Ω,F ,H0,P) in Example 2.2, the identity (3.2) shows that the covariance structure
of the centered process (W (A))A∈A is entirely determined by νW . The Gaussian case is
interesting as it provides a way to build W from its intensity measure. In particular, the
following result will be useful.

Theorem 3.1. Let H0 be a separable Hilbert space and (Λ,A) be a measurable space. Let ν
be a trace-class p.o.v.m. on (Λ,A,H0). Then there exist a probability space (Ω,F , P) and an
H0-valued random c.a.g.o.s. W on (Λ,A,Ω,F ,P) with intensity operator measure ν such that
the process (〈W (A), x〉)A∈A,x∈H0

is a (complex) Gaussian process.

Proof. Define γ : (H0 ×A)2 → C by of

γ((x,A); (y,B)) = xHν(A ∩B)y =
[
xH
1A, y

H
1B

]

ν
,

where we used the Gramian (2.4) of Example 2.3 with G0 = C. Then it is easy to see γ is
hermitian non-negative definite in the sense that for all n ≥ 1, x1, . . . , xn ∈ H0, A1, . . . , An ∈
A and a1, . . . , an ∈ C,

n∑

i,j=1

aiajγ((xi, Ai); (aj , Aj)) ≥ 0 .

Let (Zx,A)(x,A)∈H0×A be the centered circularly-symmetric Gaussian process complex with
covariance γ. Let (φn)0≤n<N be a Hilbert basis of H0, with N = dimH0 ∈ {1, 2, . . . ,∞}. It
is straightforward to show that for all A ∈ A,

W (A) :=
∑

0≤n<N

Zφn,A φn

is well defined in H = M(Ω,F ,H0,P) and that the so defined W is a random c.a.g.o.s. with
intensity operator measure ν.
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3.2 The space L
2(Λ,A,O(H0,G0), ν)

As discussed in the previous sections, the role of c.a.o.s. and c.a.g.o.s. measures in the spectral
theory of weakly stationary processes relies on their characterization by unitary or Gramian-
unitary operators between the (modular) time domain and the (modular) spectral domain.
This has been entirely studied in the case of univariate and multivariate time series, see [11]
and [17], respectively, and the references therein. For time series valued in a general separable
Hilbert space, defining the modular spectral domain requires to exhibit a suitable completion
of the normal pre-Hilbert module L2(Λ,A,Lb(H0,G0), ‖ν‖1) of Example 2.3 where ν is a
trace-class p.o.v.m. . In this section, we define such a space of operator-valued functions
which are square-integrable with respect to p.o.v.m. ν. It was introduced in [16] and includes
the space L2(Λ,A,Lb(H0,G0), ‖ν‖1) but is in general larger in the case where H0 has infinite
dimension.

Definition 3.3. Let (Λ,A) be a measurable space, H0,G0, I0 be three separable Hilbert spaces
and ν a trace-class p.o.v.m. on (Λ,A,H0) with density f with respect to its finite varia-
tion ‖ν‖1, as defined in Theorem 2.2. Then, we say that (Φ,Ψ) ∈ FO (Λ,A,H0,G0) ×
FO (Λ,A,H0, I0) is ν-integrable if the three following assertions hold.

(i) We have Im(f1/2) ⊂ D(Φ) and Im(f1/2) ⊂ D(Ψ), ‖ν‖1-a.e.

(ii) We have Φf1/2 ∈ S2(H0,G0) and Ψf1/2 ∈ S2(H0, I0), ‖ν‖1-a.e.

(iii) We have (Φf1/2)(Ψf1/2)H ∈ L1(Λ,A,S1(I0, G0), ‖ν‖1).

In the case, we define

∫
ΦdνΨH :=

∫
(Φf1/2)(Ψf1/2)H d‖ν‖1 ∈ S1(I0, G0) . (3.3)

Moreover, we say that Φ ∈ FO (Λ,A,H0,G0) is square ν-integrable if (Φ,Φ) is ν-integrable
and we denote by L

2(Λ,A,O(H0,G0), ν) the space of square ν-integrable functions in
FO (Λ,A,H0,G0).

Remark 3.2. Let us briefly comment this definition.

1) In (3.3), using the Radon-Nikodym property of the trace-class p.o.v.m. ν, we have thus
defined an integral of operator-valued functions with respect to an operator valued mea-
sure as a simple Bochner theorem in S1(I0,G0). By Theorem 2.2 (d), for a measur-
able scalar function φ : Λ → C we can interpret the integral

∫
φdν in which ν is

seen as S1(H0)-valued measure as in Section 2.4 as the same integral as in (3.3) with
Φ : λ 7→ φ(λ)IdH0

and Ψ ≡ IdH0
. Hence the integral (3.3) of Definition 3.3 can be seen

as an extension of the integral of scalar-valued functions to operator-valued functions,
with respect to a trace-class p.o.v.m.

2) It is easy to show that for all Φ,Ψ ∈ L
2(Λ,A,O(H0,G0), ν), (Φ,Ψ) is ν-integrable and

thus
∫
ΦdνΨH is well defined as above.

3) In the special case where Φ and Ψ are valued in Lb(H0,G0), O-measurability reduces
to simple-measurability, (i) and (ii) are always verified, (iii) is equivalent to ΦfΨH ∈
L1(Λ,A,S1(G0), ‖ν‖1) and we get

∫
ΦdνΨH =

∫
ΦfΨH d‖ν‖1 .

4) Recall that, as explained in Example 2.3, for all Φ,Ψ ∈ L2(Λ,A,Lb(H0,G0), ‖ν‖1), we
have ΦfΨH ∈ L1(Λ,A,S1(G0), ‖ν‖1). We thus get that

L2(Λ,A,Lb(H0,G0), ‖ν‖1) ⊂ L
2(Λ,A,O(H0,G0), ν) ,

and the Gramian [Φ,Ψ]ν defined on the smaller space as in (2.4) coincides with
∫
ΦdνΨH

defined in (3.3).

The following theorem, whose proof can be found in Section 5.2, shows that the same
Gramian can be used over the larger space L

2(Λ,A,O(H0,G0), ν) and that it makes this
space a normal Hilbert Lb(G0)-module when quotiented by the set with zero norm.
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Theorem 3.2. Let H0,G0 be separable Hilbert spaces, (Λ,A) a measurable space, ν a trace-
class p.o.v.m. on (Λ,A,H0) and f = dν

d‖ν‖
1

. Then L
2(Λ,A,O(H0,G0), ν) is an Lb(G0)-module

with module action

P • Φ : λ 7→ PΦ(λ), P ∈ Lb(G0),Φ ∈ L
2(Λ,A,O(H0,G0), ν) .

Moreover, we can endow L
2(Λ,A,O(H0,G0), ν) with the pseudo-Gramian

[Φ,Ψ]ν :=

∫
ΦdνΨH Φ,Ψ ∈ L

2(Λ,A,O(H0,G0), ν) . (3.4)

Then, for all Φ ∈ L
2(Λ,A,O(H0,G0), ν), we have

‖Φ‖ν =
∥∥[Φ,Φ]ν

∥∥1/2
1

= 0 ⇐⇒ Φf1/2 = 0 ‖ν‖1-a.e.

Let us denote the class of such Φ’s by {‖·‖ν = 0} and the quotient space by

L
2(Λ,A,O(H0,G0), ν) := L

2(Λ,A,O(H0,G0), ν)
/
{‖·‖ν = 0} .

Then
(
L
2(Λ,A,O(H0,G0), ν), [·, ·]ν

)
is a normal Hilbert Lb(G0)-module.

Clearly, the normal Hilbert Lb(G0)-module
(
L
2(Λ,A,O(H0,G0), ν), [·, ·]ν

)
contains the pre-

Hilbert one of Example 2.3. The next result, whose proof can be found in Section 5.2, says
that it is the smallest one.

Theorem 3.3. Let H0,G0 be two separable Hilbert spaces, (Λ,A) a measurable space, and
ν a trace-class p.o.v.m. on (Λ,A,H0). Then the space L2(Λ,A,Lb(H0,G0), ‖ν‖1) is dense in
L
2(Λ,A,O(H0, G0), ν) and the following assertions hold.

(i) The space Span (1AP : A ∈ A,P ∈ Lb(H0,G0)) of simple Lb(H0,G0)-valued functions
is dense in L

2(Λ,A,O(H0,G0), ν).

(ii) For any subset E ⊂ L2(Λ,A, ‖ν‖1) which is linearly dense in L2(Λ,A, ‖ν‖1), the space
Span (hP : h ∈ E,P ∈ Lb(H0,G0)) is dense in L

2(Λ,A,O(H0,G0), ν).

In some of the definitions above, it can be useful to replace ‖ν‖1 can be by any σ-finite non-
negative measure µ dominating ‖ν‖1 and the following characterization hold (see Section 5.2
for a proof).

Proposition 3.4. Let (Λ,A) be a measurable space, H0,G0, I0 be three separable Hilbert
spaces and ν a trace-class p.o.v.m. on (Λ,A,H0). Let µ be a σ-finite non-negative measure
dominating ‖ν‖1 and set g = dν

dµ
, as defined in Theorem 2.2. Then the following assertions

hold.

(a) For all (Φ,Ψ) ∈ FO (Λ,A,H0,G0)× FO (Λ,A,H0, I0), (Φ,Ψ) is ν-integrable if and only
if the three following assertions hold.

(i’) We have Im(g1/2) ⊂ D(Φ) and Im(g1/2) ⊂ D(Ψ), µ-a.e.

(ii’) We have Φg1/2 ∈ S2(H0,G0) and Ψg1/2 ∈ S2(H0, I0), µ-a.e.

(iii’) (Φg1/2)(Ψg1/2)H ∈ L1(Λ,A,S1(G0, I0), µ).

In this case we have ∫
ΦdνΨH =

∫
(Φg1/2)(Ψg1/2)H dµ . (3.5)

(b) For all Φ ∈ FO (Λ,A,H0,G0), we have Φ ∈ L
2(Λ,A,O(H0,G0), ν) if and only if

{
Im(g1/2) ⊂ D(Φ) µ-a.e.

Φg1/2 ∈ L2(Λ,A,S2(H0,G0), µ)

(c) If Φ,Ψ ∈ L
2(Λ,A,O(H0,G0), ν), then (Φ,Ψ) is ν-integrable and

∫
ΦdνΨH =

[
Φg1/2,Ψg1/2

]

L2(Λ,A,S2(H0,G0),µ)
, (3.6)

where the latter Gramian comes from Example 2.1. Hence the mapping Φ 7→ Φg1/2 is
Gramian-isometric from L

2(Λ,A,O(H0,G0), ν) to L2(Λ,A,S2(H0, G0), µ).
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3.3 Integration with respect to a random c.a.g.o.s. measure

Having all the necessary notions for a clear definition of the modular spectral domain, we
now define the mapping which makes it Gramian-isometrically isomorphic to the modular
time domain. This definition is often presented as a stochastic integral because it linearly and
continuously maps a function to a random variable.

Let H0 and G0 be two separable Hilbert spaces, (Λ,A) be a measurable space, and let ν be
a trace-class p.o.v.m. defined on (Λ,A,H0). Given an H0-valued random c.a.g.o.s. measure
W , we further set

HW,G0 := Span
G
(PW (A) : P ∈ Lb(H0,G0), A ∈ A) , (3.7)

which is a submodule of G := M(Ω,F , G0,P). As in Proposition 13 in [12, Secion 3.4] and [16,
Theorem 6.9], we now define the integral of an H0 → G0-operator valued valued function with
respect to a random c.a.g.o.s. measure W as a Gramian-isometry from the normal Hilbert
Lb(G0)-module L

2(Λ,A,O(H0,G0), νW ) to HW,G0 . A proof can be found in Section 5.2.

Theorem 3.5. Let (Λ,A) be a measurable space and (Ω,F ,P) a probability space. Let H0

and G0 be two separable Hilbert spaces. Let W be an H0-valued random c.a.g.o.s. measure on
(Λ,A,Ω,F , P) with intensity operator measure νW . Let HW,G0 be defined as in (3.7). Then
there exists a unique Gramian-isometry

IG0

W : L2(Λ,A,O(H0,G0), νW ) → M(Ω,F , G0,P)

such that, for all A ∈ A and P ∈ Lb(H0,G0),

IG0

W (1AP) = PW (A) P-a.s.

Moreover, L2(Λ,A,O(H0,G0), νW ) and HW,G0 are Gramian-isometrically isomorphic.

