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Abstract

In this paper, we review and clarify the construction of a spectral theory for weakly-
stationary processes valued in a separable Hilbert space. We emphasize the link with func-
tional analysis and provide thorough discussions on the different approaches leading to fun-
damental results on representations in the spectral domain. The clearest and most complete
way to view such representations relies on a Gramian isometry between the time domain and
the spectral domain. This theory is particularly useful for modeling functional time series.
In this context, we define time invariant operator-valued linear filters in the spectral domain
and derive results on composition and inversion of such filters. The advantage of a spectral
domain approach over a time domain approach is illustrated through the construction of a
class of functional autoregressive fractionaly integrated moving average processes which ex-
tend the celebrated class of ARFIMA processes that have been widely and successfully used
to model univariate time series. Such functional ARFIMA processes are natural counterparts
to processes defined in the time domain that were previously introduced for modeling long
range dependence in the context of functional time series.

1 Introduction

Functional data analysis has become an active field of research in the recent decades due
to technological advances which makes it possible to store data at very high frequency (and
can be considered as continuous time data i.e. functions) or very complex type of data
which could be represented by abstract mathematical structures, typically Hilbert spaces.
In this framework, we are considering data belonging in a separable Hilbert space which is
often taken as the function space L?([0, 1]) of square-integrable functions on [0, 1]. Naturally,
researchers on the topic have been interested in generalizing multivariate data analysis and
statistical tools to this framework such as inference, estimation, regression, classification or
asymptotic results (see, for example, [32], [15]). As for multivariate data, different tools are
used when the data are considered independent or not. In this paper, we are interested in
functional data with time dependence (functional stochastic processes), that is we observe a
family (X¢)teT of random variables where T is a set of index (mainly Z or R) where for each
t € T, X; is a random variable from a measurable space (2, F) to a separable Hilbert space
Ho (endowed with its Borel o-field). In the following, we add the assumption (and give a
definition) of weak-stationarity. Examples of such processes are functional linear processes
like functional AR or, more generally, functional ARMA processes (see [5, 36, 23]). In the
univariate and multivariate (finite-dimensional) cases, spectral analysis of weakly-stationary
processes has shown many advantages (see e.g. [6]). Such an analysis has been recently
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popularized in [31, 30, 38] for the functional (infinite-dimensional) framework. In particular,
the authors define a spectral representation for weakly stationary functional processes based on
the spectral density operator. Existence of such a density is shown under strong assumptions
on the autocovariance structure of the process (see the discussion in Section 6.3).

The main goals of this paper are twofold : 1) provide a spectral representation for any
weakly stationary processes valued in a general (infinite-dimensional) separable Hilbert space,
thus relaxing the assumptions of [31, 30, 38]. 2) derive easy to use results on the composition
and inversion of shift-invariant linear filters on such processes. The first point is done following
earlier works [21, 27, 20] which generalize multivariate approaches [28, 41, 33]. As far as we
know, the second point has not been as explicitly studied before.

Let us recall the classical spectral representation of univariate weakly stationary time
series, which goes back to [24] (see also [19] for a survey). Let (2, F,P) be a probability space
and denote by L*(Q, F,P) the space of squared integrable C-valued random variables defined
on (92, F,P). This space is a separable Hilbert space when endowed with the inner product
(X,Y)— E [X?], where Y is the conjugate of Y. Throughout the paper, we moreover let
(T, +) be a locally compact Abelian (l.c.a.) group, whose null element is denoted by 0 (see
Appendix B for details).

Definition 1.1 ((Univariate) weakly stationary process). We say that X = (Xi)ier is a
weakly-stationary process if the following assertions hold.

(i) For allt € T, X¢ € L*(, F,P). We say that X is an L* process.

(i) There exists p € C, called the mean of X, such that for all t € T, E[X¢] = p. We
moreover say that X is centered if p = 0.

(i3i) There exists yx : T — C, called the autocovariance function of X, such that for all
t,h € T, Cov (Xt+h,Xt) = ’yx(h).

We moreover assume that
(iv) the autocovariance function yx is continuous on T.

Without loss of meaningful generality, we will only consider centered processes in the
following. Condition (iii) simply says that the covariance of the process is shift invariant
((Xs,X¢) and (Xs4n, Xi4n) have the same covariance for all s,¢,h € T). The continuity
condition (iv) is equivalent to say that X is L2-continuous, and it always holds when T = Z.
As noted in [24, 19], the analysis of centered, weakly-stationary processes if closely linked to
functional analysis and, in particular, to unitary representations.

Definition 1.2 ((Continuous) Unitary representations). Let (T,4) be an l.c.a. group and
T — Ly(Ho)
t — U

(u.r.) of T on Ho if it satisfies the two following assertions.

Ho a Hilbert space. A mapping U : is said to be a unitary representation

(i) For all h € T, Uy, is a unitary operator from Ho to Ho.

(i3) The operator Uy is the identity operator on Ho, that is, Up = Idy,, and, for all s,t € T,
Ustt = UsUy.

We say that U is a continuous unitary representation (c.u.r.) if it moreover satisfies

(i4i) The mapping h — Uy, is continuous on T for the weak operator topology (w.o.t., that is
for allu,v € Ho, b — (Unu,v),, is continuous).

Remark 1.1. Note that a mapping valued in the set of unitary operators is continuous for
the w.o.t. if and only if it is continuous for the strong operator topology (s.o.t., that is for all
u € Ho, h — Unu is continuous). Hence, a c.u.r. is continuous for the s.o.t. as a consequence
of (iii).

Let H be the sub-Hilbert space of centered variables in L?(2, F,P) and X = (X¢)ier € HT
be a centered L? process. Denote by

H* = SpanH (X, t €T)

the sub-Hilbert space generated by {X;,¢t € T}, where the notation SpanH (A) means the
closure in M of Span (A). Let Ui, h € T, denote the shift operators defined on HX by
U Xt = X¢4 for all t € T. The simple remarks made above about Assertions (iii) and (iv) in
Definition 1.1 and Definition 1.2 easily yield the following characterization of weak stationarity.



Lemma 1.1. Let X = (X;)ier be a centered L? process. Then X is weakly stationary if and
only if UX is a cu.r. of T on HX.

Let T denote the dual group of T (the continuous characters defined on T, see Appendix B),
and denote by B(T) its Borel o-field. Under the above assumptions, both yx (as a C-valued
function on T) and X (as an H-valued function on T) admit spectral counterparts, the first
one in the form of a finite non-negative regular measure on (T, B(T)) and the second one in
the form of a countably additive orthogonally scattered (c.a.o.s.) measure on the same space
(see Appendix C.2). More precisely, the following theorem holds.

