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Abstract

In this paper, we review and clarify the construction of a spectral theory for weakly-
stationary processes valued in a separable Hilbert space. We introduce the basic fundamental
concepts and results of functional analysis and operator theory needed to follow the way paved
by Payen in [52], Mandrekar and Salehi in [45] and Kakihara in [33]. They lead us to view
the spectral representation of a weakly stationary Hilbert valued time series as a gramian
isometry between its time domain and its spectral domain. Time invariant linear filters with
Hilbert-valued inputs and outputs are then defined through their operator transfer functions
in the spectral domain. General results on the composition and inversion of such filters
follow naturally. Spectral representations have enjoyed a renewed interest in the context
of functional time series. The gramian isometry between the time and spectral domains
constitutes an interesting and enlightening complement to recent approaches such as the one
proposed in [50]. We also provide an overview of recent statistical results for the spectral
analysis of functional time-series.
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1 Introduction

Functional data analysis has become an active field of research in the recent decades due
to technological advances which makes it possible to store data at very high frequency (and
can be considered as continuous time data i.e. functions) or very complex type of data
which could be represented by abstract mathematical structures, typically Hilbert spaces.
In this framework, we are considering data belonging in a separable Hilbert space which is
often taken as the function space L2([0, 1]) of square-integrable functions on [0, 1]. Naturally,
researchers on the topic have been interested in generalizing multivariate data analysis and
statistical tools to this framework such as inference, estimation, regression, classification or
asymptotic results (see, for example, [53], [22]). As for multivariate data, different tools are
used when the data are considered independent or not. In this paper, we are interested in
functional data with time dependence (functional stochastic processes), that is we observe a
family (Xt)t∈G of random variables where G is a set of index (mainly Z or R) where for each
t ∈ G, Xt is a random variable from a measurable space (Ω,F) to a separable Hilbert space
H0 (endowed with its Borel σ-field). In the following, we add the assumption (and give a
definition) of weak-stationarity. Examples of such processes are functional linear processes
like functional AR or, more generally, functional ARMA processes (see [6, 60, 36]). In the
univariate and multivariate (finite-dimensional) cases, spectral analysis of weakly-stationary
processes has shown many advantages (see e.g. [8]). Such an analysis has been recently
popularized in [50, 51, 62] for the functional (infinite-dimensional) framework. In particular,
the authors define a spectral representation for weakly stationary functional processes based on
the spectral density operator. Existence of such a density is shown under strong assumptions
on the autocovariance structure of the process (see the discussion in Section 6.3).

The main goals of this paper are twofold : 1) provide a spectral representation for any
weakly stationary processes valued in a general (infinite-dimensional) separable Hilbert space,
thus relaxing the assumptions of [50, 51, 62]. 2) derive easy to use results on the composition
and inversion of shift-invariant linear filters on such processes. The first point is done following
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earlier works [34, 45, 33] which generalize multivariate approaches [46, 64, 54]. As far as we
know, the second point has not been as explicitly studied before.

Let us recall the classical spectral representation of univariate weakly stationary time
series, which goes back to [40] (see also [27] for a survey). Let (Ω,F ,P) be a probability
space and denote by L2(Ω,F ,P) the space of squared integrable C-valued random variables
defined on (Ω,F , P). This space is a Hilbert space when endowed with the inner product
(X,Y ) 7→ E

[
XY

]
, where Y is the conjugate of Y . Throughout the paper, we moreover let

(G,+) be a locally compact Abelian (l.c.a.) group, whose null element is denoted by 0 (see
Appendix C for details).

Definition 1.1 ((Univariate) weakly stationary process). We say that X = (Xt)t∈G is a
weakly-stationary process if the following assertions hold.

(i) For all t ∈ G, Xt ∈ L2(Ω,F , P). We say that X is an L2 process.

(ii) There exists µ ∈ C, called the mean of X, such that for all t ∈ G, E [Xt] = µ. We
moreover say that X is centered if µ = 0.

(iii) There exists γX : G → C, called the autocovariance function of X, such that for all
t, h ∈ G, Cov (Xt+h, Xt) = γX(h).

We moreover assume that

(iv) the autocovariance function γX is continuous on G.

Without loss of meaningful generality, we will only consider centered processes in the
following. Condition (iii) simply says that the covariance of the process is shift invariant
((Xs, Xt) and (Xs+h, Xt+h) have the same covariance for all s, t, h ∈ G). The continuity
condition (iv) is equivalent to say that X is L2-continuous, and it always holds when G = Z.
As noted in [40, 27], the analysis of centered, weakly-stationary processes if closely linked to
functional analysis and, in particular, to unitary representations.

Definition 1.2 ((Continuous) Unitary representations). Let (G,+) be an l.c.a. group and

H0 a Hilbert space. A mapping U :
G → Lb(H0)
h 7→ Uh

is said to be a unitary representation

(u.r.) of G on H0 if it satisfies the two following assertions.

(i) For all h ∈ G, Uh is a unitary operator from H0 to H0.

(ii) The operator U0 is the identity operator on H0, that is, U0 = IdH0 , and, for all s, t ∈ G,
Us+t = UsUt.

We say that U is a continuous unitary representation (c.u.r.) if it moreover satisfies

(iii) The mapping h 7→ Uh is continuous on G for the weak operator topology (w.o.t., that is
for all u, v ∈ H0, h 7→ 〈Uhu, v〉H0

is continuous).

Remark 1.1. Note that a mapping valued in the set of unitary operators is continuous for
the w.o.t. if and only if it is continuous for the strong operator topology (s.o.t., that is for all
u ∈ H0, h 7→ Uhu is continuous). Hence, a c.u.r. is continuous for the s.o.t. as a consequence
of (iii).

Let M(Ω,F ,P) be the sub-Hilbert space of centered variables in L2(Ω,F , P) and X =
(Xt)t∈G be a centered L2 process. Denote by

HX := Span
M(Ω,F,P)

(Xt, t ∈ G)

the sub-Hilbert space generated by {Xt, t ∈ G}, where the notation Span
H
(A) means the

closure in H of Span (A). Let UX
h , h ∈ G, denote the shift operators defined on HX by

UX
h Xt = Xt+h for all t ∈ G. The simple remarks made above about Assertions (iii) and (iv) in

Definition 1.1 and Definition 1.2 easily yield the following characterization of weak stationarity.

Lemma 1.1. Let X = (Xt)t∈G be a centered L2 process. Then X is weakly stationary if and
only if UX is a c.u.r. of G on HX .

Let Ĝ denote the dual group of G (the continuous characters defined on G, see Ap-
pendix C), and denote by B(Ĝ) its Borel σ-field. We moreover denote, for all t ∈ G,

et :
Ĝ → C

χ 7→ χ(t)
.
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Under the above assumptions, both γX (as a C-valued function onG) andX (as aM(Ω,F ,P)-
valued function on G) admit spectral counterparts, the first one in the form of a finite non-
negative regular measure on (Ĝ,B(Ĝ)) and the second one in the form of a countably additive
orthogonally scattered (c.a.o.s.) measure on the same space (see Appendix B.2). More pre-
cisely, the following theorem holds.

Theorem 1.2 (Spectral measure and spectral representation of a C-valued weakly stationary
process). Let X = (Xt)t∈G be a centered weakly-stationary process with autocovariance func-
tion γX . Then there exists a unique finite, non-negative, regular measure νX on (Ĝ,B(Ĝ)),
called the spectral measure of X, such that

γX(h) =

∫
eh dνX =

∫
χ(h) νX(dχ), h ∈ G . (1.1)

Moreover, there exists a unique M(Ω,F , P)-valued regular c.a.o.s. measure X̂ on (Ĝ,B(Ĝ))
such that for all t ∈ G,

Xt =

∫
et dX̂ =

∫
χ(t) X̂(dχ) , (1.2)

and the intensity measure of X̂ is νX , which means that

Cov
(
X̂(A), X̂(B)

)
= νX(A ∩B) for all A,B ∈ B(Ĝ). (1.3)

The identity (1.1) is known as Bochner’s theorem. The most commonly used index sets
are G = Z (discrete time) and G = R (continuous time). In the discrete time case, Ĝ is
usually represented in the time series literature by its isomorphic group T := R/2πZ (or
(−π, π] endowed with the addition modulo 2π), so that, for any χ ∈ Ẑ and h ∈ Z, χ(h) is
represented as eihλ with λ ∈ T, and X̂ and νX are a c.a.o.s. and a non-negative measure on
(T,B(T)). For instance, (1.1) then reads

γX(h) =

∫

T

eihλ νX(dλ), h ∈ Z , (1.4)

and is then known as Herglotz’s theorem (see [10, Theorem 4.3.1].
Note that (1.3) can be rewritten as

E

[
X̂(A)X̂(B)

]
=

∫
1A 1B dνX ,

hence as saying that 1A 7→ X̂(A) is isometric from L2(Ĝ,B(Ĝ), νX) to M(Ω,F , P). It follows
that Relation (1.2) defines the unique isometry I from L2(Ĝ,B(Ĝ), νX) to M(Ω,F ,P) which
maps (χ 7→ χ(t)) to Xt for all t ∈ G. Moreover, this isometry is unitary from L2(Ĝ,B(Ĝ), νX)
toHX . The former space is called the spectral domain of X and the latter its time domain and
we conclude that the time and spectral domains are isometrically isomorphic. A consequence
of the isometric property of I is that, for all s, t ∈ G,

E
[
XsXt

]
=

∫
χ(s− t) νX(dχ) ,

where we used that, for all χ ∈ Ĝ, χ(s)χ(t) = χ(s − t), see [57, Eq. (1) and (6)]. This is
exactly (1.1) by setting h = s− t. We summarize the previous comments as follows.

Remark 1.2. Theorem 1.2 is presented as containing several successive results and identities.
However all these results and identities are several facets of one assertion, namely that

(i) The spaces L2(Ĝ,B(Ĝ), νX) and HX are isometrically isomorphic by mapping et to Xt

for all t ∈ G.

Let us briefly provide the classical steps leading to Theorem 1.2.

Proof of Theorem 1.2 (sketch). As we explained previously, the essential point is to build
the unitary mapping between L2(Ĝ,B(Ĝ), νX) and HX . To this end, one can rely on the
unitary representation provided by the shift operators UX

h , h ∈ G, derived in Lemma 1.1.
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Then Stone’s theorem gives that there exists a regular measure ξX on (Ĝ,B(Ĝ)), valued in
the space of orthogonal projections on HX , such that for all h ∈ G,

UX
h =

∫
χ(h) ξX(dχ) . (1.5)

The mapping

X̂ :
B(Ĝ) → M(Ω,F , P)
A 7→ ξX(A)X0

is then a regular c.a.o.s. measure on (Ĝ,B(Ĝ),M(Ω,F ,P)) and from (1.5) we get

Xt = UX
t X0 =

∫
χ(t) ξX(dχ)X0 =

∫
χ(t) X̂(dχ), t ∈ G ,

which is exactly (1.2). Then, by properties of c.a.o.s. measures, this relation defines an
isometry and (1.1) follows from this result taking for νX the intensity measure of X̂.

It is also common to find a proof of Theorem 1.2 where (1.1) is proved first and is used
to prove (1.2) (see e.g. [8]). This is a consequence of the close relationship between the
functional analysis tools used in the proofs and will be discussed in Section 6.1.

Having recalled the univariate case, we can now give more details about the goals of
this paper. We consider the functional case where the process X is a sequence (Xt)t∈G of
variables in L2(Ω,F ,H0, P), that is, for all t ∈ G, Xt is defined on the probability space

(Ω,F , P), valued in the separable Hilbert space H0 and satisfies E

[
‖Xt‖

2
H0

]
< +∞. Recall

that the expectation of Y ∈ L2(Ω,F ,H0,P) is the unique vector E [Y ] ∈ H0 satisfying

〈E [Y ] , x〉H0
= E

[
〈Y, x〉H0

]
, for all x ∈ H0

and that the covariance operator between Y,Z ∈ L2(Ω,F ,H0,P) is the unique linear operator
Cov (Y,Z) ∈ Lb(H0), satisfying

〈Cov (Y,Z) y, x〉H0
= Cov

(
〈Y, x〉H0

, 〈Z, y〉H0

)
, for all x, y ∈ H0 ,

or, more concisely, Cov (Y,Z) = E [Y ⊗ Z] − E [Y ] ⊗ E [Z] where, for all x, y ∈ H0, x ⊗ y
denotes the operator of Lb(H0) which satisfies for all z ∈ H0, (x ⊗ y)z = 〈z, y〉H0

x. In this
setting, Definition 1.1 is extended as follow.

Definition 1.3 (Hilbert valued weakly stationary process). Let (Ω,F , P) be a probability
space, H0 a separable Hilbert space and (G,+) an l.c.a. group. Then a process X := (Xt)t∈G
is said to be an H0-valued weakly-stationary process if

(i) For all t ∈ G, Xt ∈ L2(Ω,F ,H0, P).

(ii) For all t ∈ G, E [Xt] = E [X0]. We say that X is centered if E [X0] = 0.

(iii) For all t, h ∈ G, Cov (Xt+h, Xt) = Cov (Xh, X0).

(iv) The autocovariance operator function ΓX : h 7→ Cov (Xh, X0) is weakly continuous i.e.
for all P ∈ Lb(H0), h 7→ Tr(PΓX(h)) is continuous.

Given a separable Hilbert space H0 and a centered weakly stationary H0-valued process
X := (Xt)t∈G, we want to derive

R1 A spectral version of the covariance structure of X similar to (1.1) :

Cov (Xs, Xt) =

∫
χ(s− t) νX(dχ), s, t ∈ G , (1.6)

where νX will be called the spectral operator measure of X.

R2 A spectral representation of X similar to (1.2) :

Xt =

∫
χ(t) X̂(dχ), P-a.e. t ∈ G , (1.7)

as well as a description of the isomorphic relationship that this mapping induces.
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R3 A practical definition of shift-invariant linear filters, with results for composition and
inversion in the spectral domain.

In [27], the univariate and functional cases are described in a unified setting, by directly
considering (Xt)t∈Z as a H-valued sequence, where H = L2(Ω,F ,P) in the univariate case
and H = L2(Ω,F ,H0,P) in the functional case. However, in the second case, as explained
later, H should be seen as a normal Hilbert module rather than just a Hilbert space and this
fact has consequences on the previous points, as suggested in the following remarks.

Remark 1.3. About R1. Since the left hand side term of (1.6) is an operator on H0 and
for all χ ∈ Ĝ and h ∈ G, χ(h) ∈ C, the measure νX must be operator-valued. Since in the
univariate case νX is a non-negative measure, we expect it to verify an analogous property for
the Hilbert valued case that is to be a Positive Operator Valued Measure (p.o.v.m.).
About R2. In the univariate case, X̂ is a measure valued in L2(Ω,F , P) that makes the time
domain and the spectral domain isometrically isomorphic, as summarized in Remark 1.2. In
the Hilbert valued case, we naturally expect X̂ to be a measure valued in L2(Ω,F ,H0,P). The
fact that this space is not only a Hilbert space but also a normal Hilbert module will have the
consequence that X̂ will make the time domain and the spectral domain gramian-isometrically
isomorphic. It will also yield a more involved description of the spectral domain.
About R3. Consider, in the univariate case, the output Y = (Yt)t∈G of a linear shift-invariant
filter with input X = (Xt)t∈G. Then, by linearity, Y0 belongs to the time domain HX , and,
by shift-invariance, we have Yt = UX

t Y0 for all t ∈ G. Consequently, in the spectral domain,
the linear shift-invariant filtering of X consists in multiplying X̂ by the C-valued function ϕ ∈
L2(Ĝ,B(Ĝ), νX) which represents Y0 in the spectral domain. Namely, Yt =

∫
χ(t)ϕ(χ) X̂(dχ)

for all t ∈ G, or, equivalently, Ŷ (dχ) = ϕ(χ)X̂(dχ). The function ϕ is called the transfer
function of the filter and the condition

ϕ ∈ L2(Ĝ,B(Ĝ), νX) (1.8)

should be seen as a condition on the input X (through its spectral measure νX) in order to
have a well defined weakly stationary output Y through the filter with given transfer function
ϕ. In the Hilbert valued case, where the input is H0-valued and the output G0-valued, the
shift-invariant filtering of X in the spectral domain becomes Ŷ (dχ) = Φ(χ)X̂(dχ), where, for
all χ ∈ T̂ , Φ(χ) is an operator from H0 to G0, and we need to investigate two important
questions:

a) In which space should the transfer operator function Φ be defined and what condition on
X (again through νX) should replace (1.8) ?

b) How are composition and inversion of filters described in the spectral domain? (That is,
through transfer operator functions.)

Remark 1.4. In Condition (iv) of Definition 1.3, one could have chosen a weaker notion of
continuity for the autocovariance operator function, such as continuity of ΓX for the w.o.t.
The usefulness of the weak-continuity as assumed in (iv) to get R1, R2, R3 will be made
clearer in Section 3. However, in Section 6.2, we will see that, for autocovariance operator
functions, weak-continuity is actually equivalent to continuity for the w.o.t.

The paper is organized as follows. In Section 2 we gather definitions and results of operator
theory needed all along the paper. This effort pays off in Section 3 as we easily derive precise
statements on the spectral representation for Hilbert valued weakly stationary processes, with
clear and simple answers to the questions raised in Remark 1.3 about R1, R2 and R3. A
brief overview of the recent approaches for deriving statistical results on the spectral analysis
of functional time series can be found in Section 4. We provide important proofs of the results
stated in Section 2 and Section 3 in Section 5. We conclude the main part of this contribution
by Section 6, where we discuss alternative approaches, in particular comparisons with recent
approaches. Additional useful results on functional analysis and l.c.a. groups are gathered in
the appendices.
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2 Operator theory prerequisites

2.1 Operator spaces, measurability and Lp spaces

Here we introduce classical definitions for operators on Hilbert spaces (see e.g. [24] for details)
and integrals of functions with respect to a measure in the case where the function or the
measure is vector-valued (see e.g. [19, Chapter 1] for a nice overview and [18], [17] for a
thorough study). This section also contains most of the notation used throughout the paper.

Let H0 and G0 be two separable Hilbert spaces. The inner product and norm, e.g. associ-
ated to H0, are denoted by 〈·, ·〉H0

and ‖·‖H0
. Let O(H0,G0) denote the set of linear operators

P from H0 to G0 whose domain, denoted by D(P), is a linear subspace of H0, Lb(H0,G0) the
set of all H0 → G0 continuous operators. We also denote by K(H0,G0) the set of all compact
operators in Lb(H0,G0) and for all p ∈ [1,∞), Sp(H0,G0) the Schatten-p class. The space
Lb(H0, G0) and the Schatten-p classes are Banach spaces when respectively endowed with the
norms

‖P‖ := sup
‖x‖H0

≤1

‖Px‖G0
and ‖P‖p :=




∑

σ∈sing(P)

σp




1/p

where sing(P) is the set of singular values of P. Following these definitions, we have, for all
1 ≤ p ≤ p′

Sp(H0,G0) ⊂ Sp′(H0,G0) ⊂ K(H0,G0) ⊂ Lb(H0,G0) ⊂ O(H0,G0). (2.1)

The space K(H0, G0) is endowed with the operator norm and the first three inclusions in (2.1)
are continuous embeddings. If G0 = H0, we omit the G0 in the notations above. As a Banach
space, Lb(H0,G0) can be endowed with its norm topology but other common topologies are
useful. The two most common ones are the strong and weak topologies (respectively denoted
by s.o.t. and w.o.t.). We say that a sequence (Pn)n∈N ∈ Lb(H0,G0)

N converges to an operator
P ∈ Lb(H0,G0) for the s.o.t. if for all x ∈ H0, limn→+∞ Pnx = Px in G0 and for the w.o.t. if
for all x ∈ H0, for all y ∈ G0, limn→+∞ 〈Pnx, y〉G0

= 〈Px, y〉G0
.