We can now define the integral of an operator valued function with respect to W .

Definition 3.4 (Integral with respect to a random c.a.g.o.s. measure). Under the assumptions
of Theorem 3.5, we use an integral sign to denote IG0

W (Φ) for Φ ∈ L
2(Λ,A,O(H0,G0), νW ).

Namely, we write ∫
ΦdW =

∫
Φ(λ)W (dλ) := IG0

W (Φ) . (3.8)

The following remark will be useful.

Remark 3.3. In the setting of Definition 3.4, take Φ = φ IdH0
with φ : Λ → C. Then, we

have Φ ∈ L
2(Λ,A,O(H0), νW ) if and only if φ ∈ L2(Λ,A, ‖νW ‖1). We will omit IdH0

in the
notation of the integral, writing

∫
φ dW for

∫
φIdH0

dW .

We now state a straightforward result, whose proof is omitted.

Proposition 3.6. Let (Λ,A) be a measurable space, H0, G0 two separable Hilbert spaces.
Let W be an H0-valued random c.a.g.o.s. measure on (Λ,A,Ω,F , P) with intensity operator
measure νW . Let Φ ∈ L

2(Λ,A,O(H0,G0), νW ). Then the mapping

V : A 7→

∫

A

ΦdW = IG0

W (1AΦ) (3.9)

is a G0-valued random c.a.g.o.s. measure on (Λ,A,Ω,F , P) with intensity operator measure

ΦνWΦH : A 7→

∫

A

ΦdνWΦH ,

which is a well defined trace-class p.o.v.m.

The c.a.g.o.s. V defined by (3.9) is said to admit the density Φ with respect to W , and
we write dV = ΦdW (or, equivalently, V (dλ) = Φ(λ)W (dλ)). In the following definition,
based on Proposition 3.6, we use a signal processing terminology where Λ is seen as a set
of frequencies and Φ is seen as a transfer operator function acting on the (random) input
frequency distribution W .
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Definition 3.5 (Filter F̂Φ(W ) acting on a random c.a.g.o.s. measure in ŜΦ). Let (Λ,A)
be a measurable space, H0, G0 two separable Hilbert spaces. For a given transfer oper-
ator function Φ ∈ FO (Λ,A,H0,G0), we denote by ŜΦ(Ω,F , P) the set of H0-valued ran-
dom c.a.g.o.s. measures on (Λ,A,Ω,F , P) whose intensity operator measures νW satisfy
Φ ∈ L

2(Λ,A,O(H0,G0), νW ). Then, for any W ∈ ŜΦ(Ω,F , P), we say that the random
G0-valued c.a.g.o.s. measure V defined by (3.9) is the output of the filter with transfer opera-
tor function Φ applied to the input c.a.g.o.s. measure W , and we denote V = F̂Φ(W ).

We conclude this section with a kind of Fubini theorem for interchanging a Bochner integral
with a c.a.g.o.s. integral.

Proposition 3.7. Let (Λ,A) be a measurable space and H0, G0 two separable Hilbert spaces.
Let W be an H0-valued random c.a.g.o.s. measure on (Λ,A,Ω,F , P) with intensity operator
measure νW . Let µ be a non-negative measure on a measurable space (Λ′,A′). Suppose that
Φ is measurable from Λ× Λ′ to Lb(H0,G0) and satisfies

∫ (∫ ∥∥Φ(λ, λ′)
∥∥
Lb(H0,G0)

µ(dλ′)

)2

‖νW ‖1(dλ) <∞ , (3.10)

∫ (∫ ∥∥Φ(λ, λ′)
∥∥2
Lb(H0,G0)

‖νW ‖1(dλ)

)1/2

µ(dλ′) <∞ . (3.11)

Then we have
∫ (∫

Φ(λ, λ′) µ(dλ′)

)
W (dλ) =

∫ (∫
Φ(λ, λ′)W (dλ)

)
µ(dλ′) , (3.12)

where integrals with respect to W are as in Definition 3.4, in the left-hand side the
innermost integral is understood as a Bochner integral on L2(Λ′,A′,Lb(H0,G0), µ) and
in the right-hand side, the outermost integral is understood as a Bochner integral on
L2(Λ′,A′,M(Ω,F , G0,P), µ).

Proof. Conditions (3.10) and (3.11) ensure that Φ(λ, ·) ∈ L1(Λ′,A′,Lb(H0,G0), µ) for ‖νW ‖1-
a.e. λ ∈ Λ and that Φ(·, λ′) ∈ L2(Λ,A,Lb(H0,G0), ‖ν‖1) for µ-a.e. λ′ ∈ Λ′, showing that
the innermost integrals in both sides of (3.12) are well defined for adequate sets of λ and λ′,
respectively.

Let E1 and E2 denote the sets of functions Φ measurable from Λ× Λ′ to Lb(H0,G0) and
satisfying (3.10) and (3.11), respectively. We denote by ‖Φ‖E1

the square root of the left-
hand side of (3.10) and by ‖Φ‖E2

the left-hand side of (3.11), which make E1 and E2 Banach
spaces. Then, for all Φ ∈ E := E1 ∩E2, concerning the left-hand side of (3.12), we have

∥∥∥∥

∫
Φ(·, λ′) µ(dλ′)

∥∥∥∥
2

νW

≤

∫ ∥∥∥∥

∫
Φ(·, λ′) µ(dλ′)

∥∥∥∥
2

Lb(H0,G0)

d‖νW ‖1 ≤ ‖Φ‖2E1
,

as for the right-hand side, we have, setting H := M(Ω,F , G0,P),

∫ ∥∥∥∥

∫
Φ(λ, ·)W (dλ)

∥∥∥∥
H

dµ =

∫ ∥∥Φ(·, λ′)
∥∥
νW

µ(dλ′) ≤ ‖Φ‖E2
,

These two inequalities show that both sides of (3.12) seen as functions of Φ are linear con-
tinuous from E endowed with the norm ‖·‖E = ‖·‖E1

+ ‖·‖E2
to M(Ω,F ,G0,P). Since they

coincide for Φ(λ, λ′) = 1A(λ)1B(λ
′)P with A ∈ A, B ∈ A′ and P ∈ Lb(H0,G0), this concludes

the proof.

4 Modular spectral domain of a weakly stationary
process and applications

4.1 The Gramian-Cramér representation and general Bochner
theorems

We now have all the tools to derive a spectral theory for Hilbert valued weakly-stationary
processes following [12, Section 4.2]. Let (Ω,F , P) be a probability space, H0 be a separable
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Hilbert space and (G,+) be a locally compact Abelian (l.c.a.) group, whose null element is
denoted by 0. Recall that Ĝ denotes the dual group of G defined in Section 2.1. Throughout
this section we are interested in the spectral properties of a centered process valued in a
separable Hilbert space and assumed to be weakly stationary in the following sense.

Definition 4.1 (Hilbert valued weakly stationary processes). Let (Ω,F , P) be a probability
space, H0 be a separable Hilbert space and (G,+) be an l.c.a. group. Then a process X :=
(Xt)t∈G is said to be an H0-valued weakly stationary process if

(i) For all t ∈ G, Xt ∈ L2(Ω,F ,H0,P).

(ii) For all t ∈ G, E [Xt] = E [X0]. We say that X is centered if E [X0] = 0.

(iii) For all t, h ∈ G, Cov (Xt+h, Xt) = Cov (Xh, X0).

(iv) The autocovariance operator function ΓX : h 7→ Cov (Xh, X0) satisfies the following
continuity condition: for all P ∈ Lb(H0), h 7→ Tr(PΓX(h)) is continuous on G.

In the case of time series, G= Z, we can of course remove Condition (iv) in this definition.
It is less trivial to show that, for any l.c.a. group G, we get an equivalent definition if we
replace (iv) by just saying that ΓX is continuous in w.o.t. This interesting fact is explained
in the following remark in a more detailed fashion.

Remark 4.1. The trace appearing in Assertion (iv) of Definition 4.1 is well defined for any
P ∈ Lb(H0) and any h ∈ G since the covariance operator of variables in L2(Ω,F ,H0,P)
lies in S1(H0), and the composition of a bounded operator and a trace-class operator is trace-
class. Furthermore, for any x, y ∈ H0, taking P = xyH we have Tr(PΓX(h)) = 〈ΓX(h)x, y〉H0

.
Hence Condition (iv) of Definition 4.1 implies the following one.

(iv’) The autocovariance operator function ΓX : h 7→ Cov (Xh, X0) is continuous in w.o.t.

It is easy to find a mapping f : G → S1(H0) which is continuous in w.o.t. but such that
h 7→ Tr(f(h)) is not continuous hence does not satisfy the continuity condition imposed on
ΓX in (iv). However, it turns out that if ΓX is the autocovariance operator function h 7→
Cov (Xh, X0) with X satisfying Conditions (i) and (iii), then Conditions (iv) and (iv’) become
equivalent. The reason behind this surprising fact will be made clear later in Point 1) of
Remark 4.3. In other words, we can replace (iv) by (iv’) without altering Definition 4.1.

As in the univariate case, the notion of weak stationarity is related to an isometric property
of the lag operators, but here the covariance stationarity expressed in Condition (iii) trans-
lates into a Gramian-isometric property rather than a scalar isometric property. Namely, let
X := (Xt)t∈G satisfy Conditions (i) and (ii) and take it centered so that each Xt belongs to
the normal Hilbert module M(Ω,F ,H0,P) as defined in Example 2.2. For all h ∈ G, define
the lag operator of lag h ∈ G as the mapping UX

h : Xt 7→ Xt+h defined for all t ∈ G. Then
Condition (iii) is equivalent to saying that for all h ∈ G, the mapping UX

h is Gramian-isometric
on {Xt : t ∈ G} for the Gramian structure inherited from M(Ω,F ,H0,P). Thus, if this con-
dition holds, for any lag h ∈ G, using Proposition 2.3, there exists a unique Gramian-unitary
operator extending UX

h on the modular time domain HX of X defined as the submodule of
H generated by the Xt’s, that is,

HX := Span
H
(PXt : P ∈ Lb(H0), t ∈ G) ,

which is the generalization of (1.5) to a general l.c.a. group G. In fact it is convenient to
introduce a slightly more general definition of the modular time domain.

Definition 4.2 (G0-valued modular time domain). Let (G,+) be an l.c.a. group, and H0

and G0 be two separable Hilbert spaces. Let X := (Xt)t∈G be a collection of variables in
M(Ω,F ,H0,P) as defined in Example 2.2. The G0-valued modular time domain of X is
defined by

HX,G0 := Span
M(Ω,F,G0,P) (PXt : P ∈ Lb(H0, G0), t ∈ G) , (4.1)

which is a submodule of M(Ω,F , G0,P).

We now extend the (scalar) Cramér representation theorem by means of an integral with
respect to a c.a.g.o.s. measure.
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Theorem 4.1 (Gramian-Cramér representation theorem). Let H0 be a separable Hilbert
space, (Ω,F ,P) be a probability space and (G,+) be an l.c.a. group. Let X := (Xt)t∈G be a
centered weakly stationary H0-valued process as in Definition 4.1. Then there exists a unique
regular H0-valued random c.a.g.o.s. measure X̂ on (Ĝ,B(Ĝ),Ω,F ,P) such that

Xt =

∫
χ(t) X̂(dχ) for all t ∈ G . (4.2)

This result is stated in Theorem 2 in [12, Section 4.2] without the uniqueness, which
appeared to be a new result in this general setting. We provide a detailed proof in Section 5.3.
In fact Theorem 2 in [12, Section 4.2] contains a converse statement, which we now state
separately as a lemma with its proof.

Lemma 4.2. Let (G,+) be an l.c.a. group, H0 a separable Hilbert space and W be an H0-
valued random c.a.g.o.s. measure on (Ĝ,B(Ĝ),Ω,F , P) with intensity operator measure ν.
Define, for all t ∈ G,

Xt =

∫
χ(t)W (dχ) .