Theorem 1.2 (Spectral measure and spectral representation of a univariate weakly stationary
process). Let X = (X¢)ter be a centered weakly-stationary process with autocovariance func-
tion yx. Then there exists a unique finite, non-negative, reqular measure vx on (iB(T)),
called the spectral measure of X, such that

v (h) = /T x(B)vx(dx), heT. (L1)

Moreover, there exists a unique H-valued regular c.a.o.s. measure X on (T,B(T)) such that
forallt €T,

X = [ XXy, (12)
T
and the intensity measure ofX is vx, which means that
Cov (X(A), X’(B)) —ux(ANB) for all A, B € B(T). (1.3)

The identity (1.1) is known as Bochner’s theorem. The most commonly used index sets
are T = Z (discrete time) and T = R (continuous time). In the first case, T = Z and
T =T := R/27Z and the identity (1.1) is then known as Herglotz’s theorem.

Note that (1.3) can be rewritten as

E [X(A)m :/nAEdux :

hence as saying that 14 — X (A) is isometric from L*(T,B(T),vx) to H C L*(Q, F,P). It
follows that Relation (1.2) defines the unique isometry I from L2(T,B(T),vx) to H which
maps (x — x(t)) to X; for all t € T. Moreover, this isometry is unitary from L?(T, B(T), vx)
to #X. The former space is called the spectral domain of X and the latter its time domain
and we conclude that the time and spectral domains are isometrically isomorphic. Another
consequence of the isometric property of I is that, for all s,t € T,

B[X.X] = [ XG0y,
T
where we used that, for all x € T, x(s)x(t) = x(s — ), see [34, Eq. (1) and (6)]. This is
exactly (1.1) by setting h = s — ¢. In other words, the results in Theorem 1.2 lead to and are
contained in the fact that L?(T,B(T),vx) and H* are isometrically isomorphic.

Another consequence of this isometrically isomorphic representation is that we are able to
provide a simple definition of linear filtering of weakly-stationary processes in the spectral do-
main using integration tools for c.a.o.s.measures. Let o : T — C measurable and denote by M,
the set of finite, non-negative regular measures v on (T, B(T)) such that a € £*(T, B(T),v)
and by S. the set of centered weakly-stationary processes indexed by T whose spectral mea-
sure is in M. Then, the filter with transfer function « is defined as the mapping

Fo:8oa o> HT
where for all X = (X¢)teT € Sa,

[Fa(X)], = /T xBa() X(dy), teT . (1.4)

This means that Y = F, (X) if and only if Y is weakly stationary and dY = adX. In this case,
it immediately follows that #¥ C #*, and dvy = |o¢|2 dvx. The two following propositions
deal with the composition and the inversion of such linear filters. A more general version of
them will be stated in Section 3.



Proposition 1.3 (Composition of filters). Let a and B be measurable functions from

(T, B(T)) to (C,B(C)),
1. If X € Sa NSap, then Fo(X) € Sp and

FgoFo(X) = Fop(X)
2. If X € Sa NSupNSp, then Fuo(X) € S, Fs(X) € Sa and
Fj 0 Fo(X) = Fa 0 F5(X) = Fag(X)

Proposition 1.4 (Inversion of filters). Let a be a measurable function from (T,B(T)) to
(C,B(C)), X € Sa and Y = Fa(X). If a > 0 vx-a.e. then H = H*X, Y € S0 and
X = Fa(Y).

The advantages of describing objects in the spectral domain rather than in the time domain
are numerous. Obviously, from a general point of view, a spectral measure is a simpler object
than an autocovariance function, and the space L (T, B(T),vx) is easier to describe than HX.
Similarly, shift-invariant linear filtering is much easier to describe in the spectral domain than
in the time domain, in the same way as convolutions of functions of time become pointwise
products through the Fourier transform. Composition and inversion of filters can be easily
treated as just explained. To conclude this reminder, let us briefly sketch the most direct
way to prove Theorem 1.2, following the approach described in [24, 19]. A complete proof is
provided in the more general case of Hilbert valued time series, see Theorem 3.2 and its proof
in Section 5.2.

Proof of Theorem 1.2 (sketch). As we explained previously, the essential point is to build
the unitary mapping between L2 (T7B(T)7ux) and HX. To this end, one can rely on the
unitary representation provided by the shift operators U, h € T, derived in Lemma 1.1.
Then Stone’s theorem gives that there exists a regular measure £X on (T, B(T)), valued in
the space of orthogonal projections on HX, such that for all h € T,

U = /T x(R) X (dx) (1.5)

The mapping
<. B(T) — H
T A o X (A)Xo

is then a regular c.a.o.s. measure on (T, B(T),#) and from (1.5) we get

Xt:UtXXo:/

T

X (@0Xo = [ X0 X0, teT,
T
which is exactly (1.2). Then, by properties of c.a.0.s. measures this relation defines an isometry
and (1.1) comes as a consequence of this result taking for vx the intensity measure of X. O

It is also common to find a proof of Theorem 1.2 where (1.1) is proved first and is used
to prove (1.2) (see e.g. [6]). This is a consequence of the close relationship between the
functional analysis tools used in the proofs and will be discussed in Section 6.1.

Having recalled the classical univariate case, we can now give more details about the
goals of this paper. In the functional case, we consider the space L?(, F, Ho,P) of random
variables X defined on a probability space (2, F,P) and valued in a separable Hilbert space

Ho such that E [||X||§{U} < 400. In this setting, Definition 1.1 is extended as follows.
Definition 1.3 (Functional weakly stationary process). Let (2, F,P) be a probability space,

Ho a separable Hilbert space and (T,+) an l.c.a. group. Then a sequence X := (Xy)ier is
satd to be an Ho-valued, weakly-stationary process if

(i) For allt € T, X, € L*(Q, F,Ho,P).
(i) For allt € T, E[X,] = E[Xo]. We say that X is centered if E[Xo] = 0.
(i3i) For allt,h € T, Cov (X¢thn, Xt) = Cov (Xn, Xo).

(iv) The autocovariance operator function I'x : h — Cov (X, Xo) is weakly continuous i.e.
for all ® € Ly(Ho), h— Tr(PI'x (h)) is continuous.



Given a separable Hilbert space Ho and a centered weakly stationary Ho-valued process
X = (Xi)teT, we want to derive

R1 A spectral version of the covariance structure of X similar to (1.1) :

Cov (Xs, Xy) = / x(s —t)vx(dx), s,teT, (1.6)

T
where vx will be called the spectral operator measure of X.