An operator P ∈ Lb(H0), is said to be positive if for all x ∈ H0, 〈Px, x〉H0
≥ 0 and we

will use the notations L+
b (H0), K

+(H0), S
+
p (H0) for positive, positive compact and positive

Schatten-p operators. If P ∈ L+
b (H0) then there exists a unique operator of L+

b (H0), denoted

by P1/2, which satisfies P =
(
P1/2

)2
. If, in addition, P is compact, then so is P1/2. For

any P ∈ Lb(H0,G0) we denote its adjoint by PH (which is compact if P is compact). An
operator of Lb(H0) is said to be auto-adjoint is it is equal to its adjoint and it is known
that any positive operator is auto-adjoint. If P ∈ Lb(H0,G0), then PHP ∈ L+

b (H0) and
PPH ∈ L+

b (G0) (which are compact if P is compact). We define the absolute value of P as the

operator |P| :=
(
PHP

)1/2
∈ L+

b (H0). Moreover, if P ∈ S1(H0), Tr(P) will denote its trace, if
P ∈ S+

1 (H0), it is known that Tr(P) = ‖P‖1. Schatten-1 and Schatten-2 operators are usually
referred to as trace-class and Hilbert-Schmidt operators respectively.

For functions defined on a measurable space (Λ,A) and valued in a Banach space (E, ‖·‖E),
measurability is defined as follows. A function f : Λ 7→ E is said to be measurable if it is
the pointwise limit of a sequence of E-valued simple functions, i.e. functions belonging in
the space Span (1Ax : A ∈ A, x ∈ E). When E is separable, this notion is equivalent to the
usual Borel-measurability, i.e. to having f−1(A) ∈ A for all A ∈ B(E), the Borel σ-field on
E. We denote by F(Λ,A, E) (resp. Fb(Λ,A, E)) the space of measurable (resp. bounded
measurable) functions from Λ to E. For a non-negative measure µ on (Λ,A) and p ∈ [1,∞],
we denote by Lp(Λ,A, E, µ) the space of functions f ∈ F(Λ,A, E) such that

∫
‖f‖pE dµ (or

µ- essup ‖f‖E for p = ∞) is finite and by Lp(Λ,A, E, µ) its quotient space with respect to
µ-a.e. equality, or, equivalently, with respect to the subspace of functions f such that f = 0
µ-a.e., which we write

Lp(Λ,A, E, µ) = Lp(Λ,A, E, µ)
/
{f : f = 0 µ-a.e.} .

The corresponding norms are denoted by ‖f‖Lp(Λ,A,E,µ). For p ∈ [1,∞),
the space of simple measurable functions with finite-measure support, i.e.
Span (1Ax : A ∈ A, µ(A) <∞, x ∈ E), is dense in Lp(Λ,A, E, µ). For f ∈

7



Span (1Ax : A ∈ A, µ(A) <∞, x ∈ E) with range {α1, · · · , αn}, the integral (often
referred to as the Bochner integral) of the E-valued function f with respect to µ is defined by

∫
f dµ =

n∑

k=1

αk µ
(
f−1({αk})

)
∈ E . (2.2)

This integral is extended to L1(Λ,A, E, µ) by continuity (and thus also to Lp if µ is finite).
An E-valued measure is a mapping µ : A → E such that for any sequence (An)n∈N ∈ AN

of pairwise disjoint sets then µ
(⋃

n∈N
An

)
=
∑

n∈N
µ(An) where the series converges in E,

that is

lim
N→+∞

∥∥∥∥∥µ

(
⋃

n∈N

An

)

−
N∑

n=0

µ(An)

∥∥∥∥∥
E

= 0 .

We denote by M(Λ,A, E) the set of E-valued measures. For such a measure µ, the mapping

‖µ‖E : A 7→ sup

{
∑

i∈N

‖µ(Ai)‖E : (Ai)i∈N ∈ AN is a countable partition of A

}

defines a non-negative measure on (Λ,A) called the variation measure of µ. The notation
‖µ‖E will be adapted to the notation chosen for the norm in E (for example if µ is a complex
measure we will use |µ| and if µ is valued in a Schatten-p space we will use ‖µ‖p). The variation
of a complex-valued measure is always finite and the variation of a non-negative measure is
itself. We will denote by Mb(Λ,A, E) the set of E-valued measures with finite variation. It is
a Banach space when endowed with the norm ‖µ‖TV,E = ‖µ‖E(Λ). If µ ∈ Mb(Λ,A, E), then
for a simple function f : Λ 7→ C with range {α1, . . . , αn}, the integral of f with respect to µ
is defined by the same formula as in (2.2) (but this time the αk’s are scalars and the µ’s are
E-valued). This definition is extended to L1(Λ,A, ‖µ‖E) by continuity.

When Λ is a locally-compact topological space, a vector measure µ ∈ M(Λ,A, E) is said
to be regular if for all A ∈ A, for all ǫ > 0, there exist a compact set K ∈ A and an open set
U ∈ A with K ⊂ A ⊂ U such that for all B ∈ A satisfying B ⊂ U \ K, ‖µ(B)‖E ≤ ǫ. We
denote by Mr(Λ,A, E) the linear space of such measures. The notion of regularity is extended
to non-finite, non-negative measures by restricting A to be such that µ(A) < +∞. From the
straightforward inequality ‖µ(A)‖E ≤ ‖µ‖E(A) for all A ∈ A, we get that if µ ∈ Mb(Λ,A, E)
has a regular variation, then µ is regular. The converse is not always true but holds for
complex measures. An interesting result (see [33, Remark 3.6.2]) is that an E-valued measure
ν is regular if and only if for all φ ∈ E∗, φ ◦ ν is a regular complex measure.

Finally, we recall another notion of measurability for functions valued in the operator
spaces Lb(H0,G0) or O(H0,G0). Namely, a function Φ : Λ → Lb(H0, G0) is said to be simply
measurable if for all x ∈ H0, λ 7→ Φ(λ)x is measurable as a G0-valued function. The set of
such functions is denoted by Fs (Λ,A,H0,G0). For a function Φ : Λ → O(H0,G0), adapting
[45], [33, Section 3.4], we will say that Φ is O-measurable if it satisfies the two following
conditions.

(i) For all x ∈ H0, {λ ∈ Λ : x ∈ D(Φ(λ))} ∈ A.

(ii) There exist a sequence (Φn)n∈N valued in Fs (Λ,A,H0,G0) such that for all λ ∈ Λ and
x ∈ D(Φ(λ)), Φn(λ)x converges to Φ(λ)x in G0 as n→ ∞.

We denote by FO (Λ,A,H0, G0) the space of such functions Φ. Note that for all Banach space
E which is continuously embedded in Lb(H0,G0) (e.g. Sp(H0,G0) for p ≥ 1 or K(H0,G0)), the
following inclusions hold

F(Λ,A, E) ⊂ Fs (Λ,A,H0,G0) ⊂ FO (Λ,A,H0,G0) . (2.3)

In this paper we will mainly take E as the set of trace-class, Hilbert-Schmidt or compact
H0 → G0 operators for which measurability and simple measurability are equivalent as stated
in the following lemma.

Lemma 2.1. Let E = K(H0,G0) or Sp(H0,G0) where p ∈ {1, 2} and H0, G0 are separable
Hilbert spaces. Then a function Φ : Λ → E is measurable if and only if it is simply measurable.

We also need to consider operator-valued measures for our study, and more particularly
p.o.v.m.’s which are studied in the next section.
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2.2 Positive Operator Valued Measures

The notion of Positive Operator Valued Measures is widely used in Quantum Mechanics and
a good study of such measures can be found in [4]. Here we provide useful definitions and
results for our purpose.

Definition 2.1 (Positive Operator Valued Measures). Let (Λ,A) be a measurable space and
H0 be a separable Hilbert space. A Positive Operator Valued Measure (p.o.v.m.) on (Λ,A,H0)
is a mapping ν : A → L+

b (H0) such that for all sequences of disjoint sets (An)n∈N ∈ AN,

ν

(
⋃

n∈N

An

)
=
∑

n∈N

ν(An) (2.4)

where the series converges in L+
b (H0) for the s.o.t.

Due to properties of positive operators, convergence in the w.o.t. would be sufficient in
Definition 2.1, see [4, Proposition 1]. Note that, with this definition, a p.o.v.m. is not a
vector-valued measure in the sense of Section 2.1 since we do not suppose that the series
in (2.4) converges in operator norm. However, this definition is sufficient to derive a useful
characterization which links a p.o.v.m. to a sesquilinear, hermitian, positive semi-definite,
continuous mapping valued in M(Λ,A).

Definition 2.2. Let (Λ,A) be a measurable space and H0 be a separable Hilbert space. A
mapping φ : H2

0 → M(Λ,A) is said to be sesquilinear, hermitian, positive semi-definite,
continuous if for all A ∈ A, the mapping (x, y) 7→ φ(x, y)(A) is sesquilinear, hermitian,
positive semi-definite, continuous.

The characterization of p.o.v.m.’s then reads as follows (see [4, Theorem 2]).

Proposition 2.2. Let (Λ,A) be a measurable space and H0 be a separable Hilbert space, then
the following assertions hold.

(i) For all p.o.v.m. ν on (Λ,A,H0) and all x, y ∈ H0, the mapping yHνx : A 7→ 〈ν(A)x, y〉H0

is a complex-valued measure on (Λ,A). Moreover, the mapping (x, y) 7→ yHνx is
sesquilinear, hermitian, positive semi-definite, continuous.

(ii) Conversely, if φ : H2
0 → M(Λ,A) is a sesquilinear, hermitian, positive semi-definite

bounded mapping, then there exists a unique p.o.v.m. ν on (Λ,A,H0) such that for all
x, y ∈ H0, φ(x, y) = yHνx.

This characterization can be used to construct integrals of bounded complex-valued func-
tions with respect to p.o.v.m.’s and we refer to [4, Section 5] for details. When Λ is a
locally-compact topological space, this also gives a simple notion of regularity for p.o.v.m.’s,
namely a p.o.v.m. ν on (Λ,A,H0) is said to be regular if for all x, y ∈ H0, the measure
yHνx is a regular complex measure. We will say that a p.o.v.m. on (Λ,A,H0) is trace-class
if it is S1(H0)-valued. The following lemma states that trace-class p.o.v.m.’s can be seen as
vector-valued measures.

Lemma 2.3. A p.o.v.m. ν on (Λ,A,H0) is trace-class if and only if ν(Λ) ∈ S1(H0). In this
case, ν is a S1(H0)-valued measure (in the sense that (2.4) holds in ‖·‖1-norm) with finite
variation measure ‖ν‖1 : A 7→ ‖ν(A)‖1. Moreover, regularity of ν as a p.o.v.m. is equivalent
to regularity of ν as a S1(H0)-valued measure which is itself equivalent to regularity of ‖ν‖1.

Thanks to this result, integration of complex-valued functions with respect to a trace-class
p.o.v.m. is possible using the theory of vector-valued measures with finite variation recalled
in Section 2.1. Finally, the following Radon-Nikodym property holds.

Theorem 2.4. Let (Λ,A) be a measure space, H0 a separable Hilbert space and ν a trace-class
p.o.v.m. on (Λ,A,H0). Let µ be a finite non-negative measure on (Λ,A). Then ‖ν‖1 ≪ µ (i.e.
for all A ∈ A, µ(A) = 0 ⇒ ‖ν‖1(A) = 0), if and only if there exists g ∈ L1(Λ,A,S1(H0), µ)
such that dν = g dµ, i.e. for all A ∈ A,

ν(A) =

∫

A

g dµ . (2.5)

In this case, g is unique and is called the density of ν with respect to µ and denoted as g = dν
dµ

.
Moreover, the following assertions hold.
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(a) For µ-almost every λ ∈ Λ, g(λ) ∈ S+
1 (H0).

(b) The density of ‖ν‖1 with respect to µ is ‖g‖1. In particular, g = dν
d‖ν‖1

‖g‖1.

(c) If ‖ν‖1 ≤ µ, then ‖g‖1 ≤ 1 µ-a.e., and if µ = ‖ν‖1, then ‖g‖1 = 1 µ-a.e.

2.3 Normal Hilbert modules

Modules extend the notion of vector spaces to the case where scalar multiplication is replaced
by a multiplicative operation with elements of a ring. When the ring is a C∗-algebra, it is
possible to endow a module with a structure similar to a Hilbert space (see [35]). Following
[33], hereafter, we consider the case where the C∗-algebra is the space Lb(H0) for a separable
Hilbert space H0.

Definition 2.3 (Lb(H0)-module). Let H0 be a separable Hilbert space. A Lb(H0)-module is a
commutative group (H,+) such that there exists a multiplicative operation (called the module
action)

Lb(H0)×H → H
(P, x) 7→ P • x

which satisfies the usual distributive properties : for all P,Q ∈ Lb(H0), and x, y ∈ H,

P • (x+ y) = P • x+ P • y,

(P + Q) • x = P • x+Q • x,

(PQ) • x = P • (Q • x),

IdH0 • x = x.

Next, we endow a Lb(H0)-module with an Lb(H0)-valued product.

Definition 2.4 ((Normal) pre-Hilbert Lb(H0)-module). Let H0 be a separable Hilbert space.
A pre-Hilbert Lb(H0)-module H is a Lb(H0)-module endowed with a mapping [·, ·]H : H×H →
Lb(H0) satisfying for all x, y, z ∈ H, and P ∈ Lb(H0),

(i) [x, x]H ∈ L+
b (H0),

(ii) [x, x]H = 0 if and only if x = 0,

(iii) [x+ P • y, z]H = [x, z]H + P[y, z]H,

(iv) [y, x]H = [x, y]HH.

If moreover, for all x, y ∈ H, [x, y]H ∈ S1(H0), we say that [·, ·]H is a gramian and that H is
a normal pre-Hilbert Lb(H0)-module.

The mapping [·, ·]H generalizes the notion of scalar products for Lb(H0)-modules and is
often called a Lb(H0)-valued scalar product. In the following, we only consider normal pre-
Hilbert Lb(H0)-modules even if some notions can be defined when [·, ·]H is not a gramian.
Note that a Lb(H0)-module is a vector space if we define the scalar-vector multiplication
by αx = (αIdH0) • x for all α ∈ C, x ∈ H and that, in the particular case where [·, ·] is
a gramian, then 〈·, ·〉 := Tr[·, ·] is a scalar product. Hence a normal pre-Hilbert Lb(H0)-

module is also a pre-Hilbert space. If it is complete (for the norm ‖x‖H =
∥∥[x, x]H

∥∥1/2
1

),
then it is called a normal Hilbert Lb(H0)-module. For normal Hilbert Lb(H0)-modules, the
notions of sub-modules and Lb(H0)-linear span as well as Lb(H0)-linear operators, gramian-
isometries, gramian-unitary operators, gramian-orthogonality, gramian-projections come as
natural extensions of their vector space counterparts. For completeness, we provide here the
necessary definitions and refer to chapter II of [33] for a complete study.

Definition 2.5 (Submodules and Lb(H0)-linear operators). Let H0 be a separable Hilbert
space and H, G two Lb(H0)-modules. Then a subset of H is called a submodule if it is a
Lb(H0)-module. An operator F ∈ Lb(H,G) is said to be Lb(H0)-linear if for all P ∈ Lb(H0)
and x ∈ H, F(P • x) = P • (Fx).

Definition 2.6 (Gramian-isometries). Let H0 be a separable Hilbert space, H, G be two pre-
Hilbert Lb(H0)-modules and U : H → G a Lb(H0)-linear operator. Then U is said to be

(i) a gramian-isometry (or gramian-isometric) if for all x, y ∈ H, [Ux,Uy]G = [x, y]H,

(ii) gramian-unitary if it is a bijective gramian-isometry.
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The space H is said to be gramian-isometrically-embedded in G (denoted H ⊆
∼ G) if there

exists a gramian-isometry from H to G. The spaces H and G are said to be gramian-isomorphic
(denoted H ∼= G) if there exists a gramian-unitary operator from H to G.

Definition 2.7 ((Continuous) gramian unitary representations). Let (G,+) be an l.c.a.
group, H0 a Hilbert space and H a normal Hilbert Lb(H0)-module with gramian [·, ·]H. A

mapping U :
G 7→ Lb(H)
h 7→ Uh

is said to be a gramian unitary representation (g.u.r.) of G

on H if it is an u.r. of G on H such that for all h ∈ G, Uh is gramian-unitary. A g.u.r. is
continuous, then called a c.g.u.r., if it is continuous as an u.r.

For later reference we state a simple extension result for gramian isometric operators.

Proposition 2.5 (Gramian-isometric extension). Let H be a normal pre-Hilbert Lb(H0)-
module, G a normal Hilbert Lb(H0)-module. Let (vj)j∈J and (wj)j∈J be two sets of vectors
in H and G respectively with J an arbitrary index set. If for all i, j ∈ J, [vi, vj ]H = [wi, wj ]G
then there exists a unique gramian-isometry

S : Span
H
(P • vj ,P ∈ Lb(H0), j ∈ J) → G

such that for all j ∈ J, Svj = wj . If moreover H is complete then

S
(
Span

H
(P • vj ,P ∈ Lb(H0), j ∈ J)

)
= Span

G
(P • wj ,P ∈ Lb(H0), j ∈ J)

We can now state an important result, which generalizes Stone’s theorem to c.g.u.r.’s. We
refer to [33, Proposition 2.5.4] for a proof and Appendix B.1 for the definition of gramian-
projection valued measures.

Theorem 2.6 (Stone’s theorem for modules). Let (G,+) be an l.c.a. group, H0 a Hilbert

space, H a normal Hilbert Lb(H0)-module with gramian [·, ·]H and U :
G 7→ Lb(H)
h 7→ Uh

a

c.g.u.r of G on H. Then there exists a unique regular gramian-projection valued measure ξ
on (Ĝ,B(Ĝ)) such that

Uh =

∫
χ(h) ξ(dχ), h ∈ G . (2.6)

We conclude this section with some examples of normal Hilbert Lb(H0)-modules.

Example 2.1. Let us provide some examples of Hilbert modules built from two separable
Hilbert spaces H0 and ,G0.

(1) Identifying Lb(C) with C, H0 is a normal Hilbert Lb(C)-module with module action
a • x = a x and its gramian reduces to the scalar product of H0.

(2) H0 is also a normal Hilbert Lb(H0)-module with module action P •x = Px and gramian
[x, y]H0

= x⊗ y where (x⊗ y)u = 〈u, y〉H0
x for all u ∈ H0.

(3) S2(H0,G0) is a normal Hilbert Lb(G0)-module with module action P • Q = PQ and
gramian [P,Q]S2(H0,G0)

= PQH.

(4) Let (Λ,A) be a measurable space and µ a finite non-negative measure on (Λ,A). Then
for all normal Hilbert Lb(H0)-module H, the space L2(Λ,A,H, µ) is a normal Lb(H0)-
Hilbert module for the module action (P•f)(·) = P•[f(·)] and gramian [f, g]L2(Λ,A,H,µ) =∫
[f, g]H dµ.

The two following special instances of the previous example will be of particular interest.

(5) Let (Λ,A) be a measurable space and µ a finite non-negative measure on (Λ,A).
Then L2(Λ,A,S2(H0,G0), µ) is a normal Lb(G0)-Hilbert module for the module ac-
tion (P • Φ)(·) = PΦ(·) and gramian [Φ,Ψ]L2(Λ,A,S2(H0,G0),µ)

=
∫
ΦΨH dµ for Φ,Ψ ∈

L2(Λ,A,S2(H0, G0), µ) and P ∈ Lb(G0). Note that in this case

〈Φ,Ψ〉L2(Λ,A,S2(H0,G0),µ)
= Tr[Φ,Ψ]L2(Λ,A,S2(H0,G0),µ)

=

∫
Tr
(
ΦΨH

)
dµ ,

and the associated squared norm is

‖Φ‖2L2(Λ,A,S2(H0,G0),µ)
=

∫
Tr
(
ΦΦH

)
dµ =

∫ ∥∥∥ΦΦH
∥∥∥
1
dµ =

∫
‖Φ‖22 dµ .
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(6) Let (Ω,F ,P) be a probability space. Then the space M(Ω,F ,H0,P) of centered variables
in L2(Ω,F ,H0,P) is a normal Hilbert Lb(H0)-module for the module action P•Y = PY
and gramian [Y,Z]M(Ω,F,H0,P)

= Cov (Y,Z) = E [Y ⊗ Z] for P ∈ Lb(H0), and Y,Z ∈
M(Ω,F ,H0,P).

