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Abstract

In this paper, we review and clarify the construction of a spectral theory for weakly-
stationary processes valued in a separable Hilbert space. We emphasize the link with func-
tional analysis and provide thorough discussions on the different approaches leading to fun-
damental results on representations in the spectral domain. The clearest and most complete
way to view such representations relies on a Gramian isometry between the time domain and
the spectral domain. This theory is particularly useful for modeling functional time series.
In this context, we define time invariant operator-valued linear filters in the spectral domain
and derive results on composition and inversion of such filters. The advantage of a spectral
domain approach over a time domain approach is illustrated through the construction of a
class of functional autoregressive fractionaly integrated moving average processes which ex-
tend the celebrated class of ARFIMA processes that have been widely and successfully used
to model univariate time series. Such functional ARFIMA processes are natural counterparts
to processes defined in the time domain that were previously introduced for modeling long
range dependence in the context of functional time series.

1 Introduction

Functional data analysis has become an active field of research in the recent decades due
to technological advances which makes it possible to store data at very high frequency (and
can be considered as continuous time data i.e. functions) or very complex type of data
which could be represented by abstract mathematical structures, typically Hilbert spaces.
In this framework, we are considering data belonging in a separable Hilbert space which is
often taken as the function space L2([0, 1]) of square-integrable functions on [0, 1]. Naturally,
researchers on the topic have been interested in generalizing multivariate data analysis and
statistical tools to this framework such as inference, estimation, regression, classification or
asymptotic results (see, for example, [32], [15]). As for multivariate data, different tools are
used when the data are considered independent or not. In this paper, we are interested in
functional data with time dependence (functional stochastic processes), that is we observe a
family (Xt)t∈T of random variables where T is a set of index (mainly Z or R) where for each
t ∈ T, Xt is a random variable from a measurable space (Ω,F) to a separable Hilbert space
H0 (endowed with its Borel σ-field). In the following, we add the assumption (and give a
definition) of weak-stationarity. Examples of such processes are functional linear processes
like functional AR or, more generally, functional ARMA processes (see [5, 36, 23]). In the
univariate and multivariate (finite-dimensional) cases, spectral analysis of weakly-stationary
processes has shown many advantages (see e.g. [6]). Such an analysis has been recently
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Functional time series.
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popularized in [31, 30, 38] for the functional (infinite-dimensional) framework. In particular,
the authors define a spectral representation for weakly stationary functional processes based on
the spectral density operator. Existence of such a density is shown under strong assumptions
on the autocovariance structure of the process (see the discussion in Section 6.3).

The main goals of this paper are twofold : 1) provide a spectral representation for any
weakly stationary processes valued in a general (infinite-dimensional) separable Hilbert space,
thus relaxing the assumptions of [31, 30, 38]. 2) derive easy to use results on the composition
and inversion of shift-invariant linear filters on such processes. The first point is done following
earlier works [21, 27, 20] which generalize multivariate approaches [28, 41, 33]. As far as we
know, the second point has not been as explicitly studied before.

Let us recall the classical spectral representation of univariate weakly stationary time
series, which goes back to [24] (see also [19] for a survey). Let (Ω,F ,P) be a probability space
and denote by L2(Ω,F ,P) the space of squared integrable C-valued random variables defined
on (Ω,F ,P). This space is a separable Hilbert space when endowed with the inner product
(X,Y ) 7→ E

[
XY

]
, where Y is the conjugate of Y . Throughout the paper, we moreover let

(T,+) be a locally compact Abelian (l.c.a.) group, whose null element is denoted by 0 (see
Appendix B for details).

Definition 1.1 ((Univariate) weakly stationary process). We say that X = (Xt)t∈T is a
weakly-stationary process if the following assertions hold.

(i) For all t ∈ T, Xt ∈ L2(Ω,F ,P). We say that X is an L2 process.

(ii) There exists µ ∈ C, called the mean of X, such that for all t ∈ T, E [Xt] = µ. We
moreover say that X is centered if µ = 0.

(iii) There exists γX : T → C, called the autocovariance function of X, such that for all
t, h ∈ T, Cov (Xt+h, Xt) = γX(h).

We moreover assume that

(iv) the autocovariance function γX is continuous on T.

Without loss of meaningful generality, we will only consider centered processes in the
following. Condition (iii) simply says that the covariance of the process is shift invariant
((Xs, Xt) and (Xs+h, Xt+h) have the same covariance for all s, t, h ∈ T). The continuity
condition (iv) is equivalent to say that X is L2-continuous, and it always holds when T = Z.
As noted in [24, 19], the analysis of centered, weakly-stationary processes if closely linked to
functional analysis and, in particular, to unitary representations.

Definition 1.2 ((Continuous) Unitary representations). Let (T,+) be an l.c.a. group and

H0 a Hilbert space. A mapping U :
T 7→ Lb(H0)
t 7→ Ut

is said to be a unitary representation

(u.r.) of T on H0 if it satisfies the two following assertions.