R2 A spectral representation of X similar to (1.2) :

Xt:/TX(t))A((de P-ae. teT), (1.7)

as well as a description of the isomorphic relationship that this mapping induces.

R3 A practical definition of shift-invariant linear filters, with results for composition and
inversion in the spectral domain.

In [19], the univariate and functional cases are described in a unified setting, by directly
considering (X;)tez as a H-valued sequence, where H = L*(Q, F,P) in the univariate case
and H = L*(Q, F,Ho,P) in the functional case. However, in the second case, as explained
later, H should be seen as a normal Hilbert module rather than just a Hilbert space and this
fact has consequences on the previous points, as suggested in the following remarks.

Remark 1.2. 1) About R1 : Firstly, since the left hand side term of (1.6) is an operator
on Ho and for all x € T and h € T, x(h) € C, the measure vx must be operator-
valued. Since in the univariate case vx is a non-negative measure, we expect it to verify
an analogous property for the functional case that is to be a Positive Operator Valued
Measure (p.o.v.m.).

2) About R2 : In the univariate case, X is a measure valued in L*(Q, F,P) and, as dis-
cussed above, an advantage of the spectral representation (which is the basis of the general
definition of filtering) is to describe linear transformations of the X¢’s in the time domain
HX by integrating functions in the spectral domain L* (T,B(T), vx ) with respect to X.
In the functional case, we naturally expect X to be a measure valued in L? (Q, F, Ho,P)
and the spectral domain to be an L? space related to the spectral operator measure.

3) About R3 : In (1.4), one can interpret the filter Fo in the spectral domain as a multipli-
cation ofX by a scalar a(x) depending on the frequency x. Similarly, in the functional
case we need to investigate how to apply an operator ®(x), say from Ho to Go for all fre-
quency X, inside the integral in the right-hand side of (1.7). Then two crucial questions
arise:

a) In which operator space should be valued the ®(x) ?
b) Which structure can be associated to the mapping ® — fT ddX ¢

Remark 1.3. In Definition 1.3, one could have chosen a weaker notion of continuity for the
autocovariance operator function, such as continuity for the w.o.t. The necessity of weak-
continuity to get R1, R2, R3 will be made clearer in Section 3 and, in Section 6.2, we
will see that, for autocovariance operator functions, weak-continuity is actually equivalent to
continuity for the w.o.t.

The paper is organized as follows. In Section 2 we gather preliminary definitions and
results needed all along the paper. In Section 3 we derive precise statements on the spectral
representation for functional processes. Then, two applications of these results will be provided
in Section 4 to illustrate the advantage of a spectral domain approach over a time domain
approach for extending popular univariate time series to the functional case. Proofs are
postponed in Section 5, additional comments (including discussion on recent approaches) are
made in Section 6 and results on functional analysis and l.c.a. groups are gathered in the
appendices.



2 Preliminaries

2.1 Definitions and notation for operator spaces, measurability
and LP spaces

Here we introduce classical definitions for operators on Hilbert spaces (see e.g. [17] for details)
and integrals of functions with respect to a measure in the case where the function or the
measure is vector-valued (see e.g. [13, Chapter 1] for a nice overview and [12], [11] for a
thorough study). This section also contains most of the notation used throughout the paper.

Let Ho and Go be two separable Hilbert spaces. The inner product and norm, e.g. associ-
ated to Ho, are denoted by (-, ), and ||-[[,,. Let O(Ho, Go) denote the set of linear operators
from Ho to Go whose domain (denoted by D(®)) is a linear subspace of Ho, Ls(Ho,Go) the
set of all Ho — Go continuous operators. We also denote by IC(Ho, Go) the set of all compact
operators in Ly(Ho,Go) and for all p € [1,00), Sp(Ho, Go) the Schatten-p class. The space
Ly(Ho, Go) and the Schatten-p classes are Banach spaces when respectively endowed with the
norms

1/p
@l == sup [|®zllg, and [@[,:=| > o

HQCHHOSl ocsing(®)

where sing(®) is the set of singular values of ®. Following these definitions, we have, for all
1<p<yp

Sp(Ho, Go) C Sp(Ho, Go) C K(Ho,Go) C Lu(Ho, Go) C O(Ho, Go)- (2.1)

The space K(Ho, Go) is endowed with the operator norm and the first three inclusions in (2.1)
are continuous embeddings. If Go = Ho, we omit the Gy in the notations above. As a Banach
space, Ly(Ho,Go) can be endowed with its norm topology but other common topologies are
useful. The two most common ones are the strong and weak topologies (respectively denoted
by s.o.t. and w.o.t.). We say that a sequence (®r)nen € Lo(Ho, QO)N converges to an operator
® € Lp(Ho,Go) for the s.o.t. if for all z € Ho, limp—4oo Prnz = Pz in Gy and for the w.o.t. if
for all z € Ho, for all y € Go, limy,— 4o (@na@y)go = (Pzx, y>g0.

An operator ® € Ly(Ho), is said to be positive if for all z € Ho, (Pz,x), > 0 and we
will use the notations £; (Ho), K1 (Ho), S; (Ho) for positive, positive compact and positive
Schatten-p operators. If & € [,;r (Ho) then there exists a unique operator of [,gL (Ho), denoted

2
by ®'/? which satisfies ® = (@1/2) . If ® is, in addition, compact, then so is ®'/2. For

any ® € Ly(Ho,Go) we denote its adjoint by ®" (which is compact if ® is compact). An
operator of Ly(Ho) is said to be auto-adjoint is it is equal to its adjoint and it is known
that any positive operators is auto-adjoint. If ® € L,(Ho,Go), then ®7d € E;L(Ho) and
®d € £ (Go) (which are compact if ® is compact). We define the absolute value of ® as
the operator || := (®"”®) V2 e L7 (Ho). Moreover, if ® € S1(Ho), Tr(®) will denote its
trace, if ® € Si"(Ho), it is known that Tr(®) = ||®||,. Schatten-1 and Schatten-2 operators
are usually referred to as trace-class and Hilbert-Schmidt operators respectively.