In the univariate case, the measure X̂ obtained by Theorem 1.2 is valued in the space of
centered L2(Ω,F , P) variables and is orthogonally scattered. In the Hilbert valued case, it is
valued in M(Ω,F ,H0,P), which is a normal Hilbert Lb(H0)-module. In the following section,
we thus extend c.a.o.s. measures to replace the standard orthogonality property by the more
general gramian-orthogonality property.

2.4 Countably additive gramian orthogonally scattered mea-

sures

This section aims at presenting the generalization of c.a.o.s. measures to normal Hilbert
modules. Let H0 be a separable Hilbert space, H a normal Hilbert Lb(H0)-module and
(Λ,A) a measurable space. Let ν be a trace-class p.o.v.m. on (Λ,A,H0). A c.a.g.o.s. measure
W on (Λ,A,H) with intensity operator measure ν is a mapping W : A → H such that, for
all A,B ∈ A, [W (A),W (B)]H = ν(A ∩ B). In fact, the intensity operator measure ν can be
deduced from W as in the following definition.

Definition 2.8 (c.a.g.o.s. measure). Let H0 be a separable Hilbert space, H a normal Hilbert
Lb(H0)-module and (Λ,A) a measurable space. We say that W : A → H is a countably
additive gramian-orthogonally scattered (c.a.g.o.s.) measure on (Λ,A,H) if it is a H-valued
measure on (Λ,A) such that for all A,B ∈ A,

A ∩ B = ∅ ⇒ [W (A),W (B)]H = 0 .

In this case, the mapping
νW : A 7→ [W (A),W (A)]H

is a trace-class p.o.v.m. on (Λ,A,H0) called the intensity operator measure of W and we have
that, for all A,B ∈ A,

νW (A ∩ B) = [W (A),W (B)]H .

A special case that will be of interest for us is the following.

Definition 2.9 (Random c.a.g.o.s. measure). Let H0 be a separable Hilbert space, (Λ,A) be
a measurable space, and (Ω,F ,P) be a probability space. A c.a.g.o.s. measure on the space
M(Ω,F ,H0,P) is called an H0-valued random c.a.g.o.s. measure defined on (Λ,A,Ω,F , P).

It is straightforward to see that a c.a.g.o.s. measure W is a c.a.o.s. measure with intensity
measure ‖νW ‖1 which, in particular implies that, when Λ is a locally-compact topological
space, W is regular if and only if ‖νW ‖1 is regular. By the known integration theory for
c.a.o.s. measures (see Appendix B.2), it is possible to integrate scalar-valued functions of
L2(Λ,A, ‖νW ‖1) with respect to W , simply by an isometry extension of the mapping 1A 7→
W (A), A ∈ A. In Section 2.8, we will generalize this approach to define the integral of
an operator-valued function with respect to a random c.a.g.o.s. measure W , this time by a
gramian isometry extension of the mapping 1AP 7→ PW (A), A ∈ A, P ∈ Lb(H0,G0). Before
that, we build the normal Hilbert module generated by 1AP, A ∈ A, P ∈ Lb(H0,G0). This
turns out to be me more involved in the infinite dimensional case as it requires two steps.
First, in Section 2.5, we will define the space L

2(Λ,A,Lb(H0,G0), ν) of bounded-operator-
valued functions which are square-integrable with respect to ν. Then, because this space is not
complete, except in very special cases investigated in Appendix B.3, we explain in Section 2.6
how to complete this space by adding function with values that are possibly non-bounded
operators. Having this complete space at hand allows us to introduce interesting gramian-
isometries on such spaces, namely, in Section 2.7 by right-composition by an operator-valued
function, in Section 2.8 by integration with respect to a random c.a.g.o.s. measure and we
conclude in Section 2.9 by investigating how to define the filtering of a random c.a.g.o.s.
measure.
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2.5 The space L
2(Λ,A,Lb(H0,G0), ν)

Let H0 and G0 be two separable Hilbert spaces, (Λ,A) be a measurable space and ν be
a trace-class p.o.v.m. on (Λ,A,H0). The goal of this section is to introduce the space
L
2(Λ,A,Lb(H0,G0), ν) of bounded-operator-valued functions which are square-integrable with

respect to ν. This space includes the space L2(Λ,A,Lb(H0,G0), ‖ν‖1), and the inclusion
is, in general, strict. More precisely, let P,Q ∈ Lb(H0,G0), then it is easy to check
that A 7→ Pν(A)QH defines a S1(H0)-valued measure. By linearity, such a definition can
be extended to the case where Φ, Ψ are simple functions from Λ to Lb(H0,G0) and it
is then natural to want to provide a meaning to an integral of the type

∫
ΦdνΨH where

Φ,Ψ ∈ F(Λ,A,Lb(H0,G0)) or, more generally, in Fs (Λ,A,H0,G0). Since ν has a density with
respect to any measure µ dominating ‖ν‖1, the construction of such integrals is very similar
to the work done in [62] but is more general as discussed in Section 6.3. We follow [33, 45] in
this approach, which is a natural extension to the finite dimensional case investigated in [54].

Definition 2.10. Let H0, G0 be separable Hilbert spaces, (Λ,A) a measurable space, ν a trace-
class p.o.v.m. on (Λ,A,H0) with density f = dν

d‖ν‖1
. Let Φ,Ψ ∈ Fs (Λ,A,H0,G0), then the

pair (Φ,Ψ) is said to be ν-integrable if ΦfΨH ∈ L1(Λ,A,S1(G0), ‖ν‖1) and in this case we
define ∫

ΦdνΨH :=

∫
ΦfΨH d‖ν‖1 ∈ S1(G0) . (2.7)

If (Φ,Φ) is ν-integrable we say that Φ is square ν-integrable and we denote by
L

2(Λ,A,Lb(H0, G0), ν) the space of functions in Fs (Λ,A,H0,G0) which are square ν-
integrable.

To check that Φ is square ν-integrable, we can replace ‖ν‖1 by an arbitrary dominating
measure µ (often taken as Lebesgue’s measure, as in [62]), as stated in the following result.

Proposition 2.7. Let H0,G0 be separable Hilbert spaces, (Λ,A) a measurable space and ν
a trace-class p.o.v.m. on (Λ,A,H0). Let µ be a finite non-negative measure on (Λ,A) which
dominates ‖ν‖1 and g = dν

dµ
. Let Φ,Ψ ∈ Fs (Λ,A,H0,G0). Then (Φ,Ψ) is ν-integrable if and

only if ΦgΨH ∈ L1(Λ,A,S1(G0), µ), and, in this case, we have

∫
ΦdνΨH =

∫
ΦgΨH dµ . (2.8)

Moreover, we have

Φ ∈ L
2(Λ,A,Lb(H0,G0), ν) ⇔ Φg1/2 ∈ L2(Λ,A,S2(H0, G0), µ) , (2.9)

and, if Φ,Ψ ∈ L
2(Λ,A,Lb(H0,G0), ν), then (Φ,Ψ) is ν-integrable and

∫
ΦdνΨH =

∫
(Φg1/2)(Ψg1/2)H dµ. (2.10)

The equivalence in (2.9) says that L
2(Λ,A,Lb(H0,G0), ν) is the preimage of

L2(Λ,A,S2(H0, G0), µ) by the mapping

Fs (Λ,A,Lb(H0,G0)) → F(Λ,A,S2(H0,G0))

Φ 7→ Φg1/2

and (2.10) can be rewritten as

∫
ΦdνΨH =

[
Φg1/2,Ψg1/2

]

L2(Λ,A,S2(H0,G0),µ)

where [·, ·]L2(Λ,A,S2(H0,G0),µ)
is the pseudo-gramian (in the sense that is satisfies all the con-

ditions of Definition 2.4 except (ii)) defined on L2(Λ,A,S2(H0, G0), µ). This pseudo-gramian
becomes a gramian on L2(Λ,A,S2(H0,G0), µ) which we recall is obtained by quotienting
L2(Λ,A,S2(H0, G0), µ) with the µ-a.e. equality and this new space is a normal Hilbert Lb(G0)-
module, see Example 2.1(5). This naturally leads to the following proposition.
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Proposition 2.8. Let H0, G0 be separable Hilbert spaces, (Λ,A) a measurable space, ν a trace-
class p.o.v.m. on (Λ,A,H0) and f = dν

d‖ν‖1
. Then L

2(Λ,A,Lb(H0, G0), ν) is a Lb(G0)-module

with module action

P • Φ : λ 7→ PΦ(λ), P ∈ Lb(G0),Φ ∈ L
2(Λ,A,Lb(H0,G0), ν)

and the relation

[Φ,Ψ]
L2(Λ,A,Lb(H0,G0),ν)

:=

∫
ΦdνΨH Φ,Ψ ∈ L

2(Λ,A,Lb(H0,G0), ν) (2.11)

is a pseudo-gramian on L
2(Λ,A,Lb(H0,G0), ν) and a gramian on the quotient space

L
2(Λ,A,Lb(H0,G0), ν) := L

2(Λ,A,Lb(H0,G0), ν)
/{

Φ : Φf1/2 = 0 ‖ν‖1-a.e.
}
.

Moreover
(
L
2(Λ,A,Lb(H0,G0), ν), [·, ·]L2(Λ,A,Lb(H0,G0),ν)

)
is a normal pre-Hilbert Lb(G0)-

module and, for any finite non-negative measure µ dominating ‖ν‖1 with density g = dν
dµ

,

{
Φ : Φg1/2 = 0 µ-a.e.

}
=
{
Φ : Φf1/2 = 0 ‖ν‖1-a.e.

}
, (2.12)

and the mapping Φ 7→ Φg1/2 is a gramian-isometry from L
2(Λ,A,Lb(H0, G0), ν) to

L2(Λ,A,S2(H0,G0), µ).

2.6 Completion of L2(Λ,A,Lb(H0,G0), ν)

In the multivariate case (i.e. when H0 and G0 have finite dimensions) the completeness
of L2(Λ,A,Lb(H0, G0), ν) is proven in [54]. However completeness is not guaranteed in the
infinite dimensional case, see [45], where the authors refer to [41] for a counter-example.
In Appendix B.3, we pursue this line of thoughts by providing a necessary and sufficient
condition for the completeness of L2(Λ,A,Lb(H0,G0), ν) in the general case. Since the integral
of operator-valued functions with respect to a c.a.g.o.s. measure is expected to be a gramian-
unitary operator, it must be defined on a complete space. A first option is then to complete
the space L

2(Λ,A,Lb(H0,G0), ν) by taking the equivalence classes of Cauchy sequences such
that two such sequences (Un) and (Vn) are in the same class if lim(Un−Vn) = 0. However, the
completed space is very abstract and hard to describe in an intuitive way. More concretely
the uncompleteness of L2(Λ,A,Lb(H0,G0), ν) comes from the fact that we restrict ourselves to
Lb(H0, G0)-valued functions. A more concrete complete extension of L2(Λ,A,Lb(H0,G0), ν),
as noticed in [33, Section 3.4] and [45], simply consists in extending this space to include well
chosen O(H0,G0)-valued functions. We now follow their path.

Definition 2.11. Let H0, G0 be two separable Hilbert spaces, ν be a trace-class p.o.v.m. on
(Λ,A,H0) and f = dν

d‖ν‖1
. Let Φ,Ψ ∈ FO (Λ,A,H0,G0), then the pair (Φ,Ψ) is said to be

ν-integrable if the three following assertions hold.

(i) Im(f1/2) ⊂ D(Φ) and Im(f1/2) ⊂ D(Ψ) ‖ν‖1-a.e.

(ii) Φf1/2 and Ψf1/2 are S2(H0,G0)-valued.

(iii) (Φf1/2)(Ψf1/2)H ∈ L1(Λ,A,S1(G0), ‖ν‖1).

In this is the case, we define for all A ∈ A,
∫

A

ΦdνΨH :=

∫

A

(Φf1/2)(Ψf1/2)H d‖ν‖1 ∈ S1(G0) . (2.13)

If (Φ,Φ) is ν-integrable, then Φ is said to be square ν-integrable and we denote by
L

2(Λ,A,O(H0,G0), ν) the space of functions in FO (Λ,A,H0,G0) which are square ν-
integrable.

Note that, if Φ and Ψ are Lb(H0,G0)-valued, we can write (Φf1/2)(Ψf1/2)H = ΦfΨH

because the adjoint of Ψ exists. In the general case the latter exists only when D(Ψ) is
dense in H0. The left hand side term of (2.13) should therefore be taken only as a shorthand
notation for the right hand side term which makes sense because of (ii). As previously, we
can show that ‖ν‖1 can be replaced by any finite non-negative measure µ dominating ‖ν‖1
and the following characterization holds.
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Proposition 2.9. Let H0,G0 be separable Hilbert spaces, (Λ,A) a measurable space and ν a
trace-class p.o.v.m. on (Λ,A,H0). Let µ be a finite non-negative measure dominating ‖ν‖1
and g = dν

dµ
. Let Φ,Ψ ∈ FO (Λ,A,H0,G0), then (Φ,Ψ) is ν-integrable if and only if it satisfies

(i’) Im(g1/2) ⊂ D(Φ) and Im(g1/2) ⊂ D(Ψ) µ-a.e.

(ii’) Φg1/2 and Ψg1/2 are S2(H0,G0)-valued.

(iii’) (Φg1/2)(Ψg1/2)H ∈ L1(Λ,A,S1(G0), µ).

In this case we have for all A ∈ A,
∫

A

ΦdνΨH =

∫

A

(Φg1/2)(Ψg1/2)H dµ . (2.14)

Moreover, we have

Φ ∈ L
2(Λ,A,O(H0,G0), ν) ⇔

{
Im(g1/2) ⊂ D(Φ) µ-a.e.

Φg1/2 ∈ L2(Λ,A,S2(H0,G0), µ)
(2.15)

and, if Φ,Ψ ∈ L
2(Λ,A,O(H0, G0), ν), then (Φ,Ψ) is ν-integrable and

∫
ΦdνΨH =

∫
(Φg1/2)(Ψg1/2)H dµ =

[
Φg1/2,Ψg1/2

]

L2(Λ,A,S2(H0,G0),µ)
. (2.16)

Similarly as before, we get the following (more general) result.

Theorem 2.10. Let H0,G0 be separable Hilbert spaces, (Λ,A) a measurable space, ν a trace-
class p.o.v.m. on (Λ,A,H0) and f = dν

d‖ν‖1
. Then L

2(Λ,A,O(H0,G0), ν) is a Lb(G0)-module

with module action

P • Φ : λ 7→ PΦ(λ), P ∈ Lb(G0),Φ ∈ L
2(Λ,A,O(H0, G0), ν)

and the relation

[Φ,Ψ]
L2(Λ,A,O(H0 ,G0),ν)

:=

∫
ΦdνΨH Φ,Ψ ∈ L

2(Λ,A,O(H0,G0), ν) , (2.17)

is a pseudo-gramian on L
2(Λ,A,O(H0,G0), ν) and a gramian on the quotient space

L
2(Λ,A,O(H0,G0), ν) := L

2(Λ,A,O(H0,G0), ν)
/{

Φ : Φf1/2 = 0 ‖ν‖1-a.e.
}
.

Moreover,
(
L
2(Λ,A,O(H0,G0), ν), [·, ·]L2(Λ,A,O(H0,G0),ν)

)
is a normal Hilbert Lb(G0)-module

and, for any finite non-negative measure µ dominating ‖ν‖1 with density g = dν
dµ

, then

{
Φ : Φg1/2 = 0 µ-a.e.

}
=
{
Φ : Φf1/2 = 0 ‖ν‖1-a.e.

}
, (2.18)

and the mapping Φ 7→ Φg1/2 is a gramian unitary operator from L
2(Λ,A,O(H0,G0), ν) to

L2(Λ,A,S2(H0,G0), µ).

Given a trace-class measure ν on (Λ,A), we now have three different spaces of square
integrable operator-valued functions: the usual L2(Λ,A,Lb(H0,G0), ‖ν‖1) space with ‖ν‖1-
integrated squared operator norm, the space L

2(Λ,A,Lb(H0,G0), ν) of Definition 2.10 and
the space L

2(Λ,A,O(H0,G0), ν) of Definition 2.11. It is easily seen that they verify the
inclusions

L2(Λ,A,Lb(H0,G0), ‖ν‖1) ⊂ L
2(Λ,A,Lb(H0,G0), ν) ⊂ L

2(Λ,A,O(H0,G0), ν) , (2.19)

where the second inclusion is an isometric embedding and the first one a continuous embed-
ding. More precisely, if Φ ∈ L2(Λ,A,Lb(H0,G0), ν), then

‖Φ‖L2(Λ,A,Lb(H0,G0),‖ν‖1)
≥ ‖Φ‖

L2(Λ,A,Lb(H0,G0),ν)
= ‖Φ‖

L2(Λ,A,O(H0,G0),ν)
, (2.20)

with the convention that ‖Φ‖L2(Λ,A,Lb(H0,G0),‖ν‖1)
= ∞ if Φ /∈ L2(Λ,A,Lb(H0,G0), ‖ν‖1).

We conclude this section by the following theorem stating that L2(Λ,A,O(H0,G0), ν) can
be recovered by density of well chosen subspaces.
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Theorem 2.11. Let H0,G0 be two separable Hilbert spaces, (Λ,A) a measurable space, and
ν a trace-class p.o.v.m. on (Λ,A,H0). Then the space L2(Λ,A,Lb(H0,G0), ‖ν‖1) is dense in
L
2(Λ,A,O(H0, G0), ν). In particular, this implies the two following assertions.

(i) The space Span (1A P : A ∈ A,P ∈ Lb(H0,G0)) of simple Lb(H0,G0)-valued functions
is dense in L

2(Λ,A,O(H0,G0), ν).

(ii) In the case where Λ = Ĝ and A = B(Ĝ) with G being an l.c.a. group, we get that the
space Span (et P : t ∈ G,P ∈ Lb(H0,G0)) is dense in L

2(G,B(G),O(H0,G0), ν) where
et : χ 7→ χ(t).

2.7 Pointwise composition of operator valued functions

Let H0, G0, I0 be separable Hilbert spaces and ν a trace-class p.o.v.m. on (Λ,A,H0). For
O(H0,G0) and O(G0, I0) valued functions Φ and Ψ, we denote by ΨΦ the pointwise compo-
sition, that is ΨΦ : λ 7→ Ψ(λ) ◦ Φ(λ). Of course we need the image of Φ(λ) to be included in
the domain of Ψ(λ) for this pointwise composition to be well defined. To check whether ΨΦ
is square integrable with respect to ν, we can equivalently check that Ψ is square integrable
with respect to the trace class p.o.v.m. ΦνΦH defined by

ΦνΦH : A 7→

∫

A

ΦdνΦH ,

which is a well defined trace-class p.o.v.m. whenever Φ ∈ L
2(Λ,A,O(H0,G0), ν). The space

L
2(Λ,A,O(H0, I0),ΦνΦ

H) is then characterized by the following theorem.

Theorem 2.12. Let (Λ,A) be a measurable space, H0, G0, I0 separable Hilbert spaces and ν a
trace-class p.o.v.m. on (Λ,A,H0). Let Φ ∈ L

2(Λ,A,O(H0,G0), ν) and Ψ ∈ FO (Λ,A,G0, I0).
Then

Ψ ∈ L
2(Λ,A,O(G0, I0),ΦνΦ

H) ⇔ ΨΦ ∈ L
2(Λ,A,O(H0, I0), ν) . (2.21)

Moreover, the following assertions hold.

(a) For all Ψ,Θ ∈ L
2(Λ,A,O(G0, I0),ΦνΦ

H),

(ΨΦ)ν(ΘΦ)H = Ψ(ΦνΦH)ΘH .

(b) The mapping Ψ 7→ ΨΦ is a well defined gramian-isometry from
L
2(Λ,A,O(G0, I0),ΦνΦ

H) to L
2(Λ,A,O(H0, I0), ν).