Then X = (Xt)t∈G is a centered H0-valued weakly stationary process with auto-covariance
operator function Γ defined by

Γ(h) =

∫
χ(h) ν(dχ) for all h ∈ G. (4.3)

Proof. By Definition 3.4, X = (Xt)t∈G is a centered H0-valued process satisfying (i) and (ii)
in Definition 4.1. Using the Gramian-isometric property of integration with respect to W ,
we get for all t, h ∈ G, Cov (Xt+h, Xt) =

∫
χ(t + h)χ(t)νX(dχ) =

∫
χ(h)νX(dχ) which gives

(iii) in Definition 4.1 with auto-covariance operator function Γ given by (4.3). Finally, for all
P ∈ Lb(H0), for all h ∈ G, denoting by f the density of ν with respect to ‖ν‖1, we have

PΓ(h) = P

∫
χ(h) f(χ) ‖ν‖1(dχ) =

∫
χ(h)P f(χ) ‖ν‖1(dχ) ,

Since the integrand in the last integral has trace-class norm upper bounded by ‖P‖Lb(H0)

and ‖ν‖1 is finite we get that h 7→ PΓ(h) is continuous from Ĝ to S1(H0) by dominated
convergence. The continuity of h 7→ Tr(PΓ(h)) follows, thus showing the last point of Defini-
tion 4.1.

With Theorem 4.1 at our disposal, we can now define the Gramian-Cramér representation
and the spectral operator measure of X.

Definition 4.3 (Gramian-Cramér representation and spectral operator measure). Under the
setting of Theorem 4.1, the regular c.a.g.o.s. measure X̂ is called the (Gramian) Cramér
representation of X and its intensity operator measure is called the spectral operator measure
of X. It is a regular trace-class p.o.v.m. on (Ĝ,B(Ĝ),H0).

By Lemma 4.2, we see that the auto-covariance operator function and the spectral operator
measure of X are related to each other through the identity (4.3). As already hinted in the
introduction, using the tools introduced in Section 3.3, we can more generally interpret the
Cramér representation of Theorem 4.1 as establishing a Gramian-isometric mapping onto the
modular time domain ofX, starting from its modular spectral domain which we now introduce.

Definition 4.4 (G0-valued spectral time domain). Let H0 and G0 be two separable Hilbert
spaces and X := (Xt)t∈G be a centered weakly stationary process valued in H0 as in Defini-
tion 4.1. The G0-valued modular spectral domain of X is the normal Hilbert Lb(G0)-module
defined by

ĤX,G0 := L
2(Ĝ,B(Ĝ),O(H0,G0), νX) , (4.4)

where νX is the spectral operator measure of X introduced in Definition 4.3.

We can now state that the modular time and spectral domain are Gramian-isometrically
isomorphic, whose proof can be found in Section 5.3.
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Theorem 4.3 (Kolmogorov isomorphism theorem). Under the setting of Theorem 4.1, for
any separable Hilbert space G0, the mapping IG0

X̂
: Φ 7→

∫
Φ dX̂ is a Gramian-unitary operator

from ĤX,G0 to HX,G0 and we have HX,G0 = HX̂,G0 . Thus, the G0-valued modular time
domain HX,G0 and the G0-valued modular spectral domain ĤX,G0 are Gramian-isometrically
isomorphic.

Remark 4.2. There are two natural classes of Gramian-unitary operators respectively on the
modular time and spectral domains, namely, for all h ∈ G, the lag operator UX

h : HX → HX

defined as the Gramian-unitary extension of Xt 7→ Xt+h, t ∈ G, and the multiplication by
MX

h : ĤX → ĤX which maps Φ to χ 7→ χ(h)Φ(χ). Then, for all h ∈ G, UX
h and MX

h

represent the same mapping expressed either in the time domain or the spectral domain in the
sense that UX

h ◦IH0

X̂
= IH0

X̂
◦MX

h . Indeed, applying these definitions with (4.2), we immediately

get that UX
h and IH0

X̂
◦MX

h ◦
(
IH0

X̂

)−1

are Gramian-isometric and coincide on {Xt : t ∈ G},

hence, by Proposition 2.3, coincide on HX .

Relation (4.3) is at the core of the general Bochner theorem, which we now discuss. Recall
that the standard (univariate) Bochner theorem can be stated as follows (see [24, Theo-
rem 1.4.3] for existence and [24, Theorem 1.3.6] for uniqueness).

Theorem 4.4 (Bochner Theorem). Let (G,+) be an l.c.a. group and γ : G→ C. Then the
two following statements are equivalent:

(i) γ is continuous and hermitian non-negative definite, that is, for all n ∈ N, t1, · · · , tn ∈ G
and a1, · · · , an ∈ C,

n∑

i,j=1

aiajγ(ti − tj) ≥ 0.

(ii) There exists a regular finite non-negative measure ν on (Ĝ,B(Ĝ)) such that

γ(h) =

∫
χ(h) ν(dχ), h ∈ G. (4.5)

Moreover, if Assertion (ii) holds, ν is the unique regular non-negative measure satisfying (4.5).

There are various other ways to extend Condition (i) of Theorem 4.4 when replacing C by
a Hilbert space H0.

Definition 4.5. Let H0 be a Hilbert space and (G,+) an l.c.a. group. A function Γ : G→
Lb(H0) is said to be

1. a proper auto-covariance operator function if H0 is separable and there exists a H0-
valued weakly stationary process with autocovariance operator function Γ;

2. positive definite if for all n ∈ N
∗, t1, · · · , tn ∈ G and P1, · · · ,Pn ∈ Lb(H0),

n∑

i,j=1

PiΓ(ti − tj)P
H

j � 0 ;

3. of positive-type if for all n ∈ N
∗, t1, · · · , tn ∈ G and x1, · · · , xn ∈ H0,

n∑

i,j=1

〈Γ(ti − tj)xj , xi〉H0
≥ 0 ;

4. hermitian non-negative definite if for all n ∈ N
∗, t1, · · · , tn ∈ G and a1, · · · , an ∈ C,

n∑

i,j=1

aiajΓ(ti − tj) � 0.

Equivalently, Γ is hermitian non-negative definite if and only if for all x ∈ H0, t 7→
〈Γ(t)x, x〉H0

is hermitian non-negative definite.
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It is straightforward to show that the definitions in Definition 4.5 are given in an increasing
order of generality in the sense that 1 ⇒ 2 ⇒ 3 ⇒ 4. In the univariate case, for a continuous
γ : G → C all these definitions are trivially equivalent to Assertion (i) in Theorem 4.4.
A natural question for a general Hilbert space H0 is which definition should be used to
extend the Bochner theorem. A first answer is the following corollary which is obtained as a
consequence of Theorem 4.1, and the construction of H0-valued Gaussian c.a.g.o.s. measures
of Theorem 3.1.

Corollary 4.5. Let (G,+) be an l.c.a. group, H0 a separable Hilbert space and Γ : G →
Lb(H0). Then the following assertions are equivalent.

(i) The function Γ is a proper auto-covariance operator function.

(ii) There exists a regular trace-class p.o.v.m. ν on (Ĝ,B(Ĝ),H0) such that (4.3) holds.

Proof. The implication (i)⇒(ii) follows from Theorem 4.1. Now suppose that (ii) holds.
Let W be the Gaussian c.a.g.o.s. measure with intensity operator measure ν obtained in
Theorem 3.1. Then Assertion (i) follows from Lemma 4.2.

This result extends Bochner’s theorem from the point of view of H0-valued weakly-
stationary processes so that Γ in Corollary 4.5(i) is valued in S1(H0) and for all P ∈ Lb(H0),
h 7→ Tr(PΓ(h)) is continuous. It turns our that other extensions can be obtained using a
purely operator theory point of view with the more general positiveness conditions of Def-
inition 4.5. In the following theorem, H is not necessarily separable, Γ is not necessarily
S1(H)-valued (and therefore the resulting p.o.v.m. may not be trace-class) and its continuity
condition can be relaxed to continuity for the w.o.t. This result is essentially the Naimark’s
moment theorem of [4]. We refer to it as the general Bochner theorem (or general Herglotz
theorem for G= Z).

Theorem 4.6 (General Bochner Theorem). Let (G,+) be an l.c.a. group, H a Hilbert space
and Γ : G→ Lb(H). Then the following assertions are equivalent.

(i) Γ is continuous in w.o.t. and positive definite.

(ii) Γ is continuous in w.o.t. and of positive-type.

(iii) Γ is continuous in w.o.t. and hermitian non-negative definite.

(iv) There exists a regular p.o.v.m. ν on (Ĝ,B(Ĝ),H) such that (4.3) holds.

Moreover, if Assertion (iv) holds, ν is the unique regular p.o.v.m. satisfying (4.3).

It is important to note that there is a subtle difference between Assertion (ii) of Corol-
lary 4.5 and Assertion (iv) of Theorem 4.6, namely, the latter assertion is weaker since ν is
not supposed to be trace-class. In particular, we must rely on Definition 2.5 for defining the
integral in (4.3) and cannot rely on the Radon-Nikodym derivative as in Theorem 2.2 (d) if
ν is not trace-class.

Proof of Theorem 4.6. The equivalence between (i) and (ii) is straightforward: to show that
(i)⇒(ii), take an arbitrary x ∈ H0 with unit norm and set Pi = xxH

i for i = 1, . . . , n. To
show that (ii)⇒(i), take, for any x ∈ H0, xi = PH

i x for i = 1, . . . , n. The equivalence between
(ii), (iii) and (iv) is given by [4, Theorem 3]. Recall Definition 2.4 of a regular p.o.v.m.. It
follows that the lastly stated fact that ν is uniquely determined by (4.3) is a consequence of
the uniqueness stated in the univariate Bochner theorem (recalled in Theorem 4.4) applied
to νx : A 7→ xHν(A)x for all x ∈ H0.

An immediate consequence of Corollary 4.5 and Theorem 4.6 is the following result.

Corollary 4.7. Let (G,+) be an l.c.a. group, H0 a separable Hilbert space and Γ : G →
Lb(H0). Then the following assertions are equivalent.

(i) The function Γ is a proper auto-covariance operator function.

(ii) Any of the Assertions (i)–(iii) in Theorem 4.6 holds and Γ(0) ∈ S1(H0).

Proof. By definition of the auto-covariance operator function of a weakly stationary process,
it is straightforward to see that Assertion (i) implies Assertion (ii). Now, suppose that Asser-
tion (ii) holds. By Corollary 4.5, we only need to prove Assertion (ii) of Corollary 4.5, which
is what we almost get in Assertion (iv) of Theorem 4.6, except that we have to prove that,
additionally, ν is trace-class. Applying (4.3) with h = 0, we get that ν(Ĝ) = Γ(0), which
is assumed to be in S1(H0) in the present Assertion (ii). Thus by Lemma 2.1, ν is indeed
trace-class and the proof is concluded.
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Remark 4.3. Let us briefly comment on the equivalence established in Corollary 4.7.

1) In Condition (iv) of Definition 4.1, we required a condition on Γ which is stronger than
continuity in w.o.t. However in Assertion (ii) of Corollary 4.7, the continuity of Γ is
only needed in the w.o.t. This means that we can replace the continuity Condition (iv) in
Definition 4.1 by continuity in w.o.t. as in Remark 4.1 (iv’) without changing the overall
definition of a weakly stationary process.

2) The previous remark is related to a fact established in Proposition 3 of [12, Section 4.2],
which states the equivalence between being scalar stationary and being operator sta-
tionary. The latter definition is the same as our Definition 4.1, and the former one
amounts to replace Condition (iv) in Definition 4.1 by assuming that for all x ∈ H0,
xHΓx : h 7→ xHΓ(h)x is continuous and hermitian non-negative definite. But this
amounts to says that Γ itself is continuous in the w.o.t. and hermitian non-negative
definite. Since Γ(0) ∈ S1(H0) is a consequence of Assertion (i) in Definition 4.1, Corol-
lary 4.7 indeed implies the equivalence established in Proposition 3 of [12, Section 4.2].

4.2 Composition and inversion of filters

With the construction of the spectral theory for weakly-stationary processes of Section 4.1,
the study of linear filters for such processes is easily derived. Indeed, we are now able to give
the most general definition of linear filtering, characterize the spectral structure of the filtered
process and provide results on compositions and inversion of linear filters. Then, in the next
section, we will provide a general statement of harmonic principal component analysis for
weakly stationary processes valued in a separable Hilbert space.