For functions defined on a measurable space (X, X') and valued in a Banach space (E, ||-|| ),
measurability is defined as follows. A function f : X — FE is said to be measurable if it is
the pointwise limit of a sequence of E-valued simple functions, i.e. functions belonging in
the space Span (Laz : A€ X, x € E). When F is separable, this notion is equivalent to the
usual Borel-measurability, i.e. to having f~'(A) € X for all A € B(E), the Borel o-field on
E. We denote by F(X, X, E) (resp. Fp(X, X, E)) the space of measurable (resp. bounded
measurable) functions from X to E. For a non-negative measure p and p € [1, 00|, we denote
by LP(X, X, E, i) the space of functions f € F(X, X, E) such that [ ||f||% du (or p-essup || f|| 5
for p = o0) is finite and by LP(X, X, E, 1) its quotient space with respect to p-a.e. equality,
or, equivalently, with respect to the subspace of functions f such that f = 0 u-a.e., which we
write

LP(X, X, E, 1) :ﬁ”(X7X7E7u)/{f D f=0 p-ae) -

The corresponding norms are denoted by |[fll1ox x 1 .- For p € [1,00),
the space of simple measurable functions with finite-measure support, i.e.
Span (Laz : A€ X, u(A) <o,z €FE), is dense in LP(X, X, E,pu). For f €



Span (Laz : A€ X, u(A) < oo,z € E) with range {ai,---,an}, the integral (often
referred to as the Bochner integral) of the E-valued function f with respect to u is defined by

[ Fu=Y (5 o) € B (2.2)

This integral is extended to L'(X, X, E, 1) by continuity (and thus also to LP if yu is finite).
An E-valued measure is a mapping p : X — E such that for any sequence (An)nen € N
of disjoint sets then p (UnEN An) = > .en M(An) where the series converges in E, that is

p <U An> - iu(z‘ln)

neN

=0.
E

lim
N—+oco

We denote by M(X, X, E) the set of E-valued measures. For such a measure p, the mapping

lleell g = A+ sup {Z (Al : (Ai)ien € X" is a countable partition of A}
ieN

defines a non-negative measure on (X, X) called the variation measure of pu. The notation
|lee|| z will be adapted to the notation chosen for the norm in E (for example if u is a complex
measure we will use |u| and if p is valued in a Schatten-p space we will use ||p||,,). The variation
of a complex-valued measure is always finite and the variation of a non-negative measure is
itself. We will denote by M, (X, X, E) the set of E-valued measures with finite variation. It is
a Banach space when endowed with the norm ||ul|py. 5 = ||l g (X). If € My (X, X, E), then
for a simple function f : X — C with range {a1,...,an}, the integral of f with respect to p
is defined by the same formula as in (2.2) (but this time the a;’s are scalar and the u’s are
E-valued). This definition is extended to L' (X, X, ||u|| ) by continuity.

When X is a locally-compact topological space, a vector measure u € M(X, X, E) is said
to be regular if for all A € X, for all € > 0, there exist a compact set K € X and an open set
U € X with K C A C U such that for all B € X satisfying B C U\ K, ||u(B)||z < e We
denote by M,.(X, X, E) the linear space of such measures. The notion of regularity is extended
to non-finite, non-negative measures by restricting A to be such that pu(A4) < +oco. From the
straightforward inequality ||(A)|| 5 < ||p]lz(A) for all A € X, we get that if p € M,(X, X, E)
has a regular variation, then p is regular. The converse is not always true but holds for
complex measures. An interesting result (see [20, Remark 3.6.2]) is that an E-valued measure
v is regular if and only if for all § € E*, ¢ o v is a regular complex measure.

Finally, we recall another notion of measurability for functions valued in the operator
spaces Ly(Ho, Go) or O(Ho,Go). Namely, a function ® : X — L(Ho, Go) is said to be simply
measurable if for all z € Ho, t — P(t)z is measurable as a Go-valued function. The set of such
functions is denoted by Fy (X, X, Ho,Go). For a function ® : X — O(Ho, Go), adapting [27],
[20, Section 3.4], we will say that ® is O-measurable if it satisfies the two following conditions.

(i) For all z € Ho, {t e X : z € D(®(t))} € X.
(ii) There exist a sequence (Pp)nen valued in Fy (X, X, Ho, Go) such that for all ¢ € X and
x € D(®(t)), Pn(t)x converges to (t)x in Go as n — oo.

We denote by Fo (X, X, Ho, Go) the space of such functions ®. Note that for all Banach space
& which is continuously embedded in Ly (Ho, Go) (e.g. Sp(Ho, Go) for p > 1 or K(Ho, Go)), the
following inclusions hold

F(X,X,&) C Fs (X, X, Ho,Go) C Fo (X, X,Ho,G0) - (2.3)

In this paper we will mainly take £ as the set of trace-class, Hilbert-Schmidt or compact
Ho — Go operators for which measurability and simple measurability are equivalent as stated
in the following lemma.

Lemma 2.1. Let & = K(Ho,Go) or Sp(Ho,Go) where p € {1,2} and Ho,Go are separable
Hilbert spaces. Then a function ® : X — &£ is measurable if and only if it is simply measurable.

Proof. See Section 5.1. O

We also need to consider operator-valued measures for our study, and more particularly
p-o.v.m.’s which are studied in the next section.



2.2 Positive Operator Valued Measures

The notion of Positive Operator Valued Measures is widely used in Quantum Mechanics and
a good study of such measures can be found in [4]. Here we provide useful definitions and
results for our purpose.

Definition 2.1 (Positive Operator Valued Measures). Let (X, X) be a measurable space and
Ho be a separable Hilbert space. A Positive Operator Valued Measure (p.o.v.m.) on (X, X, Ho)
is a mapping v : X — L (Ho) such that for all sequence of disjoint sets (An)nen € X,

v <U An> =Y v(An) (2.4)

neN neN

where the series converges in L (Ho) for the s.o.t.

Due to properties of positive operators, convergence in the w.o.t. would be sufficient in
Definition 2.1, see [4, Proposition 1]. Note that, with this definition, a p.o.v.m. is not a
vector-valued measure in the sense of Section 2.1 since we do not suppose that the series
in (2.4) converges in operator norm. However, this definition is sufficient to derive a useful
characterization which links a p.o.v.m. to a sesquilinear, hermitian, positive semi-definite,
continuous mapping valued in M (X, X).

Definition 2.2. Let (X, X) be a measurable space and Ho be a separable Hilbert space. A
mapping ¢ = Hi — M(X, X) is said to be sesquilinear, hermitian, positive semi-definite,
continuous if for all A € X, the mapping (z,y) — ¢(z,y)(A) is sesquilinear, hermitian,
positive semi-definite, continuous.

The characterization of p.o.v.m.’s then reads as follows (see [4, Theorem 2]).