(c) Suppose moreover that Φ is injective ‖ν‖1-a.e., then we have that

Φ−1 ∈ L
2(Λ,A,O(G0,H0),ΦνΦ

H) ,

where we define Φ−1(λ) :=
(
Φ(λ)|D(Φ(λ))→Im(Φ(λ))

)−1
with domain Im(Φ(λ)) for all

λ ∈ {Φ is injective} and Φ−1(λ) = 0 otherwise.

2.8 Integration with respect to a random c.a.g.o.s. measure

Let H0 and G0 be two separable Hilbert spaces, (Λ,A) be a measurable space, and let ν be a
trace-class p.o.v.m. defined on (Λ,A,H0). We denote

Ĥν,G0 := L
2(Λ,A,O(H0,G0), ν) , (2.22)

which is a normal Hilbert Lb(G0)-module by Theorem 2.10. Given an H0-valued random
c.a.g.o.s. measure W , we further denote

HW,G0 := Span
G
(PW (A) : P ∈ Lb(H0,G0), A ∈ A) , (2.23)

which is a submodule of G := M(Ω,F ,G0, P).
We can now define the integral of an O(H0, G0)-valued function with respect to a random

c.a.g.o.s. measure W with intensity operator measure νW through a gramian isometry defined
on Ĥν,G0 .
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Theorem 2.13. Let (Λ,A) be a measurable space and (Ω,F , P) a probability space. Let H0

and G0 be two separable Hilbert spaces. Let W be an H0-valued random c.a.g.o.s. measure
on (Λ,A,Ω,F , P) with intensity operator measure νW . Let ĤνW ,G0 and HW,G0 be defined as
in (2.22) and (2.23). Then there exists a unique gramian isometry

IG0
W : ĤνW ,G0 → M(Ω,F , G0,P)

such that, for all A ∈ A and P ∈ Lb(H0,G0),

IG0
W (1AP) = PW (A) P-a.s.

Moreover, ĤνW ,G0 and HW,G0 are gramian-isometrically isomorphic.

Taking G0 = C in the previous result, the Hilbert modules ĤνW ,C and HW,C reduce to
Hilbert spaces and their gramians to scalar products as in Example 2.1(1), so that the gramian
isomorphism between them also reduces to a standard Hilbert isomorphism.

We can now define the integral of an operator valued function with respect to W .

Definition 2.12 (Integral with respect to a random c.a.g.o.s. measure). Under the assump-

tions of Theorem 2.13, we use an integral sign to denote IG0
W (Φ) for Φ ∈ ĤνW ,G0 . Namely,

we write ∫
ΦdW =

∫
Φ(λ)W (dλ) := IG0

W (Φ) . (2.24)

The following results shows that we can restrict ourselves to G0 = C to characterize the
c.a.g.o.s. W through the isometry ICW , in which case, as previously mentioned, the gramian
isometry is a standard isometry between two Hilbert spaces.

Theorem 2.14. Let (Λ,A) be a measurable space and (Ω,F , P) a probability space. Let H0

be a separable Hilbert space and ν be a trace-class p.o.v.m. on (Λ,A,H0). Define Ĥν,C as

in (2.23). Then for any isometry w : Ĥν,C → M(Ω,F ,P), there exists a unique H0-valued
random c.a.g.o.s. measure W on (Λ,A,Ω,F , P) with intensity operator measure ν such that,

for all ϕ ∈ Ĥν,C,

w(ϕ) =

∫
ϕ dW P-a.s. (2.25)

2.9 Filtering random c.a.g.o.s. measures

If Φ ∈ L
2(Λ,A,O(H0,G0), ν) as in Definition 2.11, then it is immediate to check that for

any A ∈ A, 1AΦ : λ 7→ 1A(λ)Φ(λ) also belongs to L
2(Λ,A,O(H0,G0), ν). Then, applying

the definition of ΦνΦH in Section 2.7 and the integral of Definition 2.12, we get the following
result.

Corollary 2.15. Let (Λ,A) be a measurable space, H0, G0 two separable Hilbert spaces.
Let W be an H0-valued random c.a.g.o.s. measure on (Λ,A,Ω,F , P) with intensity operator
measure νW . Let Φ ∈ L

2(Λ,A,O(H0,G0), νW ). Then the mapping

V : A 7→

∫

A

ΦdW = IG0
W (1AΦ) (2.26)

is a G0-valued random c.a.g.o.s. measure on (Λ,A,Ω,F , P) with intensity operator measure
ΦνWΦH.

We can interpret (2.26) as saying that V admits the density Φ with respect to W , and
write dV = ΦdW (or, equivalently, V (dλ) = Φ(λ)W (dλ)). In the following we will rather use
a signal processing interpretation where Λ is seen as a set of frequencies and Φ is seen as a
transfer operator function acting on the (random) input frequency distribution W .

Definition 2.13 (Filter F̂Φ(W ) acting on a random c.a.g.o.s. measure in ŜΦ). Let (Λ,A)
be a measurable space, H0, G0 two separable Hilbert spaces. For a given transfer oper-
ator function Φ ∈ FO (Λ,A,H0,G0), we denote by ŜΦ(Ω,F , P) the set of H0-valued ran-
dom c.a.g.o.s. measures on (Λ,A,Ω,F , P) whose intensity operator measures νW satisfy
Φ ∈ L

2(Λ,A,O(H0,G0), νW ). Then, for any W ∈ ŜΦ(Ω,F , P), we say that the random
G0-valued c.a.g.o.s. measure V defined by (2.26) is the output of the filter with transfer oper-
ator function Φ applied to the input c.a.g.o.s. measure W , and we denote V = F̂Φ(W ).
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The following corollary is obtained from Theorem 2.12 and allows us to deal with the
composition and inversion of filters on random c.a.g.o.s. measures.

Corollary 2.16 (Composition and inversion of filters on random c.a.g.o.s. measures). Let
(Λ,A) be a measurable space, H0, G0 two separable Hilbert spaces, and Φ ∈ FO (Λ,A,H0,G0).
Let W ∈ ŜΦ(Ω,F ,P) with intensity operator measure νW . Then three following assertions
hold.

(i) For any separable Hilbert space I0, we have

II0

F̂Φ(W )

(
L
2(Λ,A,O(G0, I0),ΦνWΦH)

)
⊆
∼ II0

W

(
L
2(Λ,A,O(H0, I0), νW )

)
. (2.27)

(ii) For any separable Hilbert space I0 and all Ψ ∈ FO (Λ,A,G0, I0), we have W ∈
ŜΨΦ(Ω,F , P) if and only if F̂Φ(W ) ∈ ŜΨ(Ω,F , P), and in this case, we have

F̂Ψ ◦ F̂Φ(W ) = F̂ΨΦ(W ). (2.28)

(iii) Suppose that Φ is injective ‖νW ‖1-a.e. Then W = FΦ−1 ◦FΦ(W ), where Φ−1 is defined
as in Assertion (c) of Theorem 2.12. Moreover, Assertion (i) above holds with ⊆

∼
replaced by ∼= in Equation (2.27).

Note that, using the notation in (2.23), the two spaces on the left-hand and right-hand

sides of (2.27) can be compactly written as HF̂Φ(W ),I0 and HW,I0 , respectively.

3 Application to Hilbert valued weakly-stationary

processes

Now, we have all the tools to derive spectral representations of Hilbert valued weakly-
stationary processes. We follow [33, Section 4.2] and then derive linear filtering of such
processes based on the spectral representation thereby constructed.

Let (Ω,F , P) be a probability space, H0 a separable Hilbert space andH = M(Ω,F ,H0, P).
Let X = (Xt)t∈G ∈ HG be a centered, weakly-stationary, H0-valued process indexed by an
l.c.a. group (G,+). By analogy to the univariate case, and taking into account the module
structure of H, let us define the modular time domain of X as the submodule of H generated
by the Xt’s, that is

HX := Span
H
(PXt : P ∈ Lb(H0), t ∈ G) .

For all h ∈ G, define (using Proposition 2.5) the shift operator of lag h as the unique gramian-
unitary operator UX

h : HX → HX which maps Xt to Xt+h for all t ∈ G. As in the univariate
case (see Lemma 1.1), weak stationarity is characterized by the representation properties of
UX seen in Definition 2.7.

Lemma 3.1. Let X := (Xt)t∈G be a centered, L2, H0-valued process. Then X is weakly
stationary if and only if UX is a c.g.u.r. of G on HX .

In particular (see also Remark 1.4), continuity of UX is equivalent to weak-continuity of
ΓX from Definition 1.3 (see [33, Proposition 2.5.2]). The following theorem (see [33, Theorem
4.2.2, Theorem 4.2.4]) gives R1, R2.

Theorem 3.2. Let H0 be a separable Hilbert space, (Ω,F ,P) be a probability space and (G,+)
be an l.c.a. group. Let X := (Xt)t∈G be a centered, L2, H0-valued process. Then X is weakly
stationary if and only if there exists a regular H0-valued random c.a.g.o.s. measure X̂ on
(Ĝ,B(Ĝ),Ω,F , P) such that

Xt =

∫
et dX̂ =

∫
χ(t) X̂(dχ) for all t ∈ G . (3.1)

In this case, X̂ is uniquely determined by (3.1) and is called the spectral representation of X.
The intensity operator measure νX of X̂ is called the spectral operator measure of X. It is a
regular trace-class p.o.v.m. on (Ĝ,B(Ĝ),H0) and is the unique regular p.o.v.m. satisfying

ΓX(h) =

∫
eh dνX =

∫
χ(h) νX(dχ) for all h ∈ G . (3.2)
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Note that, like for Bochner’s theorem in the univariate case, Relation (3.2) can be obtained
without using stochastic processes and this result can also be used to derive spectral analysis
for weakly-stationary stochastic processes. This will be discussed in Section 6.

The second part of Theorem 3.2 directly provides an answer to the comments made in
Remark 1.3 about R1. We now answer the comments made in the same remark about R2,
that is, using Theorem 3.2 with the definitions and results of Section 2.6 and Section 2.8,
we can exhibit the isomorphism that relates the time domain with the spectral domain. For
sake of generality, we first extend the definition of the time domain to the case where the
H0-valued process X is used to generate variables valued in a possibly different Hilbert space
G0.

(i) Define the G0-valued time domain of X by

HX,G0 := Span
M(Ω,F,G0,P) (PXt : P ∈ Lb(H0,G0), t ∈ G) ,

which is a submodule of M(Ω,F , G0,P).

(ii) Define the G0-valued spectral domain of X by

ĤX,G0 := L
2(Ĝ,B(Ĝ),O(H0,G0), νX) ,

which is a normal Hilbert Lb(G0)-module by Theorem 2.10.

Then, for any separable Hilbert space G0, the mapping Φ 7→
∫
ΦdX̂ is a gramian unitary

operator from ĤX,G0 to HX,G0 , and thus it makes the G0-valued time domain HX,G0 and
the G0-valued spectral domain ĤX,G0 gramian-isometrically isomorphic, as announced in Re-
mark 1.3.

Remark 3.1. We introduced the notation HX,G0 and ĤX,G0 above to stress that these spaces
are derived from a given centered weakly stationary process X. Of course they are related to
the notation Ĥν,G0 and HW,G0 introduced in (2.22) and (2.23), respectively for a p.o.v.m. ν

and a c.a.g.o.s. W . Namely, we have HX,G0 = HX̂,G0 and ĤX,G0 = ĤνX ,G0 .

We now answer Remark 1.3 about R3, and in particular the two points a) and b)
raised in this remark. As explained in Remark 1.3, the transfer operator function of a
linear shift-invariant filter with input given by an H0-valued weakly stationary time se-
ries (Xt)t∈G and a well defined G0-valued output (Yt)t∈G corresponds to the spectral rep-

resentation Φ ∈ ĤX,G0 of Y0 ∈ HX,G0 . In other words, the filter with transfer operator

function Φ ∈ FO

(
Ĝ,B(Ĝ),H0,G0

)
applies to the H0-valued weakly stationary time series

X = (Xt)t∈G defined on (Ω,F , P) if and only if

X̂ ∈ ŜΦ(Ω,F , P) or, equivalently, Φ ∈ ĤX,G0 , (3.3)

where ŜΦ(Ω,F ,P) is as in Definition 2.13. Then the output Y = (Yt)t∈G is defined by its
spectral random c.a.g.o.s.measure Ŷ = F̂Φ(X̂). For convenience we write, in the time domain,

X ∈ SΦ(Ω,F , P) and Y = FΦ(X) , (3.4)

for the assertions X̂ ∈ ŜΦ(Ω,F , P) and Ŷ = F̂Φ(X̂). Condition (3.3) answers Question a) of
Remark 1.3 about R3. Then we can answer Question b), by simply transposing Corollary 2.16
in the time domain as follows.

Proposition 3.3 (Composition and inversion of filters on weakly stationary time series).
Let H0 and G0 be two separable Hilbert spaces and pick a transfer operator function Φ ∈

FO

(
Ĝ,B(Ĝ),H0,G0

)
. Let X be a centered weakly stationary H0-valued process defined on

(Ω,F , P) with spectral operator measure νX . Suppose that X ∈ SΦ(Ω,F ,P) and set Y =
FΦ(X), as defined in (3.4). Then the three following assertions hold.

(i) For any separable Hilbert space I0, we have HY,I0 ⊆
∼ HX,I0 .

(ii) For any separable Hilbert space I0 and all Ψ ∈ FO

(
Ĝ,B(Ĝ),G0, I0

)
, we have X ∈

SΨΦ(Ω,F , P) if and only if Y = FΦ(X) ∈ SΨ(Ω,F ,P), and in this case, we have

FΨ ◦ FΦ(X) = FΨΦ(X). (3.5)

(iii) Suppose that Φ is injective ‖νX‖1-a.e. Then X = FΦ−1 ◦FΦ(X), where Φ−1 is defined as
in Assertion (c) of Theorem 2.12. Moreover, Assertion (i) above holds with ⊆

∼ replaced
by ∼= .
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4 Statistical inference

In the following we consider a probability space (Ω,F ,P) and a functional time series (Xt)t∈Z

valued in a separable real Hilbert space H0. Statistical results about time series rely on
dependence assumptions between the observations (Xt)t∈Z. Intuitively, we assume that the
observations are dependent but not too much. For example, given m ∈ N

∗, we say that
(Xt)t∈Z is m-dependent if for all t ∈ Z the σ-fields F+

t+m and F−
t are independent, where for

all t ∈ Z,
F−

t := σ(Xs, s ≤ t) and F+
t := σ(Xs, s ≥ t) .

This notion is however still too restricitve for time series analysis and several assumptions can
be made to relax m-dependence. We present the three most important : mixing conditions,
assumptions based on shifted causal representations and assumptions based on cumulant
conditions. We mainly focus on the two last because of their use in recent works on spectral
analysis for functional time series (e.g. [28, 39, 29, 37, 15, 62]).

4.1 The main dependence assumptions

4.1.1 General mixing conditions

Mixing conditions are based on measuring the dependence between disjoint groups of obser-
vations taken from the time series (Xt)t∈Z. There exists a multitude of coefficients to measure
such a dependence and one of the most popular is the α-mixing coefficient. A strictly sta-
tionary time series (Xt)t∈Z is said to be α-mixing (or strongly mixing) if

α(n) := sup
{
|P (A ∩B)− P (A)P (B)| : A ∈ F−

0 , B ∈ F+
n

}
−−−−−→
n→+∞

0 .

This definition does not depend on the space where Xt is valued and can therefore be used
for functional time series. Mixing conditions have had an important role on the proof of limit
theorems such as the Central Limit Theorem or convergence of partial sums in the Skohorod
space are proven for dependent univariate processes (see e.g. [20, 21, 7]) but also on spectral
estimation [55].

4.1.2 Using shifted causal representations (SCRs)

We say that a time series (Xt)t∈Z admits a shifted causal representation (SCR) with respect
to the i.i.d. sequence (ǫt)t∈Z if there exists a measurable function g such that for all t ∈ Z,

Xt = g(ǫt, ǫt−1, · · · ) .

This representation generalizes the standard linear model to non-linear dependence on the
sequence (ǫt)t∈Z. Note that, since (ǫt)t∈Z is i.i.d, (Xt)t∈Z is strictly stationnary. One can
then control the dependence structure of (Xt)t∈Z by making assumption on its distance to
a process obtained by replacing one or more of the ǫt’s by independent copies. Following
this idea, several asymptotic results were derived for univariate time series (see e.g. [59, 43]).
For functional time series the main assumption found in the literature based on SCRs, is
Lp-m-approximability as introduced in [28].

Definition 4.1. Let p,m ∈ N
∗, and consider a sequence (Xt)t∈Z ⊂ Lp(Ω,F ,H0,P) admitting

the SCR Xt = g(ǫt, ǫt−1, · · · ) with respect to the i.i.d. sequence (ǫt)t∈Z. It is said to be
Lp-m-approximable if, for all independent copy (ǫ̃t)t∈Z of (ǫt)t∈Z, we have

+∞∑

m=1

∥∥∥X0 − X̃
(m)
0

∥∥∥
Lp(Ω,F,H0,P)

< +∞ (4.1)

where X̃
(m)
t = g(ǫt, ǫt−1, · · · , ǫt−m+1, ǫ̃t−m, ǫ̃t−m−1, · · · ) .

As explained in [28], condition (4.1), implies that (Xt)t∈Z can be approximated in Lp-
norm by an m-dependent time series. Note that if q ≥ p, then Lq-m-approximability implies
Lp-m-approximability.

Recently, the following assumption has also been proposed in [15] for some p ∈ N
∗,
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Assumption 4.1 (p). Let (Xt)t∈N admit the SCR Xt = g(ǫt, ǫt−1, · · · ), and suppose that for
all t ∈ Z, Xt ∈ Lp(Ω,F ,H0,P), and for all independent copy (ǫ̃t)t∈Z of (ǫt)t∈Z, we have

+∞∑

t=0

‖Xt − E [Xt| Gt]‖Lp(Ω,F,H0,P)
< +∞ (4.2)

where Gt = σ(ǫt, · · · , ǫ1, ǫ̃0, ǫ−1, · · · ).

4.1.3 Using cumulants

Let k ∈ N
∗, denote by V(k) the set of all partitions of {1, · · · , k} and let Y1, · · · , Yk ∈

Lk(Ω,F , P). Then the cumulant of (Y1, · · · , Yk) is defined by

cum(Y1, · · · , Yk) =
∑

ν=(ν1,··· ,νp)∈V(k)

(−1)p−1(p− 1)!

p∏

ℓ=1

E




∏

j∈νℓ

Yj



 .

The cumulant can be seen as a generalization of the covariance to orders larger than 2, in fact
we see that, when k = 2 and Y1, Y2 ∈ R, then cum(Y1, Y2) = Cov (Y1, Y2).

In order to generalize this notion for functional time series, we cannot use a similar,
direct expression, since we cannot take the product of H0-valued variables. However, using
the notion of tensor product of Hilbert spaces one can define the cumulant of k functional
random variables similarly to the covariance operator. In short, [32, Theorem 2.6.4] ensures
that, one can define a Hilbert space H⊗k

0 and a multilinear mapping

Hk
0 → H⊗k

0

(x1, · · · , xk) 7→ x1 ⊗ · · · ⊗ xk

which satify the universal property that for every “suitable” multilinear form f : Hk
0 → C

to an arbitrary Hilbert space G0, there exists a unique g ∈ Lb(H
⊗k
0 ,G0) such that for all

(x1, · · · , xk) ∈ Hk
0 , f(x1, · · · , xk) = g(x1 ⊗ · · · ⊗ xk). We say that (H⊗k

0 ,⊗) is a k-th order
tensor power of H0 and that ⊗ is a tensor product. The couple (H⊗k

0 ,⊗) is not unique but all

k-th order tensor powers of H0 can be identifies in the sense that if (H⊗̃k
0 , ⊗̃) is another k-th

order tensor power of H0, then there exists a unitary operator U : H⊗k
0 → H⊗̃k

0 such that for
all x1, · · · , xk ∈ H0, x1⊗̃ · · · ⊗̃xk = U(x1 ⊗ · · · ⊗ xk).