Let H0 and G0 be two separable Hilbert spaces. Consider a linear lag-invariant filter with
input an H0-valued weakly stationary stochastic process X = (Xt)t∈G defined on (Ω,F , P)
and output a HX,G0 -valued process Y = (Yt)t∈G. Then, for all t ∈ G, Yt = UX

t Y0, which, by
Remark 4.2, reads, in the spectral domain,

Yt =

∫
χ(t) Φ(χ) X̂(dχ) , t ∈ G ,

where Φ is called the transfer operator function of the filter. Therefore, the output Y =
(Yt)t∈G is well defined in HX if and only if

X̂ ∈ ŜΦ(Ω,F , P) or, equivalently, Φ ∈ ĤX,G0 , (4.6)

where ŜΦ(Ω,F , P) is as in Definition 3.5 and ĤX,G0 denotes the modular spectral domain of
Definition 4.4. Then the output Y = (Yt)t∈G is equivalently defined by its spectral random
c.a.g.o.s. measure Ŷ = F̂Φ(X̂). For convenience we write, in the time domain,

X ∈ SΦ(Ω,F , P) and Y = FΦ(X) , (4.7)

for the assertions X̂ ∈ ŜΦ(Ω,F , P) and Ŷ = F̂Φ(X̂).
Many examples in the literature rely on a time-domain description of the filtering obtained

as in the following example.

Example 4.1 (Convolutional filtering). Let H0 and G0 be two separable Hilbert spaces. Let
X = (Xt)t∈G be an H0-valued weakly stationary stochastic process defined on (Ω,F ,P). Let η
be the Haar measure on G (see [24, Chapter 1]) and Φ ∈ L1(G,B(G),Lb(H0,G0), η). Define
the process Y = (Yt)t∈G by the time domain convolutional filtering

Yt =

∫
Φ(s)Xt−s η(ds) , t ∈ G ,

where the integral is a Bochner integral on L1(G,B(G),M(Ω,F , G0,P), η). Then, using
Proposition 3.7 and defining Φ̂ : Ĝ → Lb(H0,G0) by the following Bochner integral on
L1(G,B(G),Lb(H0,G0), η),

Φ̂(χ) =

∫
Φ(s) χ(s) η(ds) ,

it is straightforward to show that Φ̂ ∈ L
2(Ĝ,B(Ĝ),O(H0,G0), νX) and Y = FΦ̂(X).
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We have the following result on the composition and inversion of general filters, which
relies on the Gramian-isometric relationships of Definition 2.11. Its proof can be found in
Section 5.4.

Proposition 4.8 (Composition and inversion of filters on weakly stationary time series).
Let H0 and G0 be two separable Hilbert spaces and pick a transfer operator function Φ ∈

FO

(
Ĝ,B(Ĝ),H0,G0

)
. Let X be a centered weakly stationary H0-valued process defined on

(Ω,F , P) with spectral operator measure νX . Suppose that X ∈ SΦ(Ω,F ,P) and set Y =
FΦ(X), as defined in (4.7). Then the three following assertions hold.

(i) For any separable Hilbert space I0, we have HY,I0 ⊆
∼ HX,I0 .

(ii) For any separable Hilbert space I0 and all Ψ ∈ FO

(
Ĝ,B(Ĝ),G0, I0

)
, we have X ∈

SΨΦ(Ω,F , P) if and only if FΦ(X) ∈ SΨ(Ω,F ,P), and in this case, we have

FΨ ◦ FΦ(X) = FΨΦ(X). (4.8)

(iii) Suppose that Φ is injective ‖νX‖1-a.e. Then X = FΦ−1 ◦ FΦ(X), where we define

Φ−1(λ) :=
(
Φ(λ)|D(Φ(λ))→Im(Φ(λ))

)−1
with domain Im(Φ(λ)) for all λ ∈ {Φ is injective}

and Φ−1(λ) = 0 otherwise. Moreover, Assertion (i) above holds with ⊆
∼ replaced by ∼= .

4.3 Cramér-Karhunen-Loève decomposition

Let H0 be a separable Hilbert space with (possibly infinite) dimension N and X = (Xt)t∈G
be a centered, H0-valued weakly-stationary process defined on a probability space (Ω,F , P)
with Cramér representation X̂ and spectral operator measure νX .

The Cramér-Karhunen-Loève decomposition amounts to give a rigorous meaning to the
formula

X̂(dχ) =
∑

0≤n<N

φn(χ)⊗ φn(χ) X̂(dχ) , (4.9)

where, for all χ ∈ Ĝ, (φn(χ))0≤n<N is an orthonormal sequence in H0 chosen in such a way
that the summands in (4.9) are uncorrelated and the notation ⊗ is recalled in Section 2. Such
a decomposition provides a way to derive the harmonic principal component analysis of the
processX, which is an approximation ofX by a finite rank linear filtering. In recent works, the
functional Cramér-Karhunen-Loève decomposition is achieved under additional assumptions
on νX such as having a continuous density with respect to the Lebesgue measure (in [26])
or at most finitely many atoms (in [30]). In fact, thanks to the Radon-Nikodym property
of trace-class p.o.v.m.’s of Theorem 2.2, there is no need for such additional assumptions.
Instead, we rely on the following lemma, whose proof can be found in Section 5.5.

Lemma 4.9 (Eigendecomposition of a trace-class p.o.v.m.). Let H0 be a separable Hilbert
space with dimension N ∈ {1, . . . ,+∞}. Let ν be a trace-class p.o.v.m. on (Λ,A,H0) and µ
a σ-finite dominating measure of ν, e.g. its variation norm ‖ν‖1. Then there exist sequences
(σn)0≤n<N and (φn)0≤n<N of (Λ,A) → (R+,B(R+)) and (Λ,A) → (H0,B(H0)) measurable
functions, respectively, such that the following assertions hold.

(i) For all λ ∈ Λ, (σn(λ))0≤n<N is non-increasing and
∑

0≤n<N

σn(λ) <∞.

(ii) For all λ ∈ Λ, (φn(λ))0≤n<N is orthonormal.

(iii) The trace-class p.o.v.m. ν admits the density

f : λ 7→
∑

0≤n<N

σn(λ)φn(λ)⊗ φn(λ) ,

with respect to µ, where the convergence holds absolutely in S1 for each λ ∈ Λ.

Moreover, using the notations φH

n : λ 7→ φn(λ)
H and φn ⊗ φn : λ 7→ φn(λ) ⊗ φn(λ), we have

the following properties.

(iv) The sequence (φH

n)0≤n<N is orthogonal in L
2(Λ,A,O(H0,C), ν).

(v) The sequence (φn ⊗ φn)0≤n<N is Gramian-orthogonal in L
2(Λ,A,O(H0), ν).
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(vi) The Lb(H0)-valued mapping
∑

0≤n<N φn ⊗ φn is equal to the mapping λ 7→ IdH0
in

L
2(Λ,A,O(H0), ν).

We have the following remark about Assertion (vi).

Remark 4.4. By Assertions (i)-(iii), for all λ ∈ Λ,
∑

0≤n<N φn(λ)⊗φn(λ) is the orthogonal
projection onto the closure of the range of f(λ). Thus, Assertion (vi) says that this projection
is equal to IdH0

in L
2(Λ,A,O(H0), ν). It is not equivalent to saying that

∑
0≤n<N φn ⊗φn =

IdH0
, ‖ν‖1-a.e. since it may happen that the range of f(λ) is dense in H0 for none of the λ’s,

in which case we have Assertion (vi) at the same time as {
∑

0≤n<N φn ⊗ φn = IdH0
} = ∅.

Applying Lemma 4.9 to the trace-class p.o.v.m. νX , we deduce that

X̂ = F̂(
∑

0≤n<N φn⊗φn)(X̂) =
∑

0≤n<N

F̂φn⊗φn(X̂) , (4.10)

where (F̂φn⊗φn(X̂))0≤n<N are uncorrelated random c.a.g.o.s.’s on (Ĝ,B(Ĝ),H0). In other
words, (4.9) holds both with X̂ in the sum sign or out of it in the right-hand side.

Note that for all n ∈ N, F̂φn⊗φn(X̂) = F̂φn ◦ F̂φH
n
(X̂) and that by (iv) of Lemma 4.9,

(F̂φH
n
(X̂))0≤n<N is a sequence of uncorrelated C-valued c.a.o.s. measures. Hence, interpret-

ing (4.10) in the time domain, we get a decomposition of the process X = (Xt)t∈G based on
a collection of the uncorrelated univariate processes (FφH

n
(X))0≤n<N .

The following general formulation of a harmonic principal components analysis for H0-
valued weakly-stationary processes then follows.

Proposition 4.10 (Harmonic functional principal components analysis). Let H0 be a sep-
arable Hilbert space and X = (Xt)t∈G be a centered, H0-valued weakly-stationary process
defined on a probability space (Ω,F , P) with spectral operator measure νX . Let (σn)0≤n<N

and (φn)0≤n<N be given as in Lemma 4.9 for some dominating measure µ of νX , for instance
µ = ‖νX‖1. Let q : Ĝ → N

∗ be a measurable function. Then for all t ∈ G,

min
{
E

[∥∥Xt − [FΘ(X)]t
∥∥2
]
: Θ ∈ L

2(Ĝ,B(Ĝ),O(H0), νX), rank(Θ) ≤ q
}

is equal to ∫

Ĝ

∑

q(χ)∧N≤n<N

σn(χ)µ(dχ) ,

and the minimum is achieved for

Θ : χ 7→
∑

0≤n<q(χ)∧N

φn(χ)⊗ φn(χ) .

Proof. Let

fX(χ) =
∑

0≤n<N

σn(χ)φn(χ)⊗ φn(χ)

denotes the density of νX with respect to µ as given by Lemma 4.9. We have, for all t ∈ G
and Θ ∈ L

2(Ĝ,B(Ĝ),O(H0), νX),

[FΘ(X)]t =

∫
χ(t)Θ(χ) X̂(dχ) ,

and thus by isometric isomorphism between the spectral domain and the time domain,

E
[
‖Xt − [FΘ(X)]t‖

2
]
=

∫ ∥∥∥(IdH0
−Θ(χ))f

1/2
X (χ)

∥∥∥
2

S2(H0)
µ(dχ) .

The result is then obtained by observing that, for each χ ∈ Ĝ, the norm in the integral is
minimal under the constraint rank(Θ(χ)) ≤ q(χ) for Θ(χ) =

∑
0≤n<q(χ)∧N φn(χ)⊗φn(χ).
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4.4 Comparison with recent approaches

We can now provide a more thorough comparison with the recent works establishing a spectral
theory for functional time series mentioned in the introduction. Hence we take G= Z in this
section, so that χ ∈ Ĝ can be replaced by λ ∈ T = R/(2πZ) (or (−π, π]) with χ(h) replaced by
eiλh. The functional case usually corresponds to setting H0 = L2(0, 1) but this is unimportant
for the following discussion.

As hinted in the introduction, the major benefit of the construction developed in the
previous sections is to clarify the spectral domain of a functional weakly-stationary process
X as being defined as a set of operator-valued functions, namely L

2(Ĝ,B(Ĝ),O(H0,G0), νX).
Moreover, the Gramian-Cramér representation, as stated in Theorem 4.1, is a particular
instance of the Gramian-unitary operator between the spectral domain and the time domain,
based on the integral of Definition 3.4. In contrast, in [30] the isometric isomorphism stated
in their Theorem 4.4 is similar to the one expressed in [11] and recalled in the introduction as
the isometric extension of (1.2) to HX = Span (Xt , t ∈ Z). Moreover, in recent approaches,
X̂ in (1.2) is defined as a functional orthogonal increment process and the integral is referred
to as a Riemann–Stieltjes integral with respect to X̂. This notion, used for the Cramér
representations exhibited in [19, 20, 26, 29, 30], and which follows the construction of [23] for
univariate weakly stationary time series, is based on the following definition.

Definition 4.6 (Functional orthogonal increment processes). Let H0 be a separable Hilbert
space. A random process (Zλ)λ∈[−π,π] valued in H0 is said to be a functional orthogonal
increment process if the three following assertions hold.

(i) We have Z−π = 0 a.s. and, for all λ ∈ (−π, π], Zλ ∈ M(Ω,F ,H0,P) (as defined in
Example 2.2).

(ii) For all λ1, λ2, λ3, λ4 ∈ [−π, π], with λ2 ≥ λ1 and λ4 ≥ λ3, we have

(λ1, λ2] ∩ (λ3, λ4] = ∅ ⇒ Cov (Zλ4
− Zλ3

, Zλ2
− Zλ2

) = 0 .

(iii) For all λ ∈ [−π, π], lim
ǫ↓0

E

[
‖Zλ+ǫ − Zλ‖

2
H0

]
= 0.