(i) For all h ∈ T, Uh is a unitary operator from H0 to H0.

(ii) The operator U0 is the identity operator on H0, that is, U0 = IdH0 , and, for all s, t ∈ T,
Us+t = UsUt.

We say that U is a continuous unitary representation (c.u.r.) if it moreover satisfies

(iii) The mapping h 7→ Uh is continuous on T for the weak operator topology (w.o.t., that is
for all u, v ∈ H0, h 7→ 〈Uhu, v〉H0

is continuous).

Remark 1.1. Note that a mapping valued in the set of unitary operators is continuous for
the w.o.t. if and only if it is continuous for the strong operator topology (s.o.t., that is for all
u ∈ H0, h 7→ Uhu is continuous). Hence, a c.u.r. is continuous for the s.o.t. as a consequence
of (iii).

Let H be the sub-Hilbert space of centered variables in L2(Ω,F , P) and X = (Xt)t∈T ∈ HT

be a centered L2 process. Denote by

HX := Span
H
(Xt, t ∈ T)

the sub-Hilbert space generated by {Xt, t ∈ T}, where the notation Span
H
(A) means the

closure in H of Span (A). Let UXh , h ∈ T, denote the shift operators defined on HX by
UXh Xt = Xt+h for all t ∈ T. The simple remarks made above about Assertions (iii) and (iv) in
Definition 1.1 and Definition 1.2 easily yield the following characterization of weak stationarity.
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Lemma 1.1. Let X = (Xt)t∈T be a centered L2 process. Then X is weakly stationary if and
only if UX is a c.u.r. of T on HX .

Let T̂ denote the dual group of T (the continuous characters defined on T, see Appendix B),
and denote by B(T̂) its Borel σ-field. Under the above assumptions, both γX (as a C-valued
function on T) and X (as an H-valued function on T) admit spectral counterparts, the first
one in the form of a finite non-negative regular measure on (T̂,B(T̂)) and the second one in
the form of a countably additive orthogonally scattered (c.a.o.s.) measure on the same space
(see Appendix C.2). More precisely, the following theorem holds.

Theorem 1.2 (Spectral measure and spectral representation of a univariate weakly stationary
process). Let X = (Xt)t∈T be a centered weakly-stationary process with autocovariance func-
tion γX . Then there exists a unique finite, non-negative, regular measure νX on (T̂,B(T̂)),
called the spectral measure of X, such that

γX(h) =

∫

T̂

χ(h) νX(dχ), h ∈ T . (1.1)

Moreover, there exists a unique H-valued regular c.a.o.s. measure X̂ on (T̂,B(T̂)) such that
for all t ∈ T,

Xt =

∫

T̂

χ(t) X̂(dχ) , (1.2)

and the intensity measure of X̂ is νX , which means that

Cov
(

X̂(A), X̂(B)
)

= νX(A ∩B) for all A,B ∈ B(T̂). (1.3)

The identity (1.1) is known as Bochner’s theorem. The most commonly used index sets
are T = Z (discrete time) and T = R (continuous time). In the first case, T = Z and
T̂ = T := R/2πZ and the identity (1.1) is then known as Herglotz’s theorem.

Note that (1.3) can be rewritten as

E

[

X̂(A)X̂(B)
]

=

∫

1A 1B dνX ,

hence as saying that 1A 7→ X̂(A) is isometric from L2(T̂,B(T̂), νX) to H ⊂ L2(Ω,F , P). It
follows that Relation (1.2) defines the unique isometry I from L2(T̂,B(T̂), νX) to H which
maps (χ 7→ χ(t)) to Xt for all t ∈ T. Moreover, this isometry is unitary from L2(T̂,B(T̂), νX)
to HX . The former space is called the spectral domain of X and the latter its time domain
and we conclude that the time and spectral domains are isometrically isomorphic. Another
consequence of the isometric property of I is that, for all s, t ∈ T,

E
[
XsXt

]
=

∫

T̂

χ(s− t) νX(dχ) ,

where we used that, for all χ ∈ T̂, χ(s)χ(t) = χ(s − t), see [34, Eq. (1) and (6)]. This is
exactly (1.1) by setting h = s− t. In other words, the results in Theorem 1.2 lead to and are
contained in the fact that L2(T̂,B(T̂), νX) and HX are isometrically isomorphic.

Another consequence of this isometrically isomorphic representation is that we are able to
provide a simple definition of linear filtering of weakly-stationary processes in the spectral do-
main using integration tools for c.a.o.s.measures. Let α : T̂ → Cmeasurable and denote byMα

the set of finite, non-negative regular measures ν on (T̂,B(T̂)) such that α ∈ L2(T̂,B(T̂), ν)
and by Sα the set of centered weakly-stationary processes indexed by T whose spectral mea-
sure is in Mα. Then, the filter with transfer function α is defined as the mapping

Fα : Sα