A simple but useful example is the space L2([0, 1]k) which is a k-th order tensor product
of L2([0, 1]) with the tensor product defined for all f1, · · · , fk ∈ L2([0, 1]) by

(f1 ⊗ · · · ⊗ fk) : (t1, · · · , tk) 7→
k∏

j=1

fj(tj) .

Another example is that, since H0 is a real Hilbert space, the space S2(H0) is a second order
tensor power of H0 with the tensor product defined for all x1, x2 ∈ H0 by (x1 ⊗ x2) = x1x

H

2

which is defined for all u ∈ H0 by x1x
H

2u = 〈u, x2〉H0
x1.

We now state the proposition defining the cumulant of k H0-valued random variables as
an element of H⊗k

0 (see [62, Proposition 3.12.6]).

Proposition 4.1. Let Y1, · · · , Yk ∈ Lk(Ω,F ,H0,P), then there exists a unique vector of H⊗k
0 ,

denoted by cum(Y1, · · · , Yk), such that for all y1, · · · , yk ∈ H0,

〈cum(Y1, · · · , Yk), y1 ⊗ · · · ⊗ yk〉H⊗k
0

= cum
(
〈Y1, y1〉H0

, · · · , 〈Yk, yk〉H0

)
.

When k = 2 and H0 is a real Hilbert space, taking H⊗2
0 = S2(H0) we see that, by

definition, cum(Y1, Y2) = Cov (Y1, Y2). When H0 = L2([0, 1]), taking H⊗k
0 = L2([0, 1]k), then

for almost every (t1, · · · , tk) ∈ [0, 1]k, we have

cum(Y1, · · · , Yk)(t1, · · · , tk) 7→ cum(Y1(t1), · · · , Yk(tk)) .

Since the notion of cumulants is a generalization of the covariance operator, the notion of
stationarity can also be extended to orders larger than 2 (note that, with this definition,
second-order stationarity is the same as weak stationarity).
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Definition 4.2. A sequence of H0-valued random variables (Xt)t∈Z is said to be k-th order
stationary if for all t ∈ Z, Xt ∈ Lk(Ω,F ,H0,P) and for all ℓ ≤ k and t1, · · · , tℓ ∈ Z,
cum(Xt1+s, · · · , Xtℓ+s) does not depend on s ∈ Z.

For ℓ ∈ N and k ∈ N
∗, we define the following assumption used in [62] and generalizing [8,

Assumption 2.6.2].

Assumption 4.2 (ℓ, k). The time series (Xt)t∈Z is k-th order stationary and

∑

t1,··· ,tk−1∈Z

(1 + |tj |
ℓ)
∥∥cum(Xt1 , · · · , Xtk−1 , X0)

∥∥
H⊗k

0
< +∞ . (4.3)

4.1.4 Comparison of the assumptions

Assumptions based on a SCR may be seen as a restrictive (as, in particular they impose strong
stationarity) but many usual models can be constructed in this way and [28, Section 2] gathers
conditions for such models to be Lp-m-approximable. According to [15], Assumption 4.1(p) is
weaker than Lp-m-approximability. Finally, the mixing condition and Assumption 4.2(ℓ, k) do
not rely on any model but can be harder to verify in practice. However, a multitude of results
have been derived under cumulants conditions for the finite dimensional case in [8, Sections
4, 5] thus giving a solid background to generalize to the infinite dimensional case. The author
of [15] also provides a generalization of Assumption 4.1(p) to larger order dynamics and its
link with Assumption 4.2(k, p).

4.2 An overview of recent advances

Now that we have recalled the main assumptions used in the literature, let us present the
results obtained from them. We focus on consistency and asymptotic normality of estimators
and note that we do not list all the assumptions needed to obtain the results. In particular, for
results on the estimation of the eigenstructure of an operator, additional conditions ensuring
idenfiability of the eigenvalues and eigenvectors are usually needed. For estimators involving
a kernel or a window, assumptions on the bandwith are also made.

4.2.1 Inference for the covariance operator function

The covariance operator function is estimated by the empirical covariance operator func-
tion which we will denote by (Γ̂X(h))h∈Z. Its consistency is provided in [29] under L4-m-
approximability as a generalization of [30, Thm.16.1] which shows consistency of Γ̂X(0) under
the same assumption. Asymptotic normality of ΓX(0) is found in [39] under the same assump-
tion. The eigenstructure of ΓX(0) playing a major role in Functional Principal Component
Analysis (FPCA), its empirical counterpart has also been studied. For L4-m-approximable
time series, the eigenvalues and eigenvectors of Γ̂X(0) are shown to be consistent estimators of
the eigenvalues and eigenvectors of ΓX(0) in [30, Thm.16.2] and their asymptotically normal
is proven in [39].

4.2.2 Asymptotic theory

The central limit theorem (CLT) for functional time series is obtained

• under α-mixing condition in [48] and other similar conditions in [47],

• under L2-m-approximability in [31, 37] and

• under strict stationarity and Assumption 4.2(0, k) for all k ≥ 2 in [62, Cor.3.3.6].

In the two latter cases, the asymptotic covariance operator is the long run covariance∑
h∈Z

ΓX(h) where the series converges in S2(H0). An estimator of the long run covari-
ance obtained by smoothing the empirical autocovariance operator function is provided in
[31, 37] and

• its consistency is shown in [31] under L2-m-approximability;

• its asymptotic normality is shown in [5] under assumptions closely related to L4-m-
approximability.
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To reduce the dimension of the data, [5] proposes to consider the eigenstructure of the long
run covariance instead of ΓX(0). This has the advantage of taking into accout covariance
for lags greater tan 0. The eigenvalues and eigenvectors of the estimator of the long run
covariance are shown to be asymptoticaly normal under assumptions closely related to L4-m-
approximability.

4.2.3 Estimation of the spectral density operator

In this section, we are interested in estimating (when it exists) the spectral density operator
of a time series (Xt)t∈Z, i.e. the density fX of its spectral operator measure νX with respect
to Lebesgue’s measure on (T,B(T)). As in the univariate case, we want to express the density
as the sum of the Fourier series of the covariance operator function. Before estimating it, let
us recall conditions for such a series to converge and for its sum to be the density of νX with
respect to Lebesgue’s measure. For notation convenience, we write S∞(H0) := K(H0) and
‖·‖∞ := ‖·‖, and we define the following assumption for 1 ≤ p ≤ +∞.

Assumption 4.3 (p). The H0-valued time series (Xt)t∈Z is weakly stationary and its covari-
ance operator function ΓX satisfies

∑

h∈Z

‖ΓX(h)‖p < +∞ (4.4)

It is straightforward to see that, if p ≤ q, then Assumption 4.3(p) implies Assump-
tion 4.3(q) and that Assumption 4.3(2) is equivalent to Assumption 4.2(0, 2). Under such
conditions, the Fourier series of the autocovariance operator function converges.

Proposition 4.2. Suppose there exists 1 ≤ p ≤ +∞ such that (Xt)t∈Z satisfies Assump-
tion 4.3(p). Then the function

fX :
T → S+

p (H0)

λ 7→
∑

h∈Z
ΓX(h)e−iλh (4.5)

is well-defined and continuous, which, in particular, gives fX ∈ L∞(T,B(T),Sp(H0),Leb).
Moreover, the following inversion formula holds, for all h ∈ Z,

ΓX(h) =

∫

T

eiλhfX(λ) dλ . (4.6)

The inversion formula (4.6) gives that, if νX is dominated by Lebesgue’s measure on T,
then dνX

dLeb
= fX a.e. However, when p ≥ 2, even though (4.6) holds, fX is not necessarily

the density of νX with respect to Lebesgue’s measure in the sense defined in Theorem 2.4
since Proposition 4.2 does not necessarily imply fX ∈ L1(T,B(T),S1(H0),Leb). Therefore,
only Assumption 4.3(1) guarantees that νX is dominated by Lebesgue’s measure on T. This
assumption (used in [50]) can be relaxed as follows (see [62, Proposition 2.3.5]).

Proposition 4.3. Suppose there exists 1 ≤ p ≤ +∞ such that (Xt)t∈Z satisfies Assump-
tion 4.3(p) and ∑

h∈Z

|Tr(ΓX(h))| < +∞ . (4.7)

Then fX , defined in (4.5), satisfies fX ∈ L∞(T,B(T),S1(H0),Leb) and νX is dominated by
Lebesgue’s measure on T with density fX .

Even if Assumption 4.3(p) is not enough to have a proper spectral density operator (i.e.
to have νX ≪ Leb), we can still be interested in estimating fX defined by (4.5). This explains
why authors mainly focus on showing that their assumptions imply Assumption 4.3(p) for
some p ≥ 2 (usually p = 2) and not necessarily Equation (4.7). It is shown in [15] that
Assumption 4.1(2) implies Assumption 4.3(2) and in [29] that L2-m-approximability implies
both Assumption 4.3(2) and Equation (4.7). For inference, two methods are commonly used.
The first one (known as the lag window estimator) is based on smoothing the empirical
covariance operator function in time while the second smoothes the periodogram in frequency.
It is known that the two methods are equivalent if the weights used in the first case are the
Fourier coefficients of the kernel used in the second (see [9, §10.4] or [15]). Note that, by
estimating fX , we also get an estimator of the long run covariance which is equal to fX(0).
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Finally, since fX is usually seen as a function from T to S2(H0), consistency and asymptotic
normality can have different forms. If f̂X is an estimator of fX one can ask for consistency for a
given sequence of frequencies, uniformly in T, or for some Lq norm. For asymptotic normality,
one can show that (f̂X(λj))j∈{1,··· ,d} is asymptoticaly normal as an element of S2(H0)

d for

given frequencies λ1, · · · , λd or the stronger asymptotic normality of f̂X as an element of
Lq(T,B(T),S2(H0),Leb) for some q ∈ N

∗ ∪{+∞}. The same applies to the estimation of the
eigenstructure of fX .

The lag window estimator : The lag window estimator with a Bartlett window is
studied in [29] where the authors show its integrated mean square consistency as well as the
consistency of its eigenvalues and eigenvectors and the estimated dynamic functional principal
component scores under L4-m-approximability. Recently, the general lag window estimator
(without restriction to the Barlett window) has also been studied.

• Its integrated mean square consistency is shown in [38] under L4-m-approximability and
uniform consistency is shown in [15] under Assumption 4.1(4).

• Its asymptotic normality as an element of L2(T,B(T),S2(H0),Leb) is shown for certain
types of linear processes in [38]. Its asymptotic normality at given fixed frequencies is
shown, in [15] under Assumption 4.1(4).

• Consistency of its eigenvalues and eigenprojectors are shown at fixed frequencies under
Assumption 4.1(4) in [15].

Smoothing the periodogram : Assuming cumulant conditions, [62, Chapter 3] gen-
eralizes the results of [8, Sections 4, 5] to the infinite dimensional case. In particular, the
author provides an estimator of fX by smoothing the periodogram in frequency. Under As-
sumption 4.2(1, 2) and Assumption 4.2(1, 4) the author proves

• the uniform and integrated mean square consistency of the estimator of fX ;

• the uniform and integrated mean square consistency of its eigenvalues and

• the consistency of its eigenprojectors at a fixed frequency.

Under more restrictive assumptions (in particular Assumption 4.2(0, k) for all k ≥ 2), asymp-
totic normality of the estimator of fX , its eigenvalues and eigenprojectors are also proven at
given fixed frequencies.

4.3 A note on discrete observations

When the space H0 is a functional space (e.g. L2([0, 1])), the observation Xt is seen as a
function u 7→ Xt(u). For practical applications, such a function is usually decomposed in a
given basis of functions (e.g. Fourier basis or splines) but one can also consider the discrete
observation framework where we only have access to measurements of the type

Xt(ut,j) + ǫt,j , t = 0, · · · , T − 1, j = 1 · · · , Nt

where (ǫt,j)t=0,···T−1,j=1,···Nt is a noise. This is the basis of sparse functiondal data which has
been studied in the context of independent data (see e.g. [65, 26, 42]). For dependent data,
the effect of discrete observations has not been sudied until recently in [62, Section 3.8] and
[56]. In this scenario, estimators have to be adapted and non-parametric methods are used.

5 Postponed proofs

5.1 Proofs of Section 2.1 and Section 2.2

Proof of Lemma 2.1. By (2.3), we only need to show that, if Φ is simply measurable then
it is measurable. The space E is separable because the set of finite rank operators is dense
in E for the norm ‖·‖ if E = K(H0,G0) and ‖·‖p if E = Sp(H0,G0). By Pettis’s measurability
theorem (see [17, Theorem II.1.2]), this implies that it is enough to show that for all f ∈ E∗,
f ◦ Φ is a measurable complex-valued function. By [13, Theorems 19.1, 18.14, 19.2] we get
that K(H0,G0)

∗, S1(H0,G0)
∗ and S2(H0,G0)

∗ are respectively isometrically isomorphic to
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S1(H0,G0), Lb(H0,G0) and S2(H0,G0) and the duality relation can be defined on E × E∗ as
(P,Q) 7→ Tr(QHP). This means that we only have to show measurability of the complex-
valued functions λ 7→ Tr(PHΦ(λ)) for all P ∈ E∗. Let (φk)k∈N, (ψk)k∈N be Hilbert basis of H0

and G0 respectively, then Tr(PHΦ(λ)) =
∑

k∈N
〈Φ(λ)φk,Pψk〉G0

which defines a measurable
function of λ by simple measurability of Φ.

Proof of Lemma 2.3. The first point comes from the fact that for all A ∈ A, ν(A) � ν(Λ).
Now, if ν is trace-class, then (2.4) is easily verified for the norm ‖·‖1 using the fact that ‖·‖1 =
Tr(·) for positive operators. Finally, by definition of ‖ν‖1, regularity of ‖ν‖1 is equivalent to
regularity of ν as a S1(H0)-valued measure which clearly implies regularity of yHνx for all
x, y ∈ H0. Suppose now that for all x, y ∈ H0, y

Hνx is regular, then let (ek)k∈N be a Hilbert-
basis of H0, and define for all n ∈ N, the non-negative measure µn :=

∑n
k=0 e

H

kνek such that
for all A ∈ A, ‖ν‖1(A) = limn→+∞ µn(A) = supn∈N µn(A). Then, by Vitali-Hahn-Sakh-
Nikodym’s theorem (see [11]), the sequence (µn)n∈N is uniformly countably additive which
implies regularity of ‖ν‖1 by [17, Lemma VI.2.13].

Proof of Theorem 2.4. Suppose ‖ν‖1 ≪ µ, then, since S1(H0) is separable and is the
dual of K(H0), it is a separable dual space and [17, theorem III.3.1] gives the existence and
uniqueness of a density g ∈ L1(Λ,A,S1(H0), µ) satisfying (2.5). Then for all x ∈ H0, for all
A ∈ A, ∫

A

〈g(λ)x,x〉H0
µ(dλ) = 〈ν(A)x, x〉H0

≥ 0

and therefore there exists a set Ax ∈ A with µ(Ax) = 0 and 〈g(λ)x, x〉H0
≥ 0 for all λ ∈ Ac

x.

Taking (xn)n∈N a dense countable subset of H0 we get that g is positive on
(⋃

n∈N
Axn

)c

where µ
(⋃

n∈N
Axn

)
= 0 thus proving Assertion (a). Moreover, taking the trace in (2.5) gives

for all A ∈ A,

‖ν‖1(A) =

∫

A

‖g‖1 dµ

which gives Assertion (b) and implies easily Assertion (c). The converse implication is a
consequence of Assertion (b).

5.2 Proofs of Section 2.5 and Section 2.6

Proof of Proposition 2.7. The proof is easily derived from the fact that g = dν
d‖ν‖1

‖g‖1
(see Theorem 2.4) and the definition of L

2(Λ,A,Lb(H0,G0), ν). Note that ΦgΦH ∈
F(Λ,A,S1(G0)) and Φg1/2 ∈ F(Λ,A,S2(H0,G0)) by simple-measurability of Φ and g and
Lemma 2.1.

Proof of Proposition 2.8. All theses results, except Relation (2.12), are easily derived from
the characterization of Proposition 2.7 and the module nature of L2(Λ,A,S2(H0, G0), µ). We
now prove Relation (2.12). First note that ‖ν‖1({g = 0}) =

∫
{g=0}

‖g‖1 dµ = 0 and therefore

‖ν‖1

(
{Φf1/2 6= 0}

)
= ‖ν‖1

(
{Φf1/2 6= 0} ∩ {g 6= 0}

)

= ‖ν‖1

({
Φf1/2

‖g‖1/21

6= 0

}

∩ {g 6= 0}

)

= ‖ν‖1

(
{Φg1/2 6= 0} ∩ {g 6= 0}

)

≤ ‖ν‖1

(
{Φg1/2 6= 0}

)

which gives inclusion (⊂) of (2.12) since ‖ν‖1 ≪ µ. Conversely, if ‖ν‖1

(
{Φf1/2 6= 0}

)
= 0,

then

µ
(
{Φg1/2 6= 0}

)
= µ

(
{Φf1/2‖g‖1/21 6= 0}

)
= µ

(
{Φf1/2 6= 0} ∩ {g 6= 0}

)
= 0

because 0 = ‖ν‖1

(
{Φf1/2 6= 0}

)
=
∫
{Φf1/2 6=0}

‖g‖1 dµ.
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Proof of Proposition 2.9. Since ‖ν‖1({g = 0}) = 0 and g = f‖g‖1, where f = dν
d‖ν‖1

, we
get

‖ν‖1

({
Im(f1/2) 6⊂ D(Φ)

})
= ‖ν‖1

({
Im(f1/2) 6⊂ D(Φ)

}
∩ {g 6= 0}

)

= ‖ν‖1

({
Im(g1/2) 6⊂ D(Φ)

}
∩ {g 6= 0}

)

≤ ‖ν‖1

({
Im(g1/2) 6⊂ D(Φ)

})

which gives (i’) ⇒ (i) since ‖ν‖1 ≪ µ. Conversely, if ‖ν‖1

({
Im(f1/2) 6⊂ D(Φ)

})
= 0, then

µ
({

Im(g1/2) 6⊂ D(Φ)
})

= µ
({

Im(f1/2) 6⊂ D(Φ)
}
∩ {g 6= 0}

)
= 0

because 0 = ‖ν‖1

({
Im(g1/2) 6⊂ D(Φ)

})
=
∫
{Im(g1/2) 6⊂D(Φ)} ‖g‖1 dµ. Hence (i’) ⇔ (i).

Moreover, Equivalences (ii) ⇔ (ii’) and (iii) ⇔ (iii’) and Relation (2.14) are easy con-
sequences of the fact that g = f‖g‖1 and the other results come easily using the definition

of L
2(Λ,A,O(H0,G0), ν). Again, note that measurability of Φg1/2 and (Φg1/2)(Φg1/2) are

ensured by O-measurability of Φ, simple measurability of f and Lemma 2.1.

Proof of Theorem 2.10. As for Proposition 2.8, these results come easily using the defini-
tion and Identity (2.16). Relation (2.18) is proven the same way as (2.12).

Proof of Theorem 2.11. In the first two steps of the proof of [33, Theorem 3.4.12], [45,
Theorem 4.22] the authors show that, if Φ ∈ L

2(Λ,A,O(H0,G0), ν) and ǫ > 0, there exists Ψ ∈
L2(Λ,A,Lb(H0,G0), ‖ν‖1) ⊂ L

2(Λ,A,O(H0,G0), ν) such that ‖Φ−Ψ‖
L2(Λ,A,O(H0,G0),ν)

< ǫ.

This implies that L2(Λ,A,Lb(H0,G0), ‖ν‖1) is dense in L
2(Λ,A,O(H0,G0), ν). The other

results follow using (2.20) and density of simple functions and trigonometric polynomials in
L2(Λ,A,Lb(H0,G0), ‖ν‖1) (see Theorem C.1).

5.3 Proofs of Section 2.7

The proof of Theorem 2.12 relies on the following lemma.