Of course, Definition 4.6 can be related to random c.a.g.o.s. measures as in Definition 3.2
with Λ = (−π, π] and A = B((−π, π]). Indeed, it is straightforward to show that, if W is an
H0-valued random c.a.g.o.s. measure on ((−π, π],B((−π, π]),Ω,F , P), then setting

Z−π = 0 and Zλ =W ((−π,λ]) , λ ∈ (−π, π] , (4.11)

we get a Gramian-orthogonal increment process. Now, conversely, if (Zλ)λ∈[−π,π] is a
Gramian-orthogonal increment process, then there exists a uniqueH0-valued random c.a.g.o.s.
W on ((−π, π],B((−π, π]),Ω,F ,P) such that (4.11) holds. This will be done in Proposition 5.3.

We conclude this discussion by comparing Theorem 4.6 to the functional Herglotz the-
orem [30, Theorem 3.7]. In the following discussion, (i)–(iv) all refer to the assertions in
Theorem 4.6. First note that p.o.v.m.’s are equivalent to the notion of operator-valued mea-
sures defined in [30] up to an isomorphism between monoids. Hence Theorem 3.7 in [30] is
equivalent to stating the equivalence between Assertions (ii) and (iv). However the proof of
Theorem 3.7 in [30] is different from the proof of the equivalence (ii)⇔(iv) proposed in [4]. A
closer look at the literature in operator theory shows that the implication (iii) ⇒ (iv) appear
commonly as an ingredient of the proof of Stone’s theorem, see e.g. [2, 25], [10, §VI and VII].
Since (ii) obviously implies (iii), this indicates that the implication (ii) ⇒ (iv) is a classical
result. In contrast, it seems that little attention has been given to the converse implication
(iv)⇒(ii). The proof of this implication is included in the proof of [4, Theorem 2]. Berberian
claims there that “[He does] not know how to prove [it] without using dilation theory”. The
proof of the same implication given in [30] relies on the computation of

∫
〈ν(dχ)x(χ), x(χ)〉

where ν is an operator-valued measure in the sense of their Definition 3.5, see [30, Lines 3
and 4, Page 3695]. However the rigorous definition of such an integral is unclear to us in their
context. For sake of completeness, we provide a simple proof of (iv)⇒(ii) in Section 5.3.

5 Postponed proofs
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5.1 Proofs of Section 2

We start with two useful lemmas, in which (Λ,A) is a measurable space, H0,G0 are two
separable Hilbert spaces and µ is a non-negative measure on (Λ,A).

Lemma 5.1. Let E = K(H0,G0) or Sp(H0, G0) where p ∈ {1, 2} and. Then a function
Φ : Λ → E is measurable if and only if it is simply measurable.

Proof. By (2.1), we only need to show that, if Φ is simply measurable then it is measurable.
The space E is separable because the set of finite rank operators is dense in E for the norm ‖·‖
if E = K(H0,G0) and ‖·‖p if E = Sp(H0,G0). By Pettis’s measurability theorem, this implies
that it is enough to show that for all f ∈ E∗, f ◦ Φ is a measurable complex-valued function.
By [7, Theorems 19.1, 18.14, 19.2] we get that K(H0,G0)

∗, S1(H0,G0)
∗ and S2(H0,G0)

∗

are respectively isometrically isomorphic to S1(H0,G0), Lb(H0,G0) and S2(H0,G0) and the
duality relation can be defined on E × E∗ as (P,Q) 7→ Tr(QHP). This means that we only
have to show measurability of the complex-valued functions λ 7→ Tr(PHΦ(λ)) for all P ∈
E∗. Let (φk)k∈N, (ψk)k∈N be Hilbert basis of H0 and G0 respectively, then Tr(PHΦ(λ)) =∑

k∈N
〈Φ(λ)φk,Pψk〉G0

which defines a measurable function of λ by simple measurability of
Φ.

Lemma 5.2. Let Φ ∈ L1(Λ,A,S+
1 (H0), µ) and define the function Φ1/2 : λ 7→ Φ(λ)1/2. Then

Φ1/2 ∈ L2(Λ,A,S2(H0), µ).

Proof. Simple measurability of Φ1/2 is given by Lemma 2 in [12, Section 3.4] and therefore, by
Lemma 5.1, Φ1/2 ∈ F(Λ,A,S2(H0)). The fact that Φ1/2 ∈ L2(Λ,A,S2(H0), µ) then follows

from the identity
∥∥∥Φ1/2(λ)

∥∥∥
2

2
= ‖Φ(λ)‖1.

We now provide the proofs of Lemma 2.1 and Theorem 2.2.

Proof of Lemma 2.1. The first point comes from the fact that for all A ∈ A, ν(A) � ν(Λ).
Now, if ν is trace-class, then (2.2) is easily verified for the norm ‖·‖1 using the fact that ‖·‖1 =
Tr(·) for positive operators. Finally, by definition of ‖ν‖1, regularity of ‖ν‖1 is equivalent to
regularity of ν as an S1(H0)-valued measure which clearly implies regularity of νx = xHν(·)x
for all x ∈ H0. Suppose now that for all x ∈ H0, νx is regular, then let (ek)k∈N be a Hilbert
basis of H0, and define for all n ∈ N, the non-negative measure µn :=

∑n
k=0 νek such that

for all A ∈ A, ‖ν‖1(A) = limn→+∞ µn(A) = supn∈N
µn(A). Then, by Vitali-Hahn-Sakh-

Nikodym’s theorem (see [5]), the sequence (µn)n∈N is uniformly countably additive which
implies regularity of ‖ν‖1 by Lemma 23 in [8, Chapter VI, Section 2].

Proof of Theorem 2.2. The general case where µ is σ-finite follows from the finite case.
We therefore assume that µ is finite in the following. Suppose that ‖ν‖1 ≪ µ. Then, since
H0 is separable, S1(H0) is the dual of the separable space K(H0). It is thus a separable dual
space and Theorem 1 in [8, Chapter III, Section 3] gives the existence and uniqueness of a
density g ∈ L1(Λ,A,S1(H0), µ) satisfying (2.3). Then for all x ∈ H0 and A ∈ A,

∫

A

〈g(λ)x,x〉H0
µ(dλ) = 〈ν(A)x, x〉H0

≥ 0 ,

and there exists a set Ax ∈ A with µ(Ac
x) = 0 and 〈g(λ)x, x〉H0

≥ 0 for all λ ∈ Ax. Taking

(xn)n∈N a dense countable subset of H0 we get that g ∈ S+
1 (H0) on A =

⋂
n∈N

Axn thus
proving Assertion (a). Assertion (b) then follows from Lemma 5.2. Moreover, taking the
trace in (2.3) gives for all A ∈ A,

‖ν‖1(A) =

∫

A

‖g‖1 dµ

which gives Assertion (c). Assertion (d) is easy to get by extending the case f = 1A for A ∈ A
to simple functions and then using the density of simple functions.
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5.2 Proofs of Section 3

It is in fact better to start with the following proof because Theorem 3.2 basically follows
from Proposition 3.4.

Proof of Proposition 3.4. Let f = dν
d‖ν‖

1

as in Theorem 2.2. Using that ‖ν‖1({g = 0}) =∫
{g=0}

‖g‖1 dµ = 0 and g = f‖g‖1 µ-a.e. by uniqueness of the density, we get that

‖g‖1 > 0 ‖ν‖1-a.e. and g = f‖g‖1 µ-a.e. (5.1)

(and thus also ‖ν‖1-a.e. since ‖ν‖1 ≪ µ). Assertion (a) follows easily. Let us for instance
detail the proof of the equivalence between (i’) and (i) of Definition 3.3. The left-hand side
of (5.1) gives that

‖ν‖1

({
Im(f1/2) 6⊂ D(Φ)

})
= ‖ν‖1

({
Im(f1/2) 6⊂ D(Φ)

}
∩ {g 6= 0}

)
, (5.2)

and its right-hand side yields

µ
({

Im(f1/2) 6⊂ D(Φ)
}
∩ {g 6= 0}

)
= µ

({
Im(g1/2) 6⊂ D(Φ)

}
∩ {g 6= 0}

)
(5.3)

= µ
({

Im(g1/2) 6⊂ D(Φ)
})

,

since
{
Im(g1/2) 6⊂ D(Φ)

}
∩ {g = 0} = ∅. To get (i’) ⇔ (i), we note that

‖ν‖1

({
Im(f1/2) 6⊂ D(Φ)

}
∩ {g 6= 0}

)
=

∫

{Im(f1/2) 6⊂D(Φ)}∩{g 6=0}

‖g‖1 dµ ,

and thus the right-hand side of (5.2) is zero if and only if the left-hand side of (5.3) is.
Equivalences (ii) ⇔ (ii’) and (iii) ⇔ (iii’) and Relation (3.5) are easy consequences of (5.1).
Assertions (b) and (c) come easily using the definition of L

2(Λ,A,O(H0,G0), ν). Measura-
bility of Φg1/2 and (Φg1/2)(Φg1/2) are ensured by O-measurability of Φ, simple measurability
of f and Lemma 5.1.

We can now derive Theorem 3.2.

Proof of Theorem 3.2. All theses results are easily derived from Proposition 3.4 and the
module nature of L2(Λ,A,S2(H0, G0), µ). The only difficulty lies in showing the completeness
of L2(Λ,A,O(H0,G0), ν), which is detailed in the proof of Theorem 11 of [12, Section 3.4].

Proof of Theorem 3.3. In the first two steps of the proof of Theorem 12 in [12, Section 3.4]
(see also [16, Theorem 4.22]), it is shown that, if Φ ∈ L

2(Λ,A,O(H0,G0), ν) and ǫ > 0, there
exists Ψ ∈ L2(Λ,A,Lb(H0,G0), ‖ν‖1) ⊂ L

2(Λ,A,O(H0,G0), ν) such that ‖Φ−Ψ‖ν < ǫ. This
implies that L2(Λ,A,Lb(H0,G0), ‖ν‖1) is dense in L

2(Λ,A,O(H0,G0), ν). Then Assertion (i)
follows using (2.5) and the usual density of simple functions. Assertion (ii) then follows by
approximating, for any A ∈ A and P ∈ Lb(H0,G0) the function 1AP by gP with g ∈ Span (E)
arbitrarily close to 1A in L2(Λ,A, ‖ν‖1).

Proof of Theorem 3.5. We set H = M(Ω,F ,H0,P) and G = M(Ω,F , G0,P). For all
A,B ∈ A and P,Q ∈ Lb(H0,G0), we have, by Theorem 3.2,

[1AP, 1BQ] νW = PνW (A ∩ B)QH

= PCov (W (A),W (B))QH

= Cov (PW (A),QW (B))

= [PW (A),QW (B)]G .

Then Proposition 2.3, applied to J = A×Lb(H0,G0) with v(A,P) = 1AP and w(A,P) = PW (A),
gives that there exists a unique Gramian-isometric operator

IG0

W : Span
L
2(Λ,A,O(H0,G0),νW )

(1AQP : A ∈ A,P ∈ Lb(H0,G0),Q ∈ Lb(G0)) → G (5.4)

such that for all A ∈ A,P ∈ Lb(H0,G0), I
G
W (1AP) = PW (A) and, in addition,

Im(IG0

W ) = Span
G
(QPW (A) : A ∈ A,P ∈ Lb(H0,G0),Q ∈ Lb(G0)) . (5.5)
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Now, note that
Lb(H0,G0) = {QP : P ∈ Lb(H0,G0),Q ∈ Lb(G0)} . (5.6)

This gives that

Span (1AQP : A ∈ A,P ∈ Lb(H0,G0),Q ∈ Lb(G0)) = Span (1AP : A ∈ A,P ∈ Lb(H0,G0)) .

Therefore, by Theorem 3.3, the domain of IG0

W in (5.4) is the whole space
L
2(Λ,A,O(H0, G0), νW ). Finally, (5.6) with (5.5) yields

Im(IG0

W ) = Span
G
(PW (A) : A ∈ A,P ∈ Lb(H0,G0)) = HW,G0 ,

which concludes the proof.

We conclude this section with a useful result for comparing random c.a.g.o.s. measures as
introduced in Section 3.1 and Gramian-orthogonal increment processes as in Definition 4.6.

Proposition 5.3. Let (Zλ)λ∈[−π,π] be a Gramian-orthogonal increment process as
in Definition 4.6. Then there exists a unique H0-valued random c.a.g.o.s. W on
((−π, π],B((−π, π]),Ω,F , P) such that (4.11) holds.