Proposition 2.2. Let (X, X) be a measurable space and Ho be a separable Hilbert space, then
the following assertions hold.

(i) For all p.o.v.m.v on (X, X, Ho) and all z,y € Ho, the mapping y v : A (V(A)Z,Y) g,
is a complez-valued measure on (X,X). Moreover, the mapping (x,y) +— yva s
sesquilinear, hermitian, positive semi-definite, continuous.

(ii) Conversely, if ¢ : Hg — M(X,X) is a sesquilinear, hermitian, positive semi-definite
bounded mapping, then there exists a unique p.o.v.m. v on (X, X,Ho) such that for all
T,y € HO: ¢($,y) = yHVx‘

This characterization can be used to construct integrals of bounded complex-valued func-
tions with respect to p.o.v.m.’s and we refer to [4, Section 5] for details. When X is a
locally-compact topological space, this also gives a simple notion of regularity for p.o.v.m.’s,
namely a p.o.v.m. v on (X, X, Ho) is said to be regular if for all x,y € Ho, the measure
y"vx is a regular complex measure. We will say that a p.o.v.m. on (X, X, Ho) is trace-class
if it is S1(Ho)-valued. The following lemma states that trace-class p.o.v.m.’s can be seen as
vector-valued measures.

Lemma 2.3. A p.o.v.m. v on (X, X, Ho) is trace-class if and only if v(X) € S1(Ho). In this
case, v is a S1(Ho)-valued measure (in the sense that (2.4) holds in ||-||,-norm) with finite
variation measure ||[v||, : A — ||[v(A)||,. Moreover, regularity of v as a p.o.v.m. is equivalent
to regqularity of v as a S1(Ho)-valued measure which is itself equivalent to reqularity of ||v||,.

Proof. See Section 5.1. O

Thanks to this result, integration of complex-valued functions with respect to a trace-class
p-o.v.m. is possible using the theory of vector-valued measures with finite variation recalled
in Section 2.1. Finally, the following Radon-Nikodym property holds.

Theorem 2.4. Let (X, X) be a measure space, Ho a separable Hilbert space and v a trace-class
p.o.v.m. on (X, X, Ho). Let i1 be a finite non-negative measure on (X, X). Then ||v||; < p (i.e.
for all A€ X, u(A) = 0= ||v||,(A) = 0), if and only if there exists g € L' (X, X,S1(Ho), i)
such that dv = gdu, i.e. for all A€ X,

v(A) = /Agd,u. (2.5)

In this case, g is unique and is called the density of v with respect to i and denoted as g = ¥

dp”
Moreover,



(a) For u-almost every t € X, g(t) € S (Ho).
(b) The density of ||v||, with respect to p is ||g||,. In particular, g = CllrlT’/HngHl'
(©) 1f vl < gy then llgl, < 1 pr-ae., and if s = |, then |igll, = 1 i-a.c.

2.3 Normal Hilbert modules

Modules extend the notion of vector spaces to the case where scalar multiplication is replaced
by a multiplicative operation with elements of a ring. When the ring is a C*-algebra, it
is possible to endow a module with a structure similar to a Hilbert space (see [22]). In
the following we consider the C*-algebra L;(Ho) where Ho is a separable Hilbert space as
presented in [20].

Definition 2.3 (L£y(Ho)-module). Let Ho be a separable Hilbert space. A Ly(Ho)-module is a
commutative group (H,+) such that there exists a multiplicative operation (called the module
action)

Lo(Ho) xH — H

(@, z) — Dex

which satisfies the usual distributive properties : for all ®, ¥ € Ly(Ho), and z,y € H,

Pe(z+y)=Dex+ Doy,
(P+V)ex=Pex+ Vex,
(PV)exz=De (Veux),

Idy, ez = .

Definition 2.4 ((Normal) pre-Hilbert £,(Ho)-module). Let Ho be a separable Hilbert space.
A pre-Hilbert Ly(Ho)-module H is a Ly(Ho)-module endowed with a mapping [-,],, : HxXH —
Lu(Ho) satisfying for all x,y,z € H, and ® € Ly(Ho),

(i) [w,zly € L3 (Ho),
(i) [z, z]y, =0 if and only if x =0,
(iii) [z 4 oy, 2]y = [z, 2]y + Py, 2]5,

(iv) [y, 2]y = [, 9]
If moreover, for all x,y € H, [z,y],, € S1(Ho), we say that [-,-],, is a gramian and that H is
a normal pre-Hilbert L,(Ho)-module.

The mapping [-,],, generalizes the notion of scalar products for L(Ho)-modules and is
often called a Ly(Ho)-valued scalar product. In the following, we only consider normal pre-
Hilbert L;(Ho)-modules even if some notions can be defined when [, ],, is not a gramian.
Note that a L(#Ho)-module is a vector space if we define the scalar-vector multiplication
by ar = (addy,) ez for all @ € C, z € H and that, in the particular case where [, ] is
a gramian, then (-,-) := Tr[,,-] is a scalar product. Hence a normal pre-Hilbert L;(Ho)-
module is also a pre-Hilbert space. If it is complete (for the norm |z|,, = H[m,x]Hm/Q ,
then it is called a normal Hilbert L,(Ho)-module. For normal Hilbert L£(Ho)-modules, the
notions of sub-modules and Ly(Ho)-linear span as well as L£y(Ho)-linear operators, gramian-
isometries, gramian-unitary operators, gramian-orthogonality, gramian-projections come as
natural extensions of their vector space counterparts. For completeness, we provide here the
necessary definitions and refer to chapter II of [20] for a complete study.

Definition 2.5 (Submodules and Ly(Ho)-linear operators). Let Ho be a separable Hilbert
space and H,G two Ly(Ho)-modules. Then a subset of H is called a submodule if it is a
Ly(Ho)-module. An operator T € Ly(H,G) is said to be Ly(Ho)-linear if for all & € Ly(Ho)
and z € H, T(Pex)=De (Tx).

Definition 2.6 (Gramian-isometries). Let Ho be a separable Hilbert space, H,G be two pre-
Hilbert Ly(Ho)-modules and U : H — G a Ly(Ho)-linear operator. Then U is said to be

(i) a gramian-isometry (or gramian-isometric) if for all x,y € H, [Uz, Uylg = [z, Y]y,

(i) gramian-unitary if it is a bijective gramian-isometry.



The space H is said to be gramian-isometrically-embedded in G (denoted H S G) if there

exists a gramian-isometry from H to G. The spaces H and G are said to be gramian-isomorphic
(denoted H = G) if there exists a gramian-unitary operator from H to G.