Lemma 5.1. Let H0, G0, I0 be separable Hilbert spaces and P ∈ O(G0, I0), Q ∈ K(H0,G0).
The following assertions hold.

(i) Im(
∣∣QH

∣∣) = Im(Q).

(ii) If Im(Q) ⊂ D(P), then (PQ)(PQ)H = (P
∣∣QH

∣∣)(P
∣∣QH

∣∣)H.

(iii) If Im(Q) ⊂ D(P), then PQ ∈ S2(H0, I0) if and only if P
∣∣QH

∣∣ ∈ S2(G0, I0). In this case

‖PQ‖2 =
∥∥P
∣∣QH

∣∣∥∥
2
.

Proof. Let us consider the singular values decompositions

Q =
∑

n∈N

σnψn ⊗ φn and
∣∣∣QH

∣∣∣ =
∑

n∈N

σnψn ⊗ ψn .

Proof of (i). We have Im(Q) =
{∑

n∈N
σnxnψn : (xn)n∈N ∈ ℓ2(N)

}
= Im(

∣∣QH
∣∣).

Proof of (ii). By the first point both composition PQ and P
∣∣QH

∣∣ make sense. Consider the

polar decomposition of QH : QH = U
∣∣QH

∣∣, then Q =
∣∣QH

∣∣UH and we get

(PQ)(PQ)H =
(
P
∣∣∣QH

∣∣∣
)
UHU

(
P
∣∣∣QH

∣∣∣
)
H

=
(
P
∣∣∣QH

∣∣∣
)
Pker(|QH|)⊥

(
P
∣∣∣QH

∣∣∣
)
H

=
(
P
∣∣∣QH

∣∣∣
)(

P
∣∣∣QH

∣∣∣
)
H

because
∣∣QH

∣∣Pker(|QH|)⊥ =
∣∣QH

∣∣.
Proof of (iii). We have that PQ ∈ S2(H0, I0) if and only if (PQ)(PQ)H ∈ S1(I0), which is
equivalent to P

∣∣QH
∣∣ ∈ S2(G0, I0) by the previous point.
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Proof of Theorem 2.12. Let µ be a dominating measure for ‖ν‖1 and g = dν
dµ

, then,

by definition of ΦνΦH, µ also dominates
∥∥ΦνΦH

∥∥
1
and dΦνΦH

dµ
= (Φg1/2)(Φg1/2)H. Hence,

(
dΦνΦH

dµ

)1/2
=
∣∣∣(Φg1/2)H

∣∣∣ and we get, by Proposition 2.9,

Ψ ∈ L
2(Λ,A,O(H0, I0),ΦνΦ

H) ⇔





Im
∣∣∣(Φg1/2)H

∣∣∣ ⊂ D(Ψ) µ-a.e.

Ψ
∣∣∣(Φg1/2)H

∣∣∣ ∈ L2(Λ,A,S2(G0, I0), µ)

⇔

{
Img1/2 ⊂ D(ΨΦ) µ-a.e.

ΨΦg1/2 ∈ L2(Λ,A,S2(H0, I0), µ)

⇔ ΨΦ ∈ L
2(Λ,A,O(H0, I0), ν)

where the second equivalence comes from Lemma 5.1 and the fact that for all λ ∈ Λ,
D(Ψ(λ)Φ(λ)) = Φ(λ)−1(D(Ψ(λ))) which gives that Im(g1/2(λ)) ⊂ D(Ψ(λ)Φ(λ)) if and
only if Im(Φ(λ)g1/2(λ)) ⊂ D(Ψ(λ)). Moreover, Assertion (a) holds because for all Ψ,Θ ∈
L

2(Λ,A,O(G0, I0),ΦνΦ
H) and A ∈ A,

(ΨΦ)ν(ΘΦ)H(A) =

∫

A

(
ΨΦg1/2

)(
ΘΦg1/2

)H
dµ

=

∫

A

(
Ψ
∣∣∣(Φg1/2)H

∣∣∣
) (

Θ
∣∣∣(Φg1/2)H

∣∣∣
)H

dµ (by lemma 5.1)

= Ψ(ΦνΦH)ΘH(A)

which also gives Assertion (b) by taking A = Λ. Finally, to show Assertion (c), suppose
that Φ is injective ‖ν‖1-a.e. then Φ−1Φ : λ 7→ IdH01{Φ(λ) is injective} is in L

2(Λ,A,O(H0), ν)
which gives that Φ−1 ∈ L

2(Λ,A,O(G0,H0),ΦνΦ
H) by Assertion (a).

5.4 Proofs of Section 2.8

Proof of Theorem 2.13. We set H = M(Ω,F ,H0,P) and G = M(Ω,F , G0,P). For all
A,B ∈ A and P,Q ∈ Lb(H0,G0), we have, by Theorem 2.10,

[1AP,1BQ]
L2(Λ,A,O(H0,G0),νW ) = PνW (A ∩B)QH

= PCov (W (A),W (B))QH

= Cov (PW (A),QW (B))

= [PW (A),QW (B)]G .

Then Proposition 2.5, applied to J = A×Lb(H0,G0) with v(A,P) = 1AP and w(A,P) = PW (A),
gives that there exists a unique gramian-isometry

IG0
W : Span

ĤνW ,G0

(1AQP : A ∈ A,P ∈ Lb(H0,G0),Q ∈ Lb(G0)) → G

such that for all A ∈ A,P ∈ Lb(H0,G0), I
G
W (1AP) = PW (A) and, in addition,

Im(IG0
W ) = Span

G
(QPW (A) : A ∈ A,P ∈ Lb(H0,G0),Q ∈ Lb(G0)) . (5.1)

Now, note that
Lb(H0,G0) = {QP : P ∈ Lb(H0,G0),Q ∈ Lb(G0)} . (5.2)

This gives

Span (1AQP : A ∈ A,P ∈ Lb(H0,G0),Q ∈ Lb(G0)) = Span (1AP : A ∈ A,P ∈ Lb(H0,G0))

and therefore, by Theorem 2.11,

Span
ĤνW ,G0

(1AQP : A ∈ A,P ∈ Lb(H0, G0),Q ∈ Lb(G0)) = ĤνW ,G0 .

Finally, (5.2) with (5.1) gives

Im(IG0
W ) = Span

G
(PW (A) : A ∈ A,P ∈ Lb(H0,G0)) = HW,G0

which concludes the proof.
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Proof of Theorem 2.14. Let (φn)n∈N be a Hilbert basis of H0, then for all A ∈ A,

E

[
∑

n∈N

∣∣∣w(1Aφ
H

n)
∣∣∣
2
]

=
∑

n∈N

∥∥∥w(1Aφ
H

n)
∥∥∥
2

M(Ω,F,P)
=
∑

n∈N

∥∥∥1Aφ
H

n

∥∥∥
2

Ĥν,C
=
∑

n∈N

φH

nν(A)φn

= Tr(ν(A)) < +∞ (5.3)

Hence ∑

n∈N

∣∣∣w(1Aφ
H

n)
∣∣∣
2

< +∞ P-a.s.

We can thus define for all A ∈ A, a random variable W (A) such that

W (A)
P-a.s
=
∑

n∈N

w(1Aφ
H

n)φn .

We then have W (A) ∈ M(Ω,F ,H0,P) by (5.3) and since E
[
w(1Aφ

H

n)
]
= 0 for all n ∈ N.

Furthermore, by linearity and continuity of w, we have, for all A ∈ H0, for all x ∈ H0

〈W (A), x〉H0

P-a.s
=
∑

n∈N

w(1Aφ
H

n) 〈φn, x〉H0

= w

(

1A

∑

n∈N

〈x, φn〉H0
φH

n

)

= w(1Ax
H) (5.4)

It follows that for all A,B ∈ A, and x, y ∈ H0,

yH Cov (W (A),W (B))x = Cov (〈W (A), y〉 , 〈W (B), x〉)

=
〈
w(1Ay

H), w(1Bx
H)
〉

M(Ω,F,P)

=
〈
1Ay

H,1Bx
H

〉

Ĥν,C
(because w is an isometry)

= yHν(A ∩B)x .

Hence Cov (W (A),W (B)) = ν(A∩B) which implies thatW is an H0-valued random c.a.g.o.s.
measure on (Λ,A,Ω,F ,P) with intensity operator measure ν. Finally, (5.4) and Theorem 2.13
give that w = ICW and therefore (2.25) holds.

Let us now suppose that another H0-valued random c.a.g.o.s. measure V on (Λ,A,Ω,F , P)
satisfies (2.25), then for ϕ = 1Aφ

H

n, we get for all A ∈ A and n ∈ N,

〈V (A), φn〉H0
= w(1Aφ

H

n) P-a.s.

With (5.4), we get that, for all n ∈ N, 〈V (A), φn〉H0
= 〈W (A), φn〉H0

P-a.s. and therefore for
all A ∈ A, W (A) = V (A) P-a.s.

5.5 Proofs of Section 2.9

Proof of Corollary 2.16.
Proof of Assertion (i). This follows from Assertion (b) of Theorem 2.12 and Theorem 2.13.
Proof of Assertion (ii). If W ∈ ŜΦ(Ω,F ,P), then the equivalence between W ∈
ŜΨΦ(Ω,F ,P) and F̂Φ(W ) ∈ ŜΨ(Ω,F , P) is just another formulation of the equivalence (2.21).
The identity (2.28) is equivalent to show that, for all Ψ ∈ L2(Λ,A,O(G0, I0), νV ) and A ∈ A,

∫

A

ΨdV =

∫

A

ΨΦdW, (5.5)

where we set V = F̂Φ(W ). We first prove (5.5) for Ψ of the form Ψ = P1B with P ∈ Lb(G0, I0)
and B ∈ A. Calling C = A ∩B, (5.5) becomes

P

(∫

C

Φ(λ)W (dλ)

)
=

∫

C

PΦ(λ)W (dλ) . (5.6)
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When I0 = G0 this identity comes from the fact that the integral with respect toW is Lb(G0)-
linear. When I0 6= G0, we have to show it by hand. Using the notations IG0

W and II0
W , Relation

(5.6) is equivalent to
II0
W (1CPΦ) = PIG0

W (1CΦ) (5.7)

If Φ = Q1D with Q ∈ Lb(H0,G0) and D ∈ A, then PQ ∈ Lb(H0, I0) and we immediately get

II0
W (PΦ) = II0

W (PQ1D) = PQW (D) = PIG0
W (Q1D) = PIG0

W (Φ)

This property extends to the case Φ is a simple Lb(H0,G0)-valued function by linearity and
if Φ ∈ L

2(Λ,A,O(H0,G0), ν), Theorem 2.11 gives that there exists a sequence (Φn)n∈N of
simple Lb(H0,G0)-valued functions converging to Φ in L

2(Λ,A,O(H0,G0), ν). Hence, calling
f = dν

d‖ν‖1
, we get

‖PΦ− PΦn‖
2
L2(Λ,A,O(H0,I0),ν)

=

∫ ∥∥∥P(Φ− Φn)f
1/2
∥∥∥
2

2
d‖ν‖1

≤ ‖P‖

∫ ∥∥∥(Φ− Φn)f
1/2
∥∥∥
2

2
d‖ν‖1

= ‖P‖‖Φ− Φn‖
2
L2(Λ,A,O(H0,G0),ν)

−−−−−→
n→+∞

0 .

Since for all n ∈ N, II0
W (PΦn) = IG0

W (Φn) and by continuity of II0
W and IG0

W , we finally get (5.7),

that is (5.5) for V = F̂Φ(W ) and Ψ = P1C with P ∈ Lb(G0, I0) and C ∈ A. By linearity, it
follows that (5.5) holds with V = F̂Φ(W ) and all simple Lb(G0, I0)-valued function Ψ.

Finally, if Ψ ∈ L
2(Λ,A,O(G0, I0), ν), then, by Theorem 2.11, there exists a sequence

(Ψn)n∈N of simple Lb(G0, I0)-valued functions converging to Ψ in L
2(Λ,A,O(G0, I0), ν). Since

Ψ 7→ ΨΦ is a gramian-isometry from L
2(Λ,A,O(G0, I0), νV ) to L

2(Λ,A,O(H0, I0), νW ) (see
Theorem 2.12), the sequence (ΨnΦ)n∈N then converges to ΨΦ in L

2(Λ,A,O(H0, I0), νW ) and
by continuity of the stochastic integral we get

∫

A

ΨdV = lim
n→+∞

∫

A

ΨndV = lim
n→+∞

∫

A

ΨnΦdW =

∫

A

ΨΦdW .

Proof of Assertion (iii). Set V = F̂Φ(W ) and denote by νV = ΦνΦH the spectral operator
measure of V . Supposing that Φ is injective ‖νW ‖1-a.e, Assertions (c) and (a) of Theorem 2.12,

give that Φ−1 ∈ L
2(Λ,A,O(G0,H0), νV ) (i.e. V ∈ ŜΦ−1(Ω,F , P)) and Φ−1νV

(
Φ−1

)H
= νW .

Hence, writing Relation (2.28) with Ψ = Φ−1, we get F̂Φ−1(V ) = F̂Φ−1Φ(W ) =W . Moreover,
reversing the roles of W and V in assertion (i) gives the reciprocal ⊇

∼ in (2.27).

5.6 Proofs of Section 3

Proof of Theorem 3.2. If X is weakly-stationary then, by Lemma 3.1, the family of shifts
(UX

h )h∈G is a c.g.u.r. of G on HX . Hence Theorem 2.6 gives that there exists a unique regular
gramian-projection valued measure ξX on (Ĝ,B(Ĝ),HX) such that, for all h ∈ G,

UX
h =

∫
χ(h) ξX(dχ) . (5.8)

Then the mapping

X̂ :
B(Ĝ) → HX

A 7→ ξX(A)X0

is a c.a.g.o.s. measure on (Ĝ,B(Ĝ),HX) and is regular because for all Y ∈ HX ,〈
X̂(·), Y

〉

HX
= Y HξX(·)X0 is regular. Since HX is gramian isometrically embed-

ded in M(Ω,F ,H0,P), X̂ is also a regular H0-valued random c.a.g.o.s. measure X̂ on
(Ĝ,B(Ĝ),Ω,F , P). Then, from (5.8) we get that for all t ∈ G,

Xt = UX
t X0 =

∫
χ(t) ξX(dχ)X0 =

∫
χ(t) X̂(dχ) .
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To show uniqueness, suppose there exists another regular H0-valued random c.a.g.o.s. measure
W on (Ĝ,B(Ĝ),Ω,F , P) satisfying (3.1). Then the gramian-isometries IH0

X̂
and IH0

W coincide
on Span (χ 7→ χ(t)P : t ∈ G,P ∈ Lb(H0)) which implies, by Theorem 2.11, that they coincide
on L

2(Ĝ,B(Ĝ),O(H0), νX) ∩ L
2(Ĝ,B(Ĝ),O(H0), νW ). In particular for all A ∈ A we get

W (A) = IH0
W (1AIdH0) = IH0

X̂
(1AIdH0) = X̂(A)

thus proving uniqueness of X̂ .
Relation (3.2) follows from (3.1) and the gramian-isometric property of IH0

X̂
and uniqueness

of νX comes from (3.2) and Theorem C.1.
Finally, we show the converse statement in Theorem 3.2. Suppose that there exists a

regular H0-valued random c.a.g.o.s. measure X̂ on (Ĝ,B(Ĝ),Ω,F , P) satisfying (3.1). Then,
the first two points of Definition 1.3 are straightforward and, calling νX the intensity operator
measure of X̂ and using the gramian-isometric property of integration with respect to X̂ , we
get for all t, h ∈ G, Cov (Xt+h, Xt) =

∫
χ(t+ h)χ(t)νX(dχ) =

∫
χ(h)νX(dχ) which gives the

third point of Definition 1.3. Finally, for all P ∈ Lb(H0), for all h ∈ G,

Tr(PΓ(h)) = Tr

(
P

∫
χ(h) νX(dχ)

)
=

∫
χ(h)Tr(PfνX (χ)) ‖νX‖1(dχ)

and, since for ‖νX‖1-almost every χ ∈ Ĝ, |Tr(PfνX (χ))| ≤ ‖P‖‖fνX (χ)‖1 = ‖P‖, we get
continuity of h 7→ Tr(PΓ(h)) by Lebesgue’s dominated convergence theorem thus showing the
last point of Definition 1.3.

6 Concluding remarks

6.1 Bochner’s and Stone’s theorems for normal Hilbert mod-

ules

In the following, we consider an l.c.a. group (G,+) and a Hilbert space H0. We discuss here
the relations between Bochner’s and Stone’s theorem and their generalizations for the Hilbert
valued case.

Definition 6.1 (Hermitian non-negative definite function). A function γ : G → C defined
on an l.c.a. group (G,+) is said to be hermitian non-negative definite if for all n ∈ N,
t1, · · · , tn ∈ G and a1, · · · , an ∈ C,

n∑

i,j=1

aiajγ(ti − tj) ≥ 0.

Theorem 6.1 (Bochner). Let G be an l.c.a. group and γ : G→ C be a continuous hermitian
non-negative definite function. Then there exists a unique regular finite non-negative measure
µ on (Ĝ,B(Ĝ)) such that

γ(h) =

∫
eh dµ =

∫
χ(h)µ(dχ), h ∈ G. (6.1)

Theorem 6.2 (Stone). Let G be an l.c.a. group and U :
G 7→ Lb(H0)
h 7→ Uh

be a c.u.r. of

G on a Hilbert space H0. Then there exists a unique regular projection-valued measure ξ on
(Ĝ,B(Ĝ)) such that

Uh =

∫
eh dξ =

∫
χ(h) ξ(dχ), h ∈ G. (6.2)

Stone’s theorem can be seen as a generalization of Bochner’s theorem for operator-valued
functions. However, it is not necessary to restrict ourselves to unitary representations of G on
H0 and, using an appropriate definition for hermitian non-negative definite operator-valued
functions, one can show that Bochner’s theorem still holds. We introduce the two following
definitions which will be proved to be equivalent.
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Definition 6.2 (Hermitian non-negative definite operator-valued function). Let (G,+) be an
l.c.a. group and H0 a Hilbert space. Then a function Γ : G→ Lb(H0) is said to be hermitian
non-negative definite if for all n ∈ N, t1, · · · , tn ∈ G and a1, · · · , an ∈ C,

n∑

i,j=1

aiajΓ(ti − tj) � 0.

Equivalently, Γ is hermitian non-negative definite if and only if for all x ∈ H0, t 7→
〈Γ(t)x, x〉H0

is hermitian non-negative definite.

Definition 6.3 (Positive-type operator-valued function). Let (G,+) be an l.c.a. group and
H0 a Hilbert space. Then a function Γ : G → Lb(H0) is said to be of positive-type if for all
n ∈ N, t1, · · · , tn ∈ G and x1, · · · , xn ∈ H0,

n∑

i,j=1

〈Γ(ti − tj)xi, xj〉H0
≥ 0.

It is straightforward to see that a positive-type operator-valued function is hermitian non-
negative definite. The other implication is not as easy to prove and will be discussed below.
Note that unitary representations are hermitian non-negative definite and therefore Stone’s
theorem is, indeed, a generalization of Bochner’s theorem for a particular type of hermi-
tian non-negative definite operator-valued functions. As a full generalization, the following
theorem holds.

Theorem 6.3. Let (G,+) be an l.c.a. group, H0 a Hilbert space and Γ : G → Lb(H0)
continuous for the w.o.t. Then the following propositions are equivalent

(i) Γ is hermitian non-negative definite.

(ii) Γ is of positive-type.

(iii) There exists a regular p.o.v.m. ν on (Ĝ,B(Ĝ),H0) such that

Γ(h) =

∫
eh dν =

∫
χ(h) ν(dχ), h ∈ G. (6.3)

Moreover ν is the unique regular p.o.v.m. satisfying (6.3).

These results, as well as Stone’s theorem for normal Hilbert modules (see Theorem 2.6)
can be proven in different ways, each of which exhibits a specific interest. They also emphasize
close relations between these concepts as it turns out that almost every result can be obtained
as a consequence of any of the others. As a summary, Figure 1 gives a graphical representation
of some interesting implications found in the literature. Arrows with the same color indicate
a path of implications usually followed by one or several authors. A few comments on such
paths are needed.