Proof. By (ii) in Definition 4.6, we have that, for all s < t in [−π, π],

E

[
‖Zt − Z−π‖

2
H0

]
= E

[
‖Zs − Z−π‖

2
H0

]
+ E

[
‖Zt − Zs‖

2
H0

]
.

Thus, with (iii), we have that the function F : [−π, π] → R+ defined by

F (λ) = E

[
‖Zλ − Z−π‖

2
H0

]

is non-decreasing and right-continuous, and it follows that there exists a finite non-negative
measure ν on ((−π, π],B((−π, π])) such that, for all s < t in [−π, π],

E

[
‖Zt − Zs‖

2
H0

]
= ν((s, t]) .

Another straightforward consequence of (ii) in Definition 4.6 is that, for all s < t and s′ < t′

in (−π, π], we have

E

[
〈Zt − Zs, Zt′ − Zs′〉H0

]
=

{
E

[
‖Zt′∧t − Zs′∨s‖

2
H0

]
if s′ ∨ s < t′ ∧ t,

0 otherwise.

Thus we can consider the mapping 1(s,t] 7→ Z(t) − Z(s) defined for all s < t in (−π, π]
as a G := L2((−π, π],B((−π, π]), ν) → H := M(Ω,F ,H0, P) mapping, and, interpreting
the right-hand side of the previous display as

〈
1(s,t], 1(s′,t′]

〉
G
, we see that this mapping is

isometric. Let us denote by I the unique isometric extension of this mapping on the linear
closure of

{
1(s,t] : s < t ∈ (−π, π]

}
in G, which happens to be G itself. We then set, for all

A ∈ B((−π, π]),
W (A) = I(1A) ,

and we immediately obtain that W is an H0-valued random c.a.o.s. measure on
((−π, π],B((−π, π]),Ω,F , P) as in Definition 3.1 and its intensity measure is ν. By uniqueness
of the isometric extension, it only remains to show that W is moreover a c.a.g.o.s. measure,
that is, for all A,B ∈ B((−π, π]) such that A ∩ B = ∅, we have

[W (A),W (B)]H = Cov (W (A),W (B)) = 0 .

This is implied by showing that, for all x ∈ H0 such that ‖x‖H0
= 1, for all A,B ∈ B((−π, π])

such that A ∩B = ∅, we have

xHCov (W (A),W (B))x = Cov
(
〈W (A), x〉H0

, 〈W (B), x〉H0

)
= 0 . (5.7)

Now take x ∈ H0 such that ‖x‖H0
= 1 and define Fx : [−π, π] → R+ by

Fx(λ) = E

[∣∣∣〈Zλ − Z−π, x〉H0

∣∣∣
2
]
.
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As previously with F , (ii) and (iii) in Definition 4.6 imply that Fx is non-decreasing
and right-continuous and it follows that there exists a finite non-negative measure νx on
((−π, π],B((−π, π])) such that, for all s < t in [−π, π],

E

[∣∣∣〈Zt − Zs, x〉H0

∣∣∣
2
]
= νx((s, t]) .

Again, we can extend the mapping 1(s,t] 7→ 〈Zt − Zs, x〉H0
defined for all s < t in (−π, π]

as a Gx := L2((−π, π],B((−π, π]), νx) → M(Ω,F ,C,P) isometric mapping, which we de-
note by Ix in the following. We further denote by Wx the c.a.o.s. measure defined by
Wx(A) = Ix(1A) for all A ∈ B((−π, π]). This is a C-valued random c.a.o.s. measure on
((−π, π],B((−π, π]),Ω,F , P) with intensity measure νx. Hence to obtain (5.7) and conclude
the proof, we only need to show that for all A ∈ B((−π, π]), we have

Wx(A) = 〈W (A), x〉H0
. (5.8)

We already know that this is true for A ∈ C = {(−π, λ] : λ ∈ (−π, π]} by definitions of Wx,
W , Ix and I . The class C is a π-system of Borel sets and satisfies σ(C) = B((−π, π]). We
conclude with the π-λ-theorem by observing that the class A of sets A ∈ B((−π, π]), such
that (5.8) holds is a λ-system. Indeed if A ∈ A, then Ac = (−π, π] \ A satisfies Wx(A

c) =
Wx((−π, π]) − Wx(A) and W (Ac) = W ((−π,π]) − W (A), so that A, (−π, π] ∈ A implies
Ac ∈ A. Similarly, if (An)n∈N ∈ AN with An ∩ Ap = ∅ for n 6= p then ∪nAn ∈ A because
the c.a.o.s. measures Wx and W are σ-additive in M(Ω,F ,C,P) and in M(Ω,F ,H0, P),
respectively, see Remark 3.1.

5.3 Proofs of Section 4.1

Let us start with the proof of the Gramian-Cramér representation theorem, as a consequence
of the Stone theorem. The usual Stone theorem (see e.g. [6, Chapter IX]) says that any
continuous isomorphism h 7→ Uh from an l.c.a. group G to the set of unitary operators from
a Hilbert space H onto itself can be represented as an integral of this mapping, that is,

Uh =

∫
χ(h) ξ(dχ) ,

where ξ is a p.o.v.m. defined on the dual set of characters Ĝ endowed with its Borel σ-field
and valued in the set of orthogonal projections on H. This classical theorem has a counterpart
in the case where H is an Lb(H0)-normal Hilbert module and each Uh is not only unitary
but also Gramian-unitary, in which case ξ is valued in the set of orthogonal projections on H
whose ranges are closed submodules. See [12, Section 2.5] for details. It turns out that such
p.o.v.m.’s are related to c.a.g.o.s. measure by the following lemma.

Lemma 5.4. Let H0 be a separable Hilbert space, H an Lb(H0)-normal Hilbert module and
(Λ,A) a measurable space. Let ξ be a p.o.v.m. on (Λ,A,H) valued in the set of orthogonal
projections on H whose ranges are closed submodules. Then for all x0 ∈ H, the mapping
ξx0 : A 7→ ξ(A)x0 is a c.a.g.o.s. measure on (Λ,A,H) which is regular if ξ is regular.

Proof. Using the fact that ξ is a p.o.v.m. on (Λ,A,H) and [3, Proposition 1], it is straight-
forward to see that ξx0 is an H-valued measure. Moreover, since ξ is valued in the set of
orthogonal projection on H whose ranges are closed submodules, we get that for all disjoint
A,B ∈ B(G)

[ξ(A)x0, ξ(B)x0]H = [ξ(B)ξ(A)x0, x0]H = [ξ(B ∩A)x0, x0]H = 0 ,

where the first equality is justified in [12, P. 23] and the second one by [3, Theorem 3]. This
proves that ξx0 is a c.a.g.o.s. measure on (Λ,A,H). In the following, we denote by ν its
intensity operator measure. Then, for all A ∈ A, we have

‖ν(A)‖1 = Tr[ξ(A)x0, ξ(A)x0]H = 〈ξ(A)x0, x0〉H ,

where the last equality comes from the fact that ξ(A) is an orthogonal projection on H. Now,
if ξ is regular, then the measure A 7→ 〈ξ(A)x0, x0〉 is regular and so is ‖ν‖1 by the previous
display. This implies that ξx0 is regular and the proof is concluded.
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Proof of Theorem 4.1. Suppose that X is weakly stationary as in Definition 4.1. Then the
collection of lag operators (UX

h )h∈Gof Remark 4.2 satisfies the assumptions of the generalized
Stone’s theorem stated as Proposition 4 in [12, Section 2.5]. This gives that there exists a
regular p.o.v.m. ξX on (Ĝ,B(Ĝ),HX ) valued in the set of orthogonal projections whose ranges
are closed submodules of HX such that, for all h ∈ G,

UX
h =

∫
χ(h) ξX(dχ) , (5.9)

where the integral is as in Definition 2.5. Then, by Lemma 5.4, the mapping

X̂ :
B(Ĝ) → HX

A 7→ ξX(A)X0
(5.10)

is a regular c.a.g.o.s. measure on (Ĝ,B(Ĝ),HX) and we denote by νX its intensity operator
measure. Since HX is a submodule of M(Ω,F ,H0,P), X̂ is also a regular H0-valued random
c.a.g.o.s. measure on (Ω,F , P), see Definition 3.2. Relation (4.2) then follows by applying (5.9)
and the fact that, for all t ∈ G, Uh

t X0 = Xt and, for all φ : Λ → C measurable and bounded,
∫
φ dX̂ =

(∫
φ dξX

)
X0 , (5.11)

where the integral in the left-hand side is defined as in Definition 3.4 (see also Remark 3.3)
and the integral in the right-hand side as in Definition 2.5, for the p.o.v.m. ξX . Relation (5.11)
obviously holds if φ = 1A with A ∈ A and also for φ simple by linearity. Now, for a general
measurable and bounded φ : Λ → C, we can find a sequence (φn)n∈N of simple functions
such that |φn| ≤ |φ| for all n ∈ N and φn(λ) → φ(λ) as n → ∞ for all λ ∈ Λ. Then, by
dominated convergence, φn converges to φ in L2(Λ,A, ‖ν‖1) and therefore φnId converges

to φId in L
2(Λ,A,O(H0), ν). Thus

∫
φn dX̂ →

∫
φdX̂ in HX by the isometric property of

the integral of Definition 3.4. To get (5.11), it now suffices to show that, for all Y ∈ HX ,〈(∫
φn dξ

)
X0, Y

〉
HX →

〈(∫
φdξ

)
X0, Y

〉
HX . This follows from the polarization formula,

Definition 2.5 and dominated convergence.
To show uniqueness, suppose there exists another regular H0-valued random c.a.g.o.s.

measure W on (Ĝ,B(Ĝ),Ω,F , P) satisfying the same identity as (4.2) with X̂ replaced byW .
Then, we get ∫

χ(t) X̂(dχ) =

∫
χ(t)W (dχ) for all t ∈ G . (5.12)

Let η denote the Haar measure on G and denote by Cc(G) the space of compactly supported
functions from G to C. Then, by [24, Theorem 1.2.4] and [24, Section E.8], the space

E =

{
φ̂ : χ 7→

∫
φ(t)χ(t) η(dt) : φ ∈ L1(G,B(G),η)

}

is dense in L2(Ĝ,B(Ĝ), ‖νW ‖1 + ‖νX‖1). We can thus find, for any A ∈ B(Ĝ), (φn)n∈N ∈

Cc(G)N such that, defining φ̂n as above, φ̂n → 1A both in L2(Ĝ,B(Ĝ), ‖νW ‖1) and in

L2(Ĝ,B(Ĝ), ‖νX‖1). Then by Proposition 3.7, we have, for all n ∈ N,

∫
φ̂n(χ)W (dχ) =

∫ (∫
χ(−t)W (dχ)

)
φn(t) η(dt)

=

∫ (∫
χ(−t) X̂(dχ)

)
φn(t) η(dt) =

∫
φ̂n(χ) X̂(dχ) ,

where we have used (5.12) in the second equality. Letting n → ∞, we get W (A) = X̂(A),
thus proving the uniqueness of X̂.

We can now prove the Kolmogorov isomorphism theorem.

Proof of Theorem 4.3. By Theorem 3.5 and (4.4), IG0

X̂
is a Gramian-unitary operator from

ĤX,G0 to HX̂,G0 . Thus to conclude, we only need to show that HX,G0 = HX̂,G0 . By (4.2),

we have for all P ∈ Lb(H0,G0) and t ∈ G, PXt = IG0

X̂
(Pet) ∈ HX̂,G0 , where et : χ 7→ χ(t).

Thus, by (4.1), we get that HX,G0 ⊂ HX̂,G0 . The definition of X̂ in (5.10) gives the converse
inclusion, which achieves the proof.
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We already provided a proof of Theorem 4.6, mainly based on [4]. We hereafter propose
an alternative and more elementary proof of one of the implications in Theorem 4.6.

Proof of (iv)⇒(ii) in Theorem 4.6. Suppose that (iv) holds. The continuity of Γ in w.o.t.
follows immediately by dominated convergence and we now prove that it is of positive type
as in Definition 4.5. Take some arbitrary n ∈ N

∗, and x1, · · · , xn ∈ H0. Let us define the
C

n×n-valued measure µ on on (Ĝ,B(Ĝ)) by

µ(A) =





〈ν(A)x1, x1〉H0
· · · 〈ν(A)xn, x1〉H0

...
. . .

...
〈ν(A)x1, xn〉H0

· · · 〈ν(A)xn, xn〉H0



 .