Definition 2.7 ((Continuous) gramian unitary representations). Let (T, +) be an l.c.a. group,

Ho a Hilbert space and H a normal Hilbert Ly(Ho)-module with gramian [-,-],,. A mapping

U - T — ﬁb(,H)
ot — Ut

is an u.r. of T on H such that for all h € T, Uy, is gramian-unitary. A g.u.r. is continuous,

then called a c.g.u.r., if it is continuous as an u.r.

is said to be a gramian unitary representation (g.u.r.) of T on H if it

For later reference we state a simple extension result for gramian isometric operators.

Proposition 2.5 (Gramian-isometric extension). Let H be a normal pre-Hilbert Ly(Ho)-

module, G a normal Hilbert Ly(Ho)-module. Let (vj)jes and (w;)jes be two sets of vectors

in H and G respectively with J an arbitrary index set. If for alli,j € J, [vi,vjly, = [wi, w;]g

then there ezists a unique gramian-isometry

H
(

S :Span (Pew;,® € Ly(Ho),j€J)—G

such that for all j € J, Sv; = w;. If moreover H is complete then
a——H . a—9 .
S (span (Dov;,® e Ly(Ho),j € J)) — Span’ (® e w;, ® € Ly(Ho),j € J)

We can now state an important result, which generalizes Stone’s theorem to c.g.u.r.’s. We
refer to [20, Proposition 2.5.4] for a proof and Appendix C.1 for the definition of gramian-
projection valued measures.

Theorem 2.6 (Stone’s theorem for modules). Let (T,+) be an l.c.a. group, Ho a Hilbert
T — Ly(H)

t — U

c.g.u.r of T on H. Then there exists a unique regular gramian-projection valued measure & on
(T, B(T)) such that

space, H a normal Hilbert Ly(Ho)-module with gramian [-,-];, and U :

Un = /Tx(h)g(de heT. (2.6)

We conclude this section with some examples of normal Hilbert £y (#o)-modules.
Example 2.1. Let Ho,Go be separable Hilbert spaces.

o Hog is itself a normal Hilbert L,(Ho)-module with module action ® e x = ®x and gramian
[z,yly, =7 ®@y where (x @ y)u = (u,y)y, * for allu € Ho.

e S3(Ho,Go) is a normal Hilbert Ly(Go)-module with module action ® ¢ ¥ = U and
gramian [V, 0]g, 40 60y = v,

e Let (X, X) be a measurable space and p a finite non-negative measure on (X, X). Then
for all normal Hilbert Ly,(Ho)-module H, the space L*(X, X, H, 1) is a normal Ly(Ho)-
Hilbert module for the module action (Pef)(-) = ®e[f(-)] and gramian [f, 9] 2x x 3, =
J1f, gl dn.

Let (Q, F,P) be a probability space, then, combining the first and last examples, we get

that the space M(Q, F,Ho,P) of centered variables in L*(Q, F, Ho,P) is a normal Hilbert

Ly(Ho)-module when endowed with the module action and gramian defined, for all ® €
Lb(Ho), and X,Y € M(Q,}-, 'H07P)7 by

PeX =X and [X,Y]y gz =Cov(X,Y)=E[X®Y].

In the univariate case, the measure X obtained by Theorem 1.2 is valued in the space of
centered L? (2, F, P) variables and is orthogonally scattered. In the functional case, we expect
it to be in M(, F,Ho,P). Since the latter is a normal Hilbert £;(#o)-module, it is natural
to extend the notion of c.a.0.s. measures for such spaces and to expect X to satisfy this new
property. As explained earlier, the extension of orthogonality in a normal Hilbert £y(Ho)-
module is gramian-orthogonality leading naturally to the notion of countably additive gramian-
orthogonally scattered measures that we now introduce.
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2.4 Countably additive gramian orthogonally scattered mea-
sures

This section aims at presenting the generalization of c.a.o0.s. measures to normal Hilbert
modules. Let Ho be a separable Hilbert space, H a normal Hilbert L£,(Ho)-module and
(X, X) a measurable space. Let v be a trace-class p.o.v.m. on (X, X', Ho). A c.a.g.0.s. measure
W on (X,X,H) with intensity operator measure v is a mapping W : X — H such that, for
all A,B € X, [W(A),W(B)],, = v(AN B). In fact, the intensity operator measure v can be
deduced from W as in the following definition.

Definition 2.8 (c.a.g.o.s. measure). Let Ho be a separable Hilbert space, H a normal Hilbert
Ly(Ho)-module and (X, X) a measurable space. We say that W : X — H is a countably
additive gramian-orthogonally scattered measure (c.a.g.0.s. measure) on (X, X, H) if it is a
H-valued measure on (X, X) such that for all A,B € X,

ANB=0= [W(A),W(B), =0.

In this case, the mapping
vw A= [W(A),W(A)],,
is a trace-class p.o.v.m. on (X, X,Ho) called the intensity operator measure of W and we have
that, for all A,B € X,
vw(ANB) = [W(A),W(B)], .

In is straightforward to see that a c.a.g.o.s. measure W is a c.a.0.s. measure with intensity
measure ||vw ||, which, in particular implies that, when X is a locally-compact topological
space, W is regular if and only if ||vw||, is regular. By the known integration theory for
c.a.0.s. measures (see Appendix C.2), it is possible to integrate scalar-valued functions of
L*(X, &, |lvw||,) with respect to W, but this does not make entire use of the module structure
of ‘H and we would like to define an integral satisfying the natural property that for all
® € Ly(Ho), [@LadW = ®W (A). More generally, as explained in Remark 1.2, we want to
define integrals of operator-valued functions with respect to a c.a.g.o.s. measure. By analogy
to the case of c.a.0.s. measures, we therefore need to define a L?-kind of space to integrate
operator-valued functions with respect to a p.o.v.m. In the next section we present and discuss
the construction of such a space and of integration of operator-valued functions with respect
to a c.a.g.0.s. measure.

2.5 Square-integrable bounded-operator-valued functions with
respect to a trace-class p.o.v.m.

Let Ho be a separable Hilbert space, (X, X') a measurable space and v a trace-class p.o.v.m. on
(X, X,Ho). Let Go be another separable Hilbert space and @, ¥ € Ly(Ho, Go), then it is easy
to check that A s ®v(A)T" defines a Sy (Ho)-valued measure. By linearity, such a definition
can be extended to the case where ®, ¥ are simple functions from X to £y(Ho, Go) and it is
then natural to want to provide a meaning to an integral of the type [, ®(t)v(dt)¥(t)" where
D,V e F(X,X,Ly(Ho,Go)) or, more generally, in F, (X, X, Ho, Go). Since v has a density with
respect to any measure ¢ dominating ||v||,, the construction of such integrals is very similar
to the work done in [38] but is more general as discussed in Section 6.3. This approach is a
natural extension of the work done in finite dimension in [33] and is followed in [20, 27].