• Bochner’s and Stone’s theorems can be derived on their own using Fourier theory and
Riesz-Markov’s representation theorem.

• The proofs of Bochner’s theorem from Stone’s theorem (in cyan) and Naimark’s moment
theorem from the generalization of Stone’s theorem (in brown) use very similar concepts.

• These concepts are closely related to dilation theory (see [61, 3], [23, Section 8]) which
is used in [49] to prove Naimark’s moment theorem (in green).

• A particular proof of Stone’s theorem from Bochner’s theorem (in blue) is common in the
literature. The proof consists in showing (1.6) when Γ is an u.r. and then proving that
the p.o.v.m. ν obtained is actually a projection-valued measure. In fact, the hypothesis
that Γ is an u.r. is only useful to show that ν is projection-valued and not to show (1.6).
This means that this proof contains a proof of Bochner’s theorem for operators as we
explicitly represented in blue.

• Concerning the generalization of Bochner’s theorem (Theorem 6.3), two results can
be found depending on the hypothesis made on the function Γ (hermitian non-negative
definite or of positive type). The most general is (i) ⇒ (iii) and it is proven (as discussed
in the previous point) in a simpler way (without using modules nor dilation theory) than
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Fourier theory on groups
and Riesz-Markov

representation theorem

Bochner’s theorem
(Theorem 6.1)

Stone’s theorem
(Theorem 6.2)

Bochner’s theorem
for operators

(Theorem 6.3 (i) ⇒ (iii))

Naimark’s moment theorem
(Theorem 6.3 (ii) ⇒ (iii))

Stone’s theorem for
modules (Theorem 2.6)

[44, §36E]

Using [23, Theorem 8.1]

[1, 2, 58, 3], [23, §VI]

[57, §1.4.3]

[33, Prop 2.5.4]

[33, Prop 2.5.5]

[49]
Obvious

Figure 1: Possible proof paths between the principal results and related concepts.

the other implication ((ii) ⇒ (iii)). The converse implications are often omitted or stated
without proof and the equivalence of Theorem 6.3 is not common in the literature, but
can be found in [3]. The implication (iii) ⇒ (i) is easily verified using simple properties
of p.o.v.m. but (iii) ⇒ (ii) does not seem trivial to show. In [3, Theorem 2], the author
provides a proof which makes use of dilation theory. This can be avoided using the fact
that, if ν is a p.o.v.m. on (Λ,A,H0), then for all n ∈ N

∗, and x1, · · · , xn ∈ H0, the
mapping

µ : A 7→





〈ν(A)x1, x1〉H0
· · · 〈ν(A)xn, x1〉H0

...
. . .

...
〈ν(A)x1, xn〉H0

· · · 〈ν(A)xn, xn〉H0





defines a p.o.v.m. on (Ĝ,B(Ĝ),Cn×n) (i.e. a hermitian non-negative matrix valued
measure). Then, using the results of [54, Section 2] we get that for all i, j ∈ J1, nK, µi,j :
A 7→ [µ(A)]i,j admits a density fi,j with respect to the non-negative finite measure ‖µ‖1 :
A 7→ ‖µ(A)‖1 = Tr(µ(A)) and that the matrix-valued function f : χ 7→ (fi,j(χ))1≤i,j≤n

is ‖µ‖1-a.e. hermitian, non-negative. Using this, if Γ : h 7→
∫
χ(h) ν(dχ), we get for all
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n ∈ N
∗, t1, · · · , tn ∈ G and x1, · · · , xn ∈ H0

n∑

i,j=1

〈Γ(ti − tj)xi, xj〉H0
=

n∑

i,j=1

∫
χ(ti)χ(tj)µi,j(dχ)

=

n∑

i,j=1

∫
χ(ti)χ(tj)fi,j(χ) ‖µ‖1(dχ)

=

∫ n∑

i,j=1

χ(ti)χ(tj)fi,j(χ)

︸ ︷︷ ︸
≥0 ‖µ‖1-a.e.

‖µ‖1(dχ)

≥ 0 .

6.2 An alternative path for constructing spectral representa-

tions

In Section 6.1, we saw that Bochner’s theorem can be generalized to operator-valued non-
negative definite functions. This result can be used to get the same results as in Theorem 3.2
but in a different order. Let (Ω,F ,P) be a probability space and (G,+) an l.c.a. group. Let
H0 be a separable Hilbert space and set H = M(Ω,F ,H0,P). Let X := (Xt)t∈G be a cen-
tered weakly stationary H0-valued process. Then it is easy to verify that the autocovariance
operator function ΓX is hermitian non-negative definite and continuous for the w.o.t. Hence,
by Theorem 6.3, there exists a unique regular p.o.v.m. νX of (Ĝ,B(Ĝ),H0) which satisfies
(3.2). Since νX(Ĝ) = Γ(0) ∈ S1(H0), νX is a trace-class p.o.v.m. by Lemma 2.3. Now, call
et : χ 7→ χ(t) for all t ∈ G, then, for all h, t ∈ G, for all x, y ∈ H0,

Cov
(
yHXh, x

HXt

)
= yHΓ(h−t)x = yH

(∫
χ(h− t)ν(dχ)

)
x =

〈
ehy

H, etx
H

〉

L2(Ĝ,B(Ĝ),O(H0,C),νX)
.

Then, by Proposition 2.5 and Theorem 2.11, there is a unique isometry

I : L2(Ĝ,B(Ĝ),O(H0,C), νX) → M(Ω,F , P)

which maps etx
H to xHXt for all t ∈ G, x ∈ H0. Using Theorem 2.14, we get that there

exists a unique H0-valued random c.a.g.o.s. measure X̂ on (Ĝ,B(Ĝ),Ω,F ,P) with intensity
operator measure νX such that IC

X̂
= I and X̂ is regular because νX is a regular trace class

p.o.v.m.. Finally, for all t ∈ G and x ∈ H0,

xHXt =

∫
χ(t)xHX̂(dχ) = xH

(∫
χ(t)X̂(dχ)

)

which implies Relation (3.1).

Remark 6.1. As mentioned in Remark 1.4, it is interesting to note that, in this proof, we
use a milder notion of continuity for ΓX (continuity for the s.o.t.). In fact, the last part of
the proof of Theorem 3.2 shows that, in order to have weak-continuity of ΓX , it is enough to
have Relation (3.2) which can be obtained using only continuity for the s.o.t. We can therefore
state the two following results

1. A hermitian non-negative definite operator-valued function Γ : G → Lb(H0) such that
Γ(0) ∈ S1(H0) is weakly continuous if and only if it is continuous for the s.o.t.

2. An L2, H0-valued process X = (Xt)t∈G is weakly-stationary if and only if for all x ∈ H0,
the L2, complex-valued process (〈Xt, x〉H0

)t∈G is weakly-stationary.

6.3 Comparison with recent approaches

Recently, R1, R2 and the problem of defining filtering in the spectral domain have been
addressed for the case G = Z in [62] under additional assumptions. An attempt at relaxing
these assumption was proposed in [16]. We list here and comment the principal results on
spectral analysis presented in [62], [16].
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About R1 : With the additional assumption that
∑

h∈Z
‖ΓX(h)‖ < +∞, [62, Proposition

2.3.5] states that R1 holds with νX(dλ) = fX (λ)dλ where

fX(λ) =
1

2π

∑

h∈Z

e−ihλΓX(h) ∈ S+
1 (H0) ,

where the series converges in ‖·‖. This result restricts the whole spectral theory to the case
where the spectral operator measure admits a density with respect to Lebesgue’s measure on
(−π, π] and the existence of such a density is proven under restrictive summability conditions
on the autocovariance operator. With this result, we cannot study processes with seasonal
components (whose spectral measure have atoms and therefore no density with respect to
Lebesgue’s measure) or long-memory processes (for which

∑
h∈Z

‖ΓX(h)‖ = +∞). In [16],
R1 is proved without the summability assumption but the measure νX is constructed via
compactification of L+

b (H0). This compactification makes it possible to define “infinite”
operator measures which is not necessary here because p.o.v.m.’s theory is sufficient and
makes the construction easier as discussed in Section 6.1.

About R2 : Assuming νX has a density fX with respect to Lebesgue’s measure on (−π, π],
such that fX ∈ Lp((−π, π],B((−π, π]),S1(H0)) for some p ∈ (1,+∞], [62, Theorem 2.4.3]
provides the Stieltjes integral representation for all t ∈ Z,

Xt =

∫ π

−π

eitλ dZλ P-a.e., (6.4)

where λ 7→ Zλ has orthogonal increments. This result is provided without assuming exis-
tence of a density with respect to Lebesgue’s measure in [16] and is equivalent to R2 with
X̂((−π, λ]) = Zλ which becomes a c.a.o.s. measure. In [62, Theorem 2.5.1], the author con-
structs a space (denoted by H) similar to L

2((−π, π],B((−π, π]),O(H0), νX) and proves the
isometric property of the spectral representation. The difference with the results we present in
Sections 2 and Section 3 is that, by making the module structure of M(Ω,F ,H0,P) explicit,
we believe that the construction is clearer and more complete. In particular, the spectral rep-
resentation X̂ is a c.a.g.o.s. measure, which extends the c.a.o.s. property, and the time and
spectral domains are shown to be gramian-isometrically isomorphic. In addition, the space
H of [62] is constructed as the completion of a pre-Hilbert space, that is a quotient space of
Cauchy sequences, which provides little intuition on the space of transfer operator functions
one can consider for filtering X. On the contrary, we provide a definition of the space of
operator-valued functions L2((−π, π],B((−π, π]),O(H0), νX) which is simple to characterize.

A Useful functional analysis results

A.1 Diagonalization of compact positive operators

Let H0 be a separable Hilbert space and P ∈ Lb(H0). Then s ∈ C is said to be an eigenvalue
of P if ker(P−sId) 6= {0}. If s is an eigenvalue of P, we say that ker(P−sId) is the associated
eigensubspace and its dimension is called the multiplicity of s. We denote by specp(P) the set
of eigenvalues of P (called the point spectrum of P). P is said to be diagonalizable if H0 has a
Hilbert-basis of eigenvectors of P. If P ∈ K(H0) and is auto-adjoint, then it is diagonalizable
and specp(P) is at most discrete, every non-zero eigenvalue has finite dimension and eigensub-
space associated to different eigenvalues are orthogonal. We denote by Nsp(P) the cardinal
of specp(P) which is finite if and only if rank(P) < +∞ and if not, then specp(P) admits 0
as its unique accumulation point (equivalently, this means that any way of representing the
elements of specp(P) gives a sequence converging to 0).

In order to have a representation which takes into account both cases we add zeros at
the end of the sequence in the case where Nsp(P) < +∞. This allows us to systematically
represent the eigenvalues of P as a sequence converging to 0. When P ∈ K+(H0) all its
eigenvalues are non-negative and it is convenient to represent them in decreasing order which,
in the case where Nsp(P) = +∞, gives a sequence of strictly positive numbers decreasing to
0 even if 0 ∈ specp(P). We will denote by (si(P))i∈N such a sequence of distinct eigenvalues,
that is if Nsp(P) < +∞, then s0(P) > s1(P) > · · · > sNsp(P)(P) > 0 and si(P) = 0 for all
i > Nsp(P) and if Nsp(P) = +∞, then s0(P) > s1(P) > · · · > 0. In the latter case, one need to
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keep in mind the fact that 0 can be an eigenvalue even if it is not represented in the sequence.
Using this representation (si(P))i∈N, we will also denote by mi(P) the multiplicity of si(P)
and by Πi(P) the orthogonal projection onto ker(P− si(P)Id) for all i ∈ N. Finally we define
(αi(P))i∈N the piecewise constant sequence obtained by repeating the values of (si(P))i∈N as
often as their multiplicities. With these notations we can write

P =
∑

i∈N

si(P)Πi(P) (A.1)

where the series converges in operator norm, and if P 6= 0,

Id = Pker(P) + PIm(P) = Pker(P) +
∑

0≤i<Nsp(P)

Πi (A.2)

where, ifNsp(P) = +∞, the series converges in s.o.t. (If P = 0 we have Id = Pker(P) = Πi for all
i ∈ N). Moreover the following measurability properties hold (recall that the notion of simple
measurability is defined in Section 2.1 and B(K+(H0)) =

{
A ∩ K+(H0) : A ∈ B(K(H0))

}
).

Proposition A.1. The following assertions hold for all i ∈ N.

(i) αi : P 7→ αi(P) is measurable from (K+(H0),B(K
+(H0))) to (R+,B(R+)).

(ii) mi : P 7→ mi(P) is measurable from (K+(H0),B(K
+(H0))) to (N,P(N)).

(iii) si : P 7→ si(P) is measurable from (K+(H0),B(K
+(H0))) to (R+,B(R+)).

(iv) rank : P 7→ rank(P) is measurable from (K+(H0),B(K
+(H0))) to (N,P(N)).

(v) Nsp : P 7→ Nsp(P) is measurable from (K+(H0),B(K
+(H0))) to (N,P(N)).

(vi) Πi : P 7→ Πi(P) is simply measurable from (K+(H0),B(K
+(H0))) to Lb(H0).

(vii) P 7→ Pker(P) is simply measurable from (K+(H0),B(K
+(H0))) to Lb(H0).

(viii) There exists a family (ψi)i∈N of functions ψi : P 7→ ψi(P) which are measurable from
(K+(H0),B(K

+(H0))) to (H0,B(H0)) such that for all P ∈ K+(H0), (ψi(P))i∈N is or-
thonormal and for all i ∈ N, ψi(P) ∈ ker(P− si(P)Id).

Proof. We follow the ideas of the proofs of [45, Theorem 2.10] and [33, Lemma 3.4.7].
Proof of (i). By [33, Lemma 3.4.6], for all n ∈ N and all P ∈ K+(H0),

n∑

i=0

αi(P) = max

{
n∑

i=0

〈Pxi, xi〉H0
: (x0, · · · , xn) is orthonormal

}

and therefore
∑n

i=0 αi is measurable from (K+(H0),B(K
+(H0))) to (R,B(R)). Then using

αi =
∑i

j=1 αj −
∑i−1

j=1 αj we get measurability of αi for all i ∈ N.

Proof of (ii). By definition, for all P ∈ K+(H0), m0(P) = inf {j ∈ N : αj(P) 6= αj+1(P)}
with the convention inf ∅ = +∞ and for all i ∈ N

∗,

mi(P) =

{
inf {j > mi−1(P) : αj(P) 6= αj+1(P)} −mi−1(P) if mi−1(P) < +∞

+∞ otherwise
.

Measurability of the mi’s is then proven by induction.
Proof of (iii). For all i ∈ N, for all P ∈ K+(H0), si(P) = αmi(P)(P)1{mi(P) 6=0} hence si is
measurable.
Proof of (iv). For all P ∈ K+(H0), rank(P) =

∑
i∈N

1{αi(P) 6=0} hence rank is measurable.
Proof of (v). For all P ∈ K+(H0), Nsp(P) =

∑
i∈N

1{si(P) 6=0} hence Nsp is measurable.
Proof of (vi). Let P ∈ K+(H0), then from (A.1) one can show that for all n ∈ N,

(
P

s0(P)

)n

=
∑

k∈N

(
sk(P)

s0(P)

)n

Πk(P) in s.o.t.

and for all 1 ≤ i < Nsp(P),

(
P−

∑i−1
k=0 skΠk

si

)n

=
∑

k∈N

(
sk(P)

si(P)

)n

Πk in s.o.t.
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From these two relations and (A.2) we easily get

Π0(P) = lim
n→+∞

(
P

s0(P)

)n

1{s0(P) 6=0} + Id1{s0(P)=0}

and for all i ≥ 1,

Πi(P) = Id1{s0(P)=0}

+ 1{s0(P) 6=0}1{i<Nsp(P)} lim
n→+∞

(
P−

∑i−1
k=0 sk(P)Πk(P)

si(P)

)n

+ 1{s0(P) 6=0}1{i≥Nsp(P)}



Id−
∑

0≤k<Nsp(P)

Πk(P)





where the convergences are in s.o.t. Hence by measurability of the si’s and of Nsp we get
by induction than the Πi’s are simply measurable as limit in s.o.t. of simply measurable
functions.
Proof of (vii). Simple measurability of P 7→ Pker(P) comes from (A.2), simple measurability
of the Πi’s and measurability of Nsp.
Proof of (viii). Let (φn)n∈N be a Hilbert-basis of H0, then define for all

τi : P 7→

{
min {n ∈ N : Πi(P)φn 6= 0} 0 ≤ i < Nsp(P)

min
{
n > τi−1(P) : Pker(P)φn 6= 0

}
i ≥ Nsp(P)

.

Note that τi never takes the value +∞ because for all i ∈ N, Πi(P) 6= 0 and if Nsp(P) < +∞,
then ker(P) has infinite dimension and therefore there are infinitely many n ∈ N such that
Pker(P)φn 6= 0. Then measurability of Nsp and simple measurability of the Πi’s give that
the τi’s are measurable from (K+(H0),B(K

+(H0))) to (N,P(N)). Now define for all i ∈ N,
ϕi : P 7→ Πi(P)φτi(P) and the sequence (ψ̃i)i∈N obtained by applying the Gram-Schmidt

algorithm to the ϕi’s, that is ψ̃0 : P 7→ ϕ0(P) and for all i ≥ 1,

ψ̃i : P 7→ ϕi(P)−
i−1∑

k=0

〈
ϕi(P), ψ̃k(P)

〉

∥∥∥ψ̃k(P)
∥∥∥
2

H0

ψ̃k(P) .

Finally, define for all i ∈ N, ψi : P 7→ ψ̃i(P)/
∥∥∥ψ̃i(P)

∥∥∥
H0

. Then, measurability of the ϕi’s im-

plies measurability of the ψi’s and, by construction for all P ∈ K+(H0), the family (ψi(P))i∈N

is orthonormal.

A.2 Singular values decomposition

Let H0, G0 be two separable Hilbert spaces and P ∈ K(H0,G0), then PHP ∈ K+(H0) and
PPH ∈ K+(G0) and these two operators have the same non-zero eigenvalues with the same
(finite) multiplicities. Define the set sing(P) of singular values of P ∈ K(H0, G0) as

sing(P) =
{
s1/2 : s ∈ specp(P

HP) \ {0}
}
=
{
s1/2 : s ∈ specp(PP

H) \ {0}
}

and for all σ ∈ sing(P) we call multiplicity of σ the multiplicity of σ2 as an eigenvalue of PHP
or PHP (which are the same). The well-known singular value decomposition theorem can then
be stated as follows.

Theorem A.2 (Singular value decomposition). Let H0 and G0 be two separable Hilbert spaces
and P ∈ K(H0,G0) then there exist two Hilbert basis (φn)0≤n<rank(P) and (ψn)0≤n<rank(P)

of Im(PH) and Im(P) respectively and (σn)0≤n<rank(P) representing the elements of sing(P)
repeated as often as their multiplicity such that

P =
∑

0≤n<rank(P)

σnψn ⊗ φn (A.3)

where the series converges in operator norm. Moreover, if rank(P) = +∞, limn→+∞ σn = 0.

Similarly to the eigendecomposition, the singular values are usually written as a decreasing
sequence (σi(P))0≤i<rank(P).
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A.3 Generalized inverse of an operator

Let H0,G0 be separable Hilbert spaces and P ∈ Lb(H0,G0), then the mapping

P| ker(P)⊥→Im(P) :
ker(P)⊥ → Im(P)
x 7→ Px

is an isomorphism and we define P† ∈ O(G0,H0) (called the generalized inverse of P) as the

linear extension of
(
P| ker(P)⊥→Im(P)

)−1
to D(P†) := Im(P) ⊕ Im(P)⊥ such that ker(P†) =

Im(P)⊥. In other words, for all x ∈ D(P†), there exists (x1, x2) ∈ Im(P)× Im(P)⊥ such that

x = x1 + x2, then P†x =
(
P| ker(P)⊥→Im(P)

)−1
x1.