Then, by the Cauchy-Schwartz inequality, for all i, j ∈ J1, nK, the C-valued measure µi,j :
A 7→ [µ(A)]i,j admits a density fi,j with respect to the non-negative finite measure ‖µ‖1 :
A 7→ ‖µ(A)‖1 = Tr(µ(A)) and the matrix-valued function f : χ 7→ (fi,j(χ))1≤i,j≤n is ‖µ‖1-a.e.

hermitian, non-negative semi-definite since, for all a ∈ C
n and A ∈ B(Ĝ),

∫

A

aHf(χ)a ‖µ‖1(dχ) = aHµ(A)a =

(
n∑

i=1

aixi

)
H

ν(A)

(
n∑

i=1

aixi

)

≥ 0 .

Then, for all t1, · · · , tn ∈ G, we have

n∑

i,j=1

〈Γ(ti − tj)xi, xj〉H0
=

n∑

i,j=1

∫
χ(ti)χ(tj)µi,j(dχ)

=
n∑

i,j=1

∫
χ(ti)χ(tj)fi,j(χ) ‖µ‖1(dχ)

=

∫ ( n∑

i,j=1

χ(ti)χ(tj)fi,j(χ)

)

︸ ︷︷ ︸
≥0 ‖µ‖

1
-a.e.

‖µ‖1(dχ)

≥ 0 .

The first line follows from (iv), the definition of µi,j above and the definition of the integral
as given by Definition 2.5. The second line follows from the definition of fi,j and the third
line from the above property of the matrix-valued function f . Hence we have shown (ii) and
the proof of the implication is concluded.

5.4 Composition and inversion of filters of random c.a.g.o.s.
measures and proofs of Section 4.2

Having a clear description of the modular spectral domain at hand, the results of Section 4.2,
mainly Proposition 4.8, can be seen as a particular instance of the composition and inversion of
operator valued functions filtering a general random c.a.g.o.s. measure, which is the framework
of this section. Namely, consider the filtering (using Definition 3.5)

V = F̂Φ(W )

for a random c.a.g.o.s. measure W and a transfer function Φ ∈ L
2(Λ,A,O(H0, G0), νW ). The

goal of this section is, given another separable Hilbert space I0, to characterize the transfer
functions Ψ valued in O(G0, I0) which can be used to filter the c.a.g.o.s. measure V . Taking
W to be the Cramér representation X̂ of a weakly stationary process X, we will get the
already stated Proposition 4.8 on the composition of linear filters as a by-product.

According to Proposition 3.6, Ψ must be square-integrable with respect to νV = ΦνWΦH

and this turns out to be equivalent to checking that ΨΦ is square integrable with respect to
νW as stated in the following theorem. We recall that ΨΦ is the pointwise composition, that
is, ΨΦ : λ 7→ Ψ(λ)◦Φ(λ) and is defined whenever the image of Φ(λ) is included in the domain
of Ψ(λ).

We first need the following lemma, which will be used in the proof of Theorem 5.6.
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Lemma 5.5. Let H0, G0, I0 be separable Hilbert spaces and P ∈ O(G0, I0), Q ∈ K(H0,G0).
The following assertions hold.

(i) Im(
∣∣QH

∣∣) = Im(Q).

(ii) If Im(Q) ⊂ D(P), then (PQ)(PQ)H = (P
∣∣QH

∣∣)(P
∣∣QH

∣∣)H.

(iii) If Im(Q) ⊂ D(P), then PQ ∈ S2(H0, I0) if and only if P
∣∣QH

∣∣ ∈ S2(G0, I0). In this case

‖PQ‖2 =
∥∥P
∣∣QH

∣∣∥∥
2
.

Proof. For convenience, we only consider the case where the spaces have infinite dimensions.
The singular values decomposition of Q yields for two orthonormal sequences (ψn)n∈N ∈ GN

0

and (φn)n∈N ∈ HN

0 ,

Q =
∑

n∈N

σnψn ⊗ φn and
∣∣∣QH

∣∣∣ =
∑

n∈N

σnψn ⊗ ψn .

Proof of (i). We have Im(Q) =
{∑

n∈N
σnxnψn : (xn)n∈N ∈ ℓ2(N)

}
= Im(

∣∣QH
∣∣).

Proof of (ii). By the first point both compositions PQ and P
∣∣QH

∣∣ make sense. Consider the

polar decomposition of QH : QH = U
∣∣QH

∣∣, with U =
∑

n∈N
φn ⊗ ψn. Then Q =

∣∣QH
∣∣UH and

(PQ)(PQ)H =
(
P
∣∣∣QH

∣∣∣
)
UHU

(
P
∣∣∣QH

∣∣∣
)H

=
(
P
∣∣∣QH

∣∣∣
) (

P
∣∣∣QH

∣∣∣
)H

,

where we used that
∣∣QH

∣∣UHU =
∣∣QH

∣∣.
Proof of (iii). We have that PQ ∈ S2(H0, I0) if and only if (PQ)(PQ)H ∈ S1(I0), which is
equivalent to P

∣∣QH
∣∣ ∈ S2(G0, I0) by the previous point.

We can now derive the main result of this section.

Theorem 5.6. Let (Λ,A) be a measurable space, H0, G0, I0 separable Hilbert spaces and ν a
trace-class p.o.v.m. on (Λ,A,H0). Let Φ ∈ L

2(Λ,A,O(H0,G0), ν) and Ψ ∈ FO (Λ,A,G0, I0).
Define ΦνΦH : A 7→

∫
A
ΦdνΦH = [1AΦ, 1AΦ] ν , which is a trace-class p.o.v.m. on (Λ,A, G0).

Then
Ψ ∈ L

2(Λ,A,O(G0, I0),ΦνΦ
H) ⇔ ΨΦ ∈ L

2(Λ,A,O(H0, I0), ν) . (5.13)

Moreover, the following assertions hold.

(a) For all Ψ,Θ ∈ L
2(Λ,A,O(G0, I0),ΦνΦ

H),

(ΨΦ)ν(ΘΦ)H = Ψ(ΦνΦH)ΘH .

(b) The mapping Ψ 7→ ΨΦ is a well defined Gramian-isometric operator from
L
2(Λ,A,O(G0, I0),ΦνΦ

H) to L
2(Λ,A,O(H0, I0), ν).

(c) Suppose moreover that Φ is injective ‖ν‖1-a.e., then we have that

Φ−1 ∈ L
2(Λ,A,O(G0,H0),ΦνΦ

H) ,

where we define Φ−1(λ) :=
(
Φ(λ)|D(Φ(λ))→Im(Φ(λ))

)−1
with domain Im(Φ(λ)) for all

λ ∈ {Φ is injective} and Φ−1(λ) = 0 otherwise.

Proof. Let µ be a dominating measure for ‖ν‖1 and g = dν
dµ

, then, by definition of ΦνΦH, µ

also dominates
∥∥ΦνΦH

∥∥
1
and dΦνΦH

dµ
= (Φg1/2)(Φg1/2)H. Hence,

(
dΦνΦH

dµ

)1/2
=
∣∣∣(Φg1/2)H

∣∣∣
and we get, by Proposition 3.4,

Ψ ∈ L
2(Λ,A,O(H0, I0),ΦνΦ

H) ⇔





Im
∣∣∣(Φg1/2)H

∣∣∣ ⊂ D(Ψ) µ-a.e.

Ψ
∣∣∣(Φg1/2)H

∣∣∣ ∈ L2(Λ,A,S2(G0, I0), µ)

⇔

{
Img1/2 ⊂ D(ΨΦ) µ-a.e.

ΨΦg1/2 ∈ L2(Λ,A,S2(H0, I0), µ)

⇔ ΨΦ ∈ L
2(Λ,A,O(H0, I0), ν) ,
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where the second equivalence comes from Lemma 5.5 and the fact that for all λ ∈
Λ, D(Ψ(λ)Φ(λ)) is the preimage of D(Ψ(λ)) by Φ(λ) which gives that Im(g1/2(λ)) ⊂
D(Ψ(λ)Φ(λ)) if and only if Im(Φ(λ)g1/2(λ)) ⊂ D(Ψ(λ)).

Let us now prove Assertion (a). For all Ψ,Θ ∈ L
2(Λ,A,O(G0, I0),ΦνΦ

H) and A ∈ A,

(ΨΦ)ν(ΘΦ)H(A) =

∫

A

(
ΨΦg1/2

)(
ΘΦg1/2

)H
dµ

=

∫

A

(
Ψ
∣∣∣(Φg1/2)H

∣∣∣
) (

Θ
∣∣∣(Φg1/2)H

∣∣∣
)
H

dµ (by lemma 5.5)

= Ψ(ΦνΦH)ΘH(A) .

Assertion (a) follows as well as Assertion (b) by taking A = Λ. Finally, to show Asser-
tion (c), suppose that Φ is injective ‖ν‖1-a.e. then Φ−1Φ : λ 7→ IdH0

1{Φ(λ) is injective} is in
L

2(Λ,A,O(H0), ν) which gives that Φ−1 ∈ L
2(Λ,A,O(G0,H0),ΦνΦ

H) by Assertion (a).

We deduce the following corollary on the composition and inversion for random c.a.g.o.s.
measures.

Corollary 5.7 (Composition and inversion of filters on random c.a.g.o.s. measures). Let
(Λ,A) be a measurable space, H0, G0 two separable Hilbert spaces, and Φ ∈ FO (Λ,A,H0,G0).
Let W ∈ ŜΦ(Ω,F ,P) with intensity operator measure νW . Then three following assertions
hold.

(i) For any separable Hilbert space I0, we have HF̂Φ(W ),I0 ⊆
∼ HW,I0 .

(ii) For any separable Hilbert space I0 and all Ψ ∈ FO (Λ,A,G0, I0), we have W ∈
ŜΨΦ(Ω,F , P) if and only if F̂Φ(W ) ∈ ŜΨ(Ω,F , P), and in this case, we have

F̂Ψ ◦ F̂Φ(W ) = F̂ΨΦ(W ). (5.14)

(iii) Suppose that Φ is injective ‖νW ‖1-a.e. Then W = FΦ−1 ◦FΦ(W ), where Φ−1 is defined
as in Assertion (c) of Theorem 5.6. Moreover, Assertion (i) above holds with ⊆

∼ replaced
by ∼= .

Proof. Proof of Assertion (i). This follows from Assertion (b) of Theorem 5.6 and Theo-
rem 3.5.
Proof of Assertion (ii). If W ∈ ŜΦ(Ω,F ,P), then the equivalence between W ∈
ŜΨΦ(Ω,F ,P) and F̂Φ(W ) ∈ ŜΨ(Ω,F , P) is just another formulation of the equivalence (5.13)
with ν = νW . Suppose that it holds and set V := F̂Φ(W ) so that νV = ΦνΦH and (5.14)
means that, for all Ψ ∈ L2(Λ,A,O(G0, I0), νV ) and A ∈ A,

∫
A
ΨdV =

∫
A
ΨΦdW . Re-

placing Ψ by Ψ1A, it is sufficient to show this identity with A = Λ. Using that the inte-
gral with respect to a random c.a.g.o.s. measure is Gramian-isometric and Assertion (b) of
Theorem 5.6, the mappings Ψ 7→

∫
ΨdV and Ψ 7→

∫
ΨΦdW are Gramian-isometric from

L
2(Λ,A,O(G0, I0),ΦνWΦH) to M(Ω,F , I0,P). Hence by Theorem 3.3, they coincide on the

whole space if they coincide on all Ψ = 1AP for A ∈ A and P ∈ Lb(G0, I0). To conclude the
proof of Assertion (ii), it is thus enough to prove that, for all A ∈ A and P ∈ Lb(G0, I0),

∫

A

PdV =

∫

A

PΦdW .

This identity follows from the definition of V and the fact that on both sides the operator P
can be moved in front of the integrals. This latter fact directly follows from the definition of
the integral for the left-hand side and for the right-hand side when Φ = 1B for some B ∈ A,
which extends to all Φ by observing that Φ 7→

∫
PΦdW and Φ 7→ P

∫
ΦdW are continuous

on L
2(Λ,A,O(H0,G0), νW ).

Proof of Assertion (iii). Continuing with the setting of the proof of the previous point,
we now suppose that Φ is injective ‖νW ‖1-a.e. Assertions (c) and (a) of Theorem 5.6 give

that Φ−1 ∈ L
2(Λ,A,O(G0,H0), νV ) (i.e. V ∈ ŜΦ−1(Ω,F , P)) and Φ−1νV

(
Φ−1

)H
= νW .

Hence, writing Relation (5.14) with Ψ = Φ−1, we get F̂Φ−1(V ) = F̂Φ−1Φ(W ) =W . Moreover,

reversing the roles of W and V in assertion (i) gives the embedding HW,I0 ⊆
∼ HF̂Φ(W ),I0

which, with Assertion (i), allow us to conclude that HW,I0 ∼= HF̂Φ(W ),I0 .

We conclude this section with the proof of Proposition 4.8.
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Proof of Proposition 4.8. Using the Gramian-unitary operator between the modular time
domain and the modular spectral domain, this result is a direct application of Corollary 5.7
with Λ = Ĝ and A = B(Ĝ) and W = X̂ .

5.5 Proofs of Section 4.3

The goal of this section is to provide a proof of Lemma 4.9. Before that, let us recall essential
facts about the diagonalization of compact positive operators. Let H0 be a separable Hilbert
space of dimension N ∈ {1, · · · ,+∞}, (Λ,A) be a measurable space and Φ ∈ Fs (Λ,A,H0)
such that for all λ ∈ Λ, Φ(λ) ∈ S+

1 (H0). Then, in this case, for any λ ∈ Λ, Φ(λ) admits the
eigendecomposition

Φ(λ) =
∑

0≤n<N

σn(λ)φn(λ)⊗ φn(λ) , (5.15)

where the series converges in operator norm and the family (φn(λ))0≤n<N is orthonormal.
Moreover, we have

Tr(Φ(λ)) =
∑

0≤n<N

σn(λ) < +∞ .

The following theorem shows that such a decomposition can be constructed in a way which
makes the eigenvalues and eigenvectors measurable as functions of λ.

We will need the following lemmas, which rely on the weak topology on H0, defined as
the smallest topology which makes the functions

{
xH : x ∈ H0

}
continuous.

Lemma 5.8. Let H0 be a separable Hilbert space and denote the closed unit ball by

B̄0,1 :=
{
x ∈ H0 : ‖x‖H0

≤ 1
}
.

Then B̄0,1 endowed with the weak topology is a compact metrizable space.

Proof. By the Banach-Alaoglu theorem, B̄0,1 is compact for the weak topology. Since H0 is
separable, we can choose a Hilbert basis (ψn)0≤n<N for H0, with N ∈ {1, · · · ,+∞}. It is

straightforward to show that the mapping (x, y) 7→
∑

0≤n<N 2−n
∣∣∣〈x− y,ψn〉H0

∣∣∣ is a metric

inducing the weak topology on B̄0,1.

Lemma 5.9. Let H0 be a separable Hilbert space. Then the Borel σ-field Bw(H0) of H0

endowed with the weak topology coincides with the (usual) Borel σ-field B(H0) of (H0, ‖·‖H0
).

Proof. The weak topology is included in the topology of (H0, ‖·‖H0
), hence Bw(H0) ⊂ B(H0).

To prove the converse inclusion, observe that by expressing ‖x− y‖H0
as the ℓ2-norm of the

inner-products of (x− y) with a Hilbert basis (ψn)0≤n<N , we easily get that y 7→ ‖x− y‖H0

is measurable from (H0,Bw(H0)) to (R+,B(R+)) for all x ∈ H0. Hence B(H0) ⊂ Bw(H0),
which concludes the proof.

Lemma 5.10. Let H0 be a separable Hilbert space. If P ∈ S+
1 (H0) then the mapping x 7→

〈Px, x〉H0
is continuous on the unit closed ball B̄0,1 for the weak topology.

Proof. Let us consider the eigendecomposition P =
∑

0≤n<N σnφn⊗φn. Then for all x ∈ B̄0,1,

〈Px, x〉H0
=

∑

0≤n<N

σn

∣∣∣〈x,φn〉H0

∣∣∣
2

and the result follows by dominated convergence since

sup
x∈B̄0,1

∣∣∣〈x, φn〉H0

∣∣∣
2

≤ 1 and
∑

0≤n<N

σn < +∞ .

We can now prove the following theorem.

Theorem 5.11. Let H0 be a separable Hilbert space and (Λ,A) be a measurable space. Let Φ ∈
Fs (Λ,A,H0) such that for all λ ∈ Λ, Φ(λ) ∈ S+

1 (H0). Then the pairs {(σn, φn) : 0 ≤ n < N}
in (5.15) can be taken so that for all 0 ≤ n < N , σn is measurable from (Λ,A) to (R+,B(R+))
and φn is measurable from (Λ,A) to (H0,B(H0)).
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Proof. The construction of the eigenvalues and eigenvectors is done iteratively using the
Measurable Maximum Theorem [1, Theorem 18.19] on Λ × B̄0,1, where B̄0,1 denotes the
closed unit ball of H0, which is compact metrizable for the weak topology by Lemma 5.8.
As in [1, Definition 17.1], a correspondence ϕ from Λ to B̄0,1, denoted by ϕ : Λ ։ B̄0,1, is a
mapping which assigns each element of Λ to a subset of B̄0,1.
Construction of (σ1, φ1) : Define

f :
Λ× B̄0,1 → R+

(λ, x) 7→ 〈Φ(λ)x, x〉H0

.

Then, for all x, λ 7→ f(λ, x) is measurable and, for all λ ∈ Λ, x 7→ f(λ, x) is continuous in x
for the weak topology by Lemma 5.10. Moreover the correspondence

ϕ :
Λ ։ B̄0,1

λ 7→ B̄0,1

is weakly measurable (in the sense of [1, Definition 18.1]) with nonempty compact values (for
the weak topology). Therefore the Measurable Maximum Theorem [1, Theorem 18.19] gives
that m : λ 7→ maxx∈B̄0,1

f(λ, x) is measurable and that there exists a function g : Λ → B̄0,1

such that for all λ ∈ Λ, g(λ) ∈ argmaxx∈B̄0,1
f(λ, x) and g is measurable from Λ to B̄0,1

endowed with the Borel σ-field generated by the weak topology. This implies the usual
measurability by Lemma 5.9. We set σ0 = m and φ0 = g. Then, from the definitions of
f,m and g, that σ0(λ) is the largest eigenvalue of Φ(λ) and that φ0(λ) is an eigenvector with
eigenvalue σ0(λ).
Construction of (σn, φn) : Assume we have constructed n measurable functions
σ0, · · · , σn−1 and φ0, · · · , φn−1 satisfying for all λ ∈ Λ, σ0(λ) ≥ · · · ≥ σn−1(λ), and
(φ0(λ), · · · , φn−1(λ)) is an orthonormal family where for all 0 ≤ i ≤ n − 1, φi(λ) ∈
ker(Φ(λ)− σi(λ)IdH0

). Then, as in the initialization step, the function

f :
Λ× B̄0,1 → R+

(λ, x) 7→ 〈Φ(λ)x, x〉H0
−
∑n−1

i=1 σi(λ)
∣∣∣〈x, φi(λ)〉H0

∣∣∣
2 .

is measurable in λ and continuous in x (for the weak topology) by Lemma 5.10 and the
correspondence

ϕ :
Λ ։ B̄0,1

λ 7→ B̄0,1 ∩ Span (φ0(λ), · · · , φn−1(λ))
⊥

is weakly measurable (in the sense of [1, Definition 18.1]) because of [1, Corollary 18.8 and

Lemma 18.2]) and the fact that ϕ(λ) =

{
x ∈ B̄0,1 :

∑n−1
i=0

∣∣∣〈x, φi(λ)〉H0

∣∣∣
2

= 0

}
and has

nonempty compact values (because ϕ(λ) is a closed subset of B̄0,1 for the weak topology
hence is compact for this topology). Hence, as previously, the Measurable Maximum Theorem
and Lemma 5.9 give that m : λ 7→ maxx∈ϕ(λ) f(λ, x) is measurable and that there exists a
measurable function g : Λ → H0 such that for all λ ∈ Λ, g(λ) ∈ argmaxx∈ϕ(λ) f(λ, x). We
set σn = m and φn = g. Then, from the definitions of f,m and g, we get that σn(λ) ≤
σn−1(λ) is the (n + 1)-th largest eigenvalue of Φ(λ) (because it is the largest eigenvalue of
Φ(λ)−

∑n−1
i=0 σi(λ)φi(λ)⊗φi(λ)) and that φn(λ) is an eigenvector with eigenvalue σn(λ) and

is orthogonal to φ0, · · · , φn−1.

We can now prove Lemma 4.9.

Proof of Lemma 4.9. We provide a proof in the case whereN = ∞ as the finite dimensional
case is easier. Let f ∈ L1(Λ,A,S+

1 (H0), µ) be the density of ν with respect to µ. We assume
without loss of generality that f(λ) ∈ S1(H0)

+ for all λ ∈ Ĝ (rather than for µ-almost every
λ). Using Theorem 5.11 we can write

f(λ) =

+∞∑

n=0

σn(λ)φn(λ)⊗ φn(λ) , (5.16)

where (σn(λ))n∈N is non-decreasing and converges to zero and (φn(λ))n∈N satisfies (ii). More-
over, for all λ ∈ Λ,

∑
n σn(λ) = ‖f(λ)‖1 <∞, and we get Assertions (i) and (iii).
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It only remains to prove (iv)–(vi), which we now proceed to do. By (5.16) and the

previously proved assertions, we get that for all n ∈ N and all λ ∈ Λ,
∥∥∥φH

nf
1/2(λ)

∥∥∥
2

2
=

σn(λ) ≤ ‖f(λ)‖1. Hence φH

nf
1/2 ∈ L2(Λ,A,S2(H0,C), ν) and Proposition 3.4 gives that

φH

n ∈ L
2(Λ,A,O(H0,C), ν) and for all n, p ∈ N,

〈
φH

n, φ
H

p

〉

ν
=

∫
φH

nfφp dµ =

{
0 if n 6= p,∫
σn dµ otherwise. ,

where the last equality comes from (5.16) and the previously proved assertions.
Similarly, for all n ∈ N, φn ⊗ φnf

1/2 ∈ L2(Λ,A,S2(H0), ν), hence by Proposition 3.4, we
have φn ⊗ φn ∈ L

2(Λ,A,O(H0), ν) and for all n, p ∈ N,

[φn ⊗ φn, φp ⊗ φp]ν =

∫
(φn ⊗ φn)f(φp ⊗ φp) dµ

=

{
0 if n 6= p,∫
σn (φn ⊗ φn) dµ otherwise,

which proves Assertion (v). Now observe that, for all λ ∈ Λ,

(
∞∑

n=0

φn(λ)⊗ φn(λ)

)

f(λ) = f(λ)

(
∞∑

n=0

φn(λ)⊗ φn(λ)

)

= f(λ) .

This yields ∥∥∥∥∥

∞∑

n=0

φn ⊗ φn − IdH0

∥∥∥∥∥
ν

= 0 ,

and thus Assertion (vi) holds, which concludes the proof.
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37

https://doi.org/10.1214/13-AOS1086
https://doi.org/10.2307/1989973
https://doi.org/10.1007/978-1-4612-5156-9
http://www.jstor.org/stable/2037557
https://doi.org/10.1080/01621459.2016.1147355
https://doi.org/10.1080/01621459.2019.1607357
https://doi.org/10.1214/17-EJS1384
http://www.sciencedirect.com/science/article/pii/S030441491830752X
https://doi.org/10.1146/annurev-statistics-041715-033624

	Introduction
	Basic definitions and notation
	Locally compact Abelian groups
	Operator spaces
	Integration of functions valued in a vector or operator space
	Vector valued and Positive Operator Valued Measures
	Normal Hilbert modules

	Preliminaries
	Countably additive Gramian-orthogonally scattered (c.a.g.o.s.) measures
	The space L2(, A, O(H0,G0), )
	Integration with respect to a random c.a.g.o.s. measure

	Modular spectral domain of a weakly stationary process and applications
	The Gramian-Cramér representation and general Bochner theorems
	Composition and inversion of filters
	Cramér-Karhunen-Loève decomposition
	Comparison with recent approaches

	Postponed proofs
	Proofs of sec:preliminaries
	Proofs of sec:more-preliminaries
	Proofs of sec:gram-cram-bochn
	Composition and inversion of filters of random c.a.g.o.s. measures and proofs of sec:pointw-comp-oper
	Proofs of sec:cram-karh-loeve