Definition 2.9. Let Ho, Go be separable Hilbert spaces, (X, X) a measurable space, v a trace-

class p.o.v.m. on (X, X, Ho) with density f = deTVHl' Let ©,¥ € F, (X, X, Ho,Go), then the
pair (®,V) is said to be v-integrable if fI" € L1(X, X,81(Go), |v||,) and in this case we

define
/@dy\y” = /(I)f\I/HdHVHl € S1(%) - (2.7)

If (®,®) is wv-integrable we say that P is square v-integrable and denote by
LAX, X, Ly(Ho,Go),v) the space of square v-integrable functions.

To check that ® is square v-integrable, we can replace |lv||; by an arbitrary dominating
measure 4 (often taken as Lebesgue’s measure, as in [38]), as stated in the following result.
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Proposition 2.7. Let Ho,Go be separable Hilbert spaces, (X,X) a measurable space and v
a trace-class p.o.v.m. on (X, X, Ho). Let p be a finite non-negative measure on (X, X) which
dominates ||v||, and g = g—:. Let @, ¥ € F, (X, X,Ho,Go). Then (®,V) is v-integrable if and
only if ®gUM € L1(X, X,851(Go), 1), and, in this case, we have

/@dy\lf” = /@g\I’H dp . (2.8)
Moreover, we have
® e L3(X, X, Ly(Ho,Go),v) < Bg'/? € L2(X, X, S2(Ho,Go), 1) (2.9)
and, if ®,0 € L*(X, X, Ly,(Ho,Go),v), then (®,¥) is v-integrable and
/<1>dy\IJH = /(<1>g1/2)(xpg1/2)” dp. (2.10)
The equivalence in (2.9) says that Z2(X,X,Ly(Ho,Go),v) is the preimage of
L2(X, X, 82(Ho, Go), 1) by the mapping

Fo (X, X, Ls(Ho,G0)) — F(X, X,82(Ho,Go))
) —  Bgl/?

and (2.10) can be rewritten as
/@dy\lf” - [@g1/27\11g1/2]
L£2(X,X,52(H0,90),1)

where [+, -] 22 x 5, (30,00),0) 1 the pseudo-gramian (in the sense that is satisfies all the con-

ditions of Definition 2.4 except (ii)) defined on £?(X, X, S2(Ho, Go), 1) in Example 2.1. This
pseudo-gramian becomes a gramian on L2 (X, X, S2(Ho,Go), 1) which we recall is obtained by
quotienting £2(X, X, S2(Ho, Go), ) with the u-a.e. equality and this new space is a normal
Hilbert £;(Go)-module. This leads easily to the following proposition.

Proposition 2.8. Let Ho,Go be separable Hilbert spaces, (X,X) a measurable space, v a

trace-class p.o.v.m. on (X, X,Ho) and f = deTUHl Then Z*(X, X, Ly(Ho,Go),v) is a left

Ly (Go)-module with module action
Oed:t—sOB(t), O e Ly(Go),® e L*(X,X,Ly(Ho,Go),v)

and the relation
[® W] 2 (x, 2, (30,G0) ) = /‘I’dV‘I’H O, € L%(X, X, Ls(Ho, Go), V) (211)
is a pseudo-gramian on L*(X, X, Ly(Ho,Go),v) and a gramian on the quotient space

LQ(X7X7£1;('H07QQ)7V) = $2(X7X7£b(H07gO)7V)/{q) . <1)f1/2 =0 HV||1‘a~6-} .

Moreover (L*(X, X, £5(Ho,Go), ¥), [ Tz .2, s 15 @ mormal. pre-Hilbert £(Ho)-

module and, for any finite non-negative measure p dominating ||v||, with density g = g—Z,
{<I> c ®gt? =0 u—a.e.} = {<I> coft =0 ||1/||1—a.e.} , (2.12)

1/2

and the mapping ® — &g is a gramian-isometry from L*(X, X, Ly(Ho,Go),v) to

L*(X, X, S2(Ho, Go), ).

In the multivariate case (i.e. when Ho and Gy have finite dimensions) the completeness
of L2(X, X, Ly(Ho,Go), v) is proven in [33]. However completeness is not guaranteed in the
infinite dimensional case, see [27], where the authors refer to [25] for a counter-example. In
Section 6.4, we complete this line of thoughts by providing a necessary and sufficient condition
for the completeness of L%(X, X, Ly(Ho,Go),v) in the general case. Since the integral of
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operator-valued functions with respect to a c.a.g.0.s. measure is expected to be a gramian-
unitary operator, it must be defined on a complete space. A first option is then to complete
the space L*(X, X, Ly(Ho, Go), ) by taking the equivalence classes of Cauchy sequences such
that two such sequences (U, ) and (V) are in the same class if lim(U,, — V,,) = 0. However, the
completed space is very abstract and hard to describe in an intuitive way. More concretely the
uncompleteness of L*(X, X, Ly(Ho, Go),v) comes from the fact that we restrict ourselves to
Ly(Ho, Go)-valued functions. A more concrete complete extension of L2 (X, X, Ls(Ho, Go), V),
as noticed in [20, Section 3.4] and [27], simply consists in extending this space to include well
chosen O(Ho, Go)-valued functions. We summarize their construction in the following section.

2.6 Square-integrable operator-valued functions with respect
to a trace-class p.o.v.m.

Definition 2.10. Let Ho,Go be two separable Hilbert spaces, v be a trace-class p.o.v.m. on

(X, X, Ho) and [ = dIFTulll' Let ©,¥ € Fo (X, X, Ho,Go), then the pair (P, V) is said to be

v-integrable if the three following assertions hold.
(i) Tm(f'/?) € D(®) and Im(f/?) C D(V) ||v||,-a.e.
(i) <I>f1/2 and ‘~I/f1/2 are S2(Ho, Go)-valued.
(iii) (@fF/2)(VF2)" € L1X, X, S1(Go), Ivl,)-
In this is the case, we define for all A € X,

/A<1>dy\IJH = /A(<1>f1/2)(\11f1/2)H d||v||, € S1(Go) - (2.13)

If (®,®) is v-integrable, then ® is said to be square v-integrable and we denote by
L2(X, X, 0(Ho,Go),v) the set of square v-integrable functions.

Note that, when ® and ¥ are Ly(Ho, Go)-valued, we can write (<I>f1/2)(\llf1/2)H = o fun
because the adjoint of W exists. In the general case the latter exists only when D(V) is
dense in Ho. The left hand side term of (2.13) should therefore be taken only as a shorthand
notation for the right hand side term which makes sense because of (ii). As previously, we
can show that ||v||, can be replaced by any finite non-negative measure p dominating ||v||,
and the following characterization holds.

Proposition 2.9. Let Ho,Go be separable Hilbert spaces, (X, X) a measurable space and v a
trace-class p.o.v.m. on (X,X,Ho). Let p be a finite non-negative measure dominating ||v||,
and g = g_:‘ Let ®,% € Fo (X, X, Ho, Go), then (D, V) is v-integrable if and only if it satisfies
(i’) Tm(g*/?) € D(®) and Im(g*/?) C D(¥) p-a.e.

(i) <I>g1/2 and \I'g1/2 are S2(Ho, Go)-valued.

(iii’) (Rg'/?)(Lg"/*)" € L1(X, X, 81(Go). ).

In this case we have for all A € X,

/@dy\y” :/(@gl/Q)(\I/gl/Q)H dp . (2.14)
A A

Moreover, we have

Im(g*?) C D(®) p-a.e.
& € L2(X, X,0(Ho,Go),v) & mi% ) . (®) p-a.c (2.15)
®g'/? € L2(X, X, S2(Ho,Go), 1)
and, if ®,¥ € fQ(X,X,O(H07go)7V), then (®, ¥) is v-integrable and
od qf”:/ dg' ) (Wg ) dp = |@g'/?, Wg'/? . 2.16
/ Y (2g7)(Fg)" du [ g g LZ(X,X,SZ(HO,QO),H) (2.16)

Similarly as before, we get the following (stronger) result.
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Theorem 2.10. Let Ho, Go be separable Hilbert spaces, (X, X) a measurable space, v a trace-
class p.o.v.m. on (X, X, Ho) and f = =% —. Then L*(X,X,0(Ho,Go),v) is a Ls(Go)-module

dllvlly
with module action

Qed:t—OB(t), O € Ly(Go),®e L*X,X,0(Ho,Go),v)

and the relation

[®, U] = /@dy\p” Ve L*(X, X,0(Ho,Go),v) , (2.17)

L2(X,X,0(Hg.90).v)

is a pseudo-gramian on L*(X, X,O(Ho,Go),v) and a gramian on the quotient space
L2(X, X, O(Ho, Go),v) = $2(X,X70(Ho,go)w)/{¢ L BfY2 = I\Vl\l-a-e-} .

Moreover, (L2(X, X, O(Ho,G0),v), [ 12 x .0 00106010 ) 35 @ normal Hilbert £y(Ho)-module

and, for any finite non-negative measure p dominating ||v||, with density g = g—;, then

{<I> cdgt/?=0 u—a.e.} = {<I> cef? =0 ||1/||1—a.e.} , (2.18)

1/2

and the mapping ® — dg is a gramian unitary operator from L*(X, X, O(Ho,Go),v) to

L*(X, X, S2(Ho, Go), ).
We now have three different kinds of L? spaces for operator-valued functions which are
linked by the easily verified inclusions

L2(X7X7£5(H07g0)7 HVHl) - LQ(X7X7£17(H07QO)7V) - LQ(X7X7O(H07QO)7V) ) (2'19)

where the second inclusion is an isometric embedding and the first one a continuous embed-
ding. More precisely, if ® € L*(X, X, Ly(Ho,Go), V), then

Il 22,2, 24, (310,600, 1) 2 1PNz, 24 (30,600 .0) = 1PN 2x 2,030, 60)0 (2.20)

with the convention that || @] 2x x £, (30,00), 101, = °° if © ¢ LA(X, X, Ly(Ho, Go), |IV|l,)-

We conclude this section by the following theorem stating that L%(X, X, O(Ho,Go), V)
satisfies the usual density properties.

Theorem 2.11. Let Ho,Go be two separable Hilbert spaces, (X,X) a measurable space,
and v a trace-class p.o.v.m. on (X,X,Ho). Then the space L*(X,X,Ly(Ho,Go), |vl,)
is dense in L2(X,X,0(Ho,Go),v). In particular, this implies that the space
Span (t — La(t)® : A€ X, ® € Ly(Ho,Go)) of simple Ly(Ho, Go)-valued functions is dense
in L2(X, X, O(Ho, Go),v) and that, if T is an l.c.a. group and v is a regular p.o.v.m. on

(T, B(T)), the space Span (t = x()® : x eT,® e Ly(Ho, go)) of Ly(Ho, Go)-valued trigono-
metric polynomials is dense in L*(T,B(T), O(Ho, Go), V).

2.7 Integration with respect to a c.a.g.o.s. measure

Now that we have constructed a normal Hilbert module of square-integrable operator-valued
functions with respect to a trace-class p.o.v.m. we can provide a gramian-isometry which
will give a meaning to integrals of operator-valued functions with respect to a c.a.g.o.s. mea-
sure. Let (X, X) be a measurable space, Ho, Go two separable Hilbert spaces, to simplify the
construction we will consider the normal Hilbert £,(Ho)-modules H := M(Q, F, Ho,P) and
normal Hilbert £;(Go)-modules G := M(Q, F, Go,P) where (Q, F,P) is a given probability
space. We restrict ourselves to this special case because it is the one which will be useful for
spectral analysis of functional processes and this avoids technicalities necessary to define the
following integrals for more general ‘H and G.
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Theorem 2.12. Let (X, X) be a measurable space and (2, F,P) a probability space. Let Ho
and Go be two separable Hilbert spaces and set H = M(Q, F, Ho,P) and G = M(Q, F, Go,P).
Let W be a c.a.g.o.s. measure on (X, X, H) with intensity operator measure vy . Then there
exists a unique gramian isometry

2 L2(X, X, 0(Ho,Go), vw) — G
such that, for all A € X and ® € Ls(Ho, Go),
I (14®) = W (A) .
Moreover, Ig}) 18 gramian-unitary from L2(X, X, 0(Ho,Go), vw) to

Spang (PW(A) : Ae X, € L,(Ho,G0))-

Definition 2.11 (Integral and density with respect to a c.a.g.0.s. measure). Under
the assumptions of Theorem 2.12, we use an integral sign to denote Ig[}’(q)) for @