The subspace D(P) is dense in G0 and is equal to G0 if and only if Im(P) is closed, in
which case P† ∈ Lb(G0,H0). The operators P and P† are linked by the relation

P†P = Pker(P)⊥ (A.4)

and it is easy to show that, if Q ∈ O(G0,H0), then Q = P† if and only if QP = Pker(P)⊥ and
Q| ker(P)⊥ = 0.

The identity (A.4), along with the fact that a projection is compact if and only if it has
finite rank, gives (see [25, Theorem 3.1.3]) that a compact operator has closed range if and
only if it has finite rank. The operator PP† is not as easy to characterize but when Im(P) is
closed, we have PP† = PIm(P). Finally, in the case where P ∈ K+(H0), the generalized inverse
can be diagonalized as follows.

Proposition A.3. Let H0 be a separable Hilbert space and P ∈ K+(H0), then, defining for
all i ∈ N, s†i (P) = 1/si(P) if si(P) 6= 0 and 0 otherwise, we get

D(P†) =

{
x ∈ H0 :

∑

i∈N

(
s†i (P)

)2
‖Πi(P)x‖

2
H0

< +∞

}
(A.5)

and for all x ∈ D(P†),

P†x =
∑

i∈N

s†i (P)Πi(P)x (A.6)

Proof. The inclusion (⊂) in (A.5) is straightforward. To show the converse inclusion, let

x ∈ H0 such that
∑

i∈N

(
s†i (P)

)2
‖Πi(P)x‖

2
H0

< +∞, then y :=
∑

i∈N
si(P)

†Πi(P)x exists

because the series converges in H0. Now, we write x = PIm(P)x+ PIm(P)⊥x with

PIm(P)x =
∑

0≤i<Nsp(P)

Πi(P)x =
∑

0≤i<Nsp(P)

si(P)s
†
i (P)Πi(P)x = Py ∈ Im(P) ,

and therefore x ∈ D(P†) which concludes the proof of (A.5).
To show (A.6), let x ∈ D(P†) and define the operator

Q :
D(P†) → H0

x 7→
∑

i∈N
s†i (P)Πi(P)x

Then, it is easy to verify that QP = PIm(P) = Pker(P)⊥ and that Q|Im(P)⊥ = 0 which imply

that Q = P†.

Using this result, we can show the useful measurability property.

Corollary A.4. Let H0 be a separable Hilbert space. Then the mapping P 7→ P† is O-
measurable (see Section 2.1 for the definition) from (K+(H0),B(K

+(H0)) to O(H0)

Proof. Measurability of the si’s and simple measurability of the Πi’s shown in Proposition A.1
give Condition (i) of the definition of O-measurability using (A.5) and Condition (ii) using
(A.6).
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B Additional results on vector and operator valued

measures

B.1 Projection-valued and gramian-projection-valued mea-

sures

Let (Λ,A) be a measurable space and H0 a separable Hilbert space. A projection-valued mea-
sure (p.v.m.) ξ on (Λ,A,H0) is a p.o.v.m. valued in the space of orthogonal projections on H0.
If in addition ξ(Λ) = Id, we say that ξ is normalized. This notion appears in diagonalization
of non-compact operators and in Stone’s theorem where such measures are often mentioned
as “spectral measures” or “spectral operator measures” (see e.g. [12, Chapter IX]) but it must
not be mistaken with what we defined as “spectral operator measures” for weakly stationary
stochastic process. When working with modules, the notion of p.v.m.’s can be extended to
gramian-projection-valued measures (g.p.v.m.) which play the same role as p.v.m.’s for the
extension of Stone’s theorem on modules. If H is a normal Hilbert Lb(H0)-module, then a
p.v.m. ξ on (Λ,A,H) is said to be a g.p.v.m. if for all A ∈ A, ξ(A) is a gramian-projection.
The notion of regularity used for p.v.m.’s and g.p.v.m.’s is the one defined in Section 2.2 for
p.o.v.m.’s.

B.2 Countably additive orthogonally scattered measures

Let H0 be a Hilbert space and (Λ,A) a measurable space. A countably additive orthogonally
scattered (c.a.o.s.) measure W on (Λ,A,H0) is an H0-valued measure which satisfies for all
A,B ∈ A such that A ∩B = ∅, 〈W (A),W (B)〉H0

= 0. The proofs of the following assertions
are straightforward.

(i) If W is a c.a.o.s. measure on (Λ,A,H0), then ηW : A 7→ ‖W (A)‖2H0
is a finite, non-

negative measure on (Λ,A) called the intensity measure of W . It satisfies for all A,B ∈
A,

ηW (A ∩B) = 〈W (A),W (B)〉H0
.

(ii) Conversely, if W : A → H0 is such that there exists a finite, non-negative measure η
on (Λ,A) satisfying ∀A,B ∈ A, 〈W (A),W (B)〉H0

= η(A ∩ B). Then W is a c.a.o.s.
measure on (Λ,A,H0) with intensity measure η.

When Λ is a locally-compact topological space then, by definition of the intensity mea-
sure, we get that a c.a.o.s. measure W is regular (in the sense recalled in Section 2) if and
only if its intensity measure is regular. Since we do not assume that a c.a.o.s. measure has
finite variation, we cannot use Bochner’s integration theory recalled in Section 2.1. However,
Assertion (i) implies that we can linearly, continuously and isometrically extend the mapping
1A 7→W (A) to

Span (1A , A ∈ A) = L2 (Λ,A, ηW ) .

That is, there exists a unique isometric operator IW : L2(Λ,A, ηW ) → H0 such that ∀A ∈ A,

IW (1A) = W (A). Moreover, IW is unitary from L2(Λ,A, ηW ) to Span
H0 (W (A),A ∈ A)

and we define integration of L2(Λ,A, ηW ) functions with respect to W by setting, for all
f ∈ L2(Λ,A, ηW ), ∫

fdW := IW (f) .

Conversely, if η is a finite, non-negative measure on (Λ,A) and I is an isometry from
L2(Λ,A, η) to H0, then there exists a unique c.a.o.s. measure W on (Λ,A,H0) with intensity
measure η such that, for all f ∈ L2(Λ,A, η),

w(f) =

∫
f dW .

B.3 On the completeness of L2(Λ,A,Lb(H0,G0), ν)

In Section 2.5, we have defined the normal pre-Hilbert Lb(G0)-module L
2(Λ,A,Lb(H0,G0), ν)

of square-integrable bounded-operator-valued functions. In the univariate case, this corre-
sponds to L2(Λ,A, νX) which is a Hilbert space. In the multivariate case, where H0 and G0
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have finite dimensions, the completeness of L2(Λ,A,Lb(H0,G0), ν) is proven in [54]. However
completeness is not guaranteed in the infinite dimensional case, see [45], where the authors
refer to [41] for a counter-example. We complete this line of thoughts by providing a necessary
and sufficient condition for the completeness of L2(Λ,A,Lb(H0,G0), ν) in the general case.

Theorem B.1. Let H0,G0 be separable Hilbert spaces, (Λ,A) a measurable space, ν a trace-
class p.o.v.m. on (Λ,A,H0) and f = dν

d‖ν‖1
. Then L

2(Λ,A,Lb(H0,G0), ν) is complete for

the gramian defined in Proposition 2.8 if and only if rank(f) is finite ‖ν‖1-a.e. In this case,

rank
(

dν
dµ

)
is finite µ-a.e. for all finite non-negative measure µ which dominates ‖ν‖1.

Proof. The proof of the fact that we can take µ instead of ‖ν‖1 uses the same arguments we
used to prove Relation (2.12) and will be omitted. Now, let us consider that f is a representing
function of the density which is in S+

1 (H0) everywhere and let A := {rankf < +∞} which is in
A by measurability of the rank (see Proposition A.1) and of f . Then by [25, Theorem 3.1.3],
we have A = {Imf1/2 is closed}. We show successively that ‖ν‖1(A

c) = 0 is a necessary
condition for completeness of L2(Λ,A,Lb(H0, G0), ν) and then that it is sufficient.
Proof of necessity. Suppose that L2(Λ,A,Lb(H0,G0), ν) is complete and that ‖ν‖1(A

c) 6= 0.
Then in order to get a contradiction, we will follow the following two steps.

Step 1 Construct a function Ψ ∈ L2(Λ,A,S2(H0, G0), ‖ν‖1) ⊂ L
2(Λ,A,Lb(H0, G0), ν) such

that
for all λ ∈ Ac, Ψ(λ) /∈

{
Pf(λ)1/2 : P ∈ Lb(H0,G0)

}
. (B.1)

Step 2 Construct a sequence (Φn)n∈N ∈ L
2(Λ,A,Lb(H0,G0), ν)

N such that Φnf
1/2 converges

to Ψ in L2(Λ,A,S2(H0,G0), ‖ν‖1).

Let us explain why these two steps lead to a contradiction. Step 2 implies that (Φnf
1/2)n∈N

is Cauchy in L2(Λ,A,S2(H0,G0), ‖ν‖1) which, by the gramian-isometric property shown in
Proposition 2.8, means that (Φn)n∈N is Cauchy in L

2(Λ,A,Lb(H0, G0), ν). Since we as-
sumed completeness, there exists Φ ∈ L

2(Λ,A,Lb(H0,G0), ν) such that Φn converges to Φ
in this space, which, again by Proposition 2.8, means that Φnf

1/2 converges to Φf1/2 in
L2(Λ,A,S2(H0,G0), ‖ν‖1) and thus Φf1/2 = Ψ ‖ν‖1-a.e. contradicting (B.1).

We now provide the constructions previously described.
Step 1 By Proposition A.1 and composition of measurable functions, we know that the func-
tions λ 7→ si(λ) are measurable where si(λ) is the i-th eigenvalue of f(λ)1/2 (in decreasing
order with the convention of Appendix A.1). Moreover, Proposition A.1 (and again compo-
sition of measurable functions) also gives that there exists a family of measurable functions
(ψi)i∈N from Λ to H0 such that for all λ ∈ Λ, (ψi(λ))i∈N is an orthonormal sequence of
eigenvectors associated to the eigenvalues (si)i∈N. Define

y : λ 7→
∑

n∈N

ℓn(λ)ψn(λ)

with ℓn(λ) = C(λ)−1sn(λ) where C(λ) =
(∑

n∈N
sn(λ)

2
)1/2

so that ‖y(λ)‖H0
= 1. And let

Ψ : λ 7→ u⊗ y(λ)

where u ∈ G0 with ‖u‖G0
= 1. Then Ψ ∈ L2(Λ,A,S2(H0,G0), ‖ν‖1) because for all λ ∈ Λ,

‖Ψ(λ)‖2 = 1.
We conclude by reasoning by contradiction. Suppose that (B.1) does not hold and take

λ ∈ Ac and P ∈ Lb(H0,G0) such that Ψ(λ) = Pf(λ)1/2. Then we have that y(λ) ⊗ u =
Ψ(λ)H = f(λ)1/2PH and thus

y(λ) = (y(λ)⊗ u) (u) = f(λ)1/2PHu ∈ Im(f(λ)1/2) .

This means that there exists x ∈ H0 such that y(λ) = f(λ)1/2x and we get for all n ∈ N,

C(λ)−1sn(λ) = ℓn(λ) =
〈
f(λ)1/2x, ψn(λ)

〉

H0

=
〈
x, f(λ)1/2ψn(λ)

〉

H0

= sn(λ) 〈x, ψn(λ)〉H0
.

In particular sn(λ) > 0 implies 〈x, ψn(λ)〉H0
= C(λ)−1. Since rankf(λ) = +∞, we know that

sn(λ) > 0 for all n ∈ N and thus get that ‖x‖H0
= +∞, which is impossible.
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Step 2 Define

Φn : λ 7→ C(λ)−1u⊗
n∑

k=0

ψk(λ) .

Then Φn ∈ L2(Λ,A,Lb(H0,G0), ‖ν‖1) and Φn(λ)f
1/2(λ) = u ⊗

∑n
k=0 ℓk(λ)ψk(λ). Then for

all λ ∈ Λ,
∥∥∥Ψ(λ)− Φn(λ)f

1/2(t)
∥∥∥
2

2
=

+∞∑

k=n+1

ℓk(λ)
2 ,

which tends to 0 as n→ +∞ and is bounded by 1. Hence by Lebesgue’s dominated converge
theorem ∫ ∥∥∥Ψ− Φnf

1/2
∥∥∥
2

2
d‖ν‖1 −−−−−→

n→+∞
0 .

Proof of sufficiency. Suppose that ‖ν‖1(A
c) = 0, i.e. that Imf1/2 is closed ‖ν‖1-a.e. and

consider that f1/2 is a representing function of the density which has closed range everywhere.
Let (Φn)n∈N be a Cauchy sequence in L

2(Λ,A,Lb(H0,G0), ν) and define for all n ∈ N, Ψn =
Φnf

1/2. Then, by Proposition 2.8, (Ψn)n∈N is a Cauchy sequence in L2(Λ,A,S2(H0,G0), ‖ν‖1)
which is complete, hence Ψ = limn→+∞ Ψn exists in L2(Λ,A,S2(H0,G0), ‖ν‖1). This implies
that there exists a subsequence (Ψφ(n))n∈N of (Ψn)n∈N which converges ‖ν‖1-a.e. to Ψ. More
explicitly, there exists B ∈ A, with ‖ν‖1(B

c) = 0 such that Ψφ(n)(λ) −−−−−→
n→+∞

Ψ(λ) for all

λ ∈ B. Let λ ∈ B, then for all x ∈ G0,

Ψ(λ)Hx = lim
n→+∞

f(λ)1/2Φn(λ)
Hx ∈ Imf(λ)1/2 = Imf(λ)1/2 .

Hence ImΨ(λ)H ⊂ Imf(λ)1/2 ⊂ D
(
f(λ)1/2

)†
where

(
f(λ)1/2

)†
is the generalized inverse of

f(λ)1/2 (see Appendix A.3). This means that we can define

Θ(λ) :=
(
f(λ)1/2

)†
Ψ(λ)H ∈ Lb(G0,H0) .

Defining Θ(λ) = 0 for λ ∈ Bc, we get that Θ ∈ Fs (Λ,A, G0,H0). This implies that the
function Φ : λ 7→ Θ(λ)H is in Fs (Λ,A,H0, G0) and we have

∫ ∥∥∥Φ(λ)f(λ)1/2
∥∥∥
2

2
‖ν‖1(dλ) =

∫ ∥∥∥f(λ)1/2Θ(λ)
∥∥∥
2

2
‖ν‖1(dλ)

=

∫

A

∥∥∥∥f(λ)
1/2
(
f(λ)1/2

)†
Ψ(λ)

∥∥∥∥
2

2

‖ν‖1(dλ)

=

∫

A

∥∥∥PImf(λ)1/2Ψ(λ)
∥∥∥
2

2
‖ν‖1(dλ)

=

∫

A

‖Ψ(λ)‖22 ‖ν‖1(dλ)

< +∞ .

Hence Φ ∈ L
2(Λ,A,Lb(H0,G0), ν). Finally

‖Φ− Φn‖
2
L2(Λ,A,Lb(H0,G0),ν)

=

∫ ∥∥∥Φf1/2 − Φnf
1/2
∥∥∥
2

2
d‖ν‖1

=

∫ ∥∥∥f1/2Θ− f1/2ΦH

n

∥∥∥
2

2
d‖ν‖1

=

∫

A

∥∥∥ΨH −ΨH

n

∥∥∥
2

2
d‖ν‖1

=

∫

A

‖Ψ−Ψn‖
2
2 d‖ν‖1

−−−−−→
n→+∞

0

that is, (Φn)n∈N converges to Φ in L
2(Λ,A,Lb(H0,G0), ν) thus concluding the proof of com-

pleteness of L2(Λ,A,Lb(H0,G0), ν).
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C Locally compact Abelian groups

A topological group is a group (G,+) (with null element 0) endowed with a topology for
which the addition and the inversion maps are continuous in G ×G and G respectively. If
G is Abelian (i.e. commutative) and is locally compact, Hausdorff for its topology, then it is
called a Locally compact Abelian (l.c.a.) group. A character χ ofG is a group homomorphism
from G to the unit circle group U := {z ∈ C : |z| = 1} that is χ : G → U and for all
s, t ∈ G, χ(s+ t) = χ(s)χ(t). The dual group Ĝ of an l.c.a. group G is the set of continuous
characters of G. In particular, χ(0) = 1 and χ(t) = χ(t)−1 = χ(−t) for all t ∈ G. Ĝ is a
multiplicative Abelian group if we define the product of χ1, χ2 ∈ Ĝ, as χ1χ2 : t 7→ χ1(t)χ2(t),
the identity element as ê : t 7→ 1 and the inverse of χ ∈ Ĝ as χ−1 : t 7→ χ(t)−1 = χ(t). Ĝ
becomes an l.c.a. group when endowed with the compact-open topology, that is the topology
for which χn → χ in Ĝ if and only if for every compact K ⊂ G, χn → χ uniformly on K i.e.
supt∈K |χn(t)− χ(t)| −−−−−→

n→+∞
0.

A result known as the Pontryagin Duality Theorem (see [57, Theorem 1.7.2]) states that

G and
ˆ̂
G are isomorphic via the evaluation map G → ˆ̂

G

t 7→ et
where et : χ 7→ χ(t) in the

sense that this map is a bijective continuous homomorphisms with continuous inverse. In

particular, this means that {et : t ∈ G} is the set of characters of Ĝ (i.e.
ˆ̂
G). The following

theorem will be very useful.

Theorem C.1. Let G be an l.c.a. group and µ a regular finite non-negative measure on
(G,B(G)). Then for all Banach space E,

L2(G,B(G), E, µ) = Span
L2(G,B(G),E,µ)

(
t 7→ χ(t)x : χ ∈ Ĝ , x ∈ E

)
.

By duality, we get that, for all regular finite non-negative measure µ on (G,B(G)) and Banach
space E,

L2(Ĝ,B(Ĝ), E, µ) = Span
L2(Ĝ,B(Ĝ),E,µ)

(χ 7→ χ(t)x : t ∈ G , x ∈ E) .

Proof. The space Span
(
Ĝ

)
satisfies the conditions of the Stone-Weierstrass theorem

(see [14]) and therefore is uniformly dense in C0(G) ⊃ Cc(G). This implies that

Span
(
t 7→ χ(t)x : χ ∈ Ĝ, x ∈ E

)
is uniformly dense in Span (t 7→ f(t)x : f ∈ Cc(G), x ∈ E)

which is itself uniformly dense in Cc(G, E) by [63, Proposition 44.2]. Since µ is fi-
nite, uniform density implies density in L2-norm and therefore we have shown that

Span
(
t 7→ χ(t)x : χ ∈ Ĝ, x ∈ E

)
is dense in Cc(G, E) in L2-norm. The result follows be-

cause, since µ is regular, Cc(G, E) is dense in L2(G,B(G), E, µ) for the L2-norm.

It is straightforward to verify that Z is an l.c.a. group for the addition and discrete topology
(the open sets are the subsets of Z, in this case every mapping from Z to any topological space
is continuous). Then χ ∈ Ẑ if and only if for all t, s ∈ Z, χ(t + s) = χ(t)χ(s) and therefore

Ẑ =

{
Z → U

t 7→ zt
: z ∈ U

}
. Since the compact sets of Z are the finite subsets of Z, the

compact-open topology on Ẑ is the same as the one induced by pointwise convergence. It is
then easy to show that Ẑ, U and T = R/(2πZ) are isomorphic (from Ẑ to U take χ 7→ χ(1) and
from T to U take λ 7→ eiλ). In this case we identify Ẑ and T which is in general represented by
(−π, π]. The other classical example of l.c.a. group is R for the addition and usual topology.

It can be shown that R̂ =

{
R → U

t 7→ eitλ
: λ ∈ R

}
(see for example [12, Theorem 9.11.]

where the idea is to show that the fact that χ ∈ R̂ satisfies χ(t+ s) = χ(t)χ(s) implies that
χ must be differentiable and satisfies a first order differential equation leading to the result).
Then R̂ and R are isomorphic via the mapping λ 7→ (t 7→ eitλ). In this case we identify R̂ and
R.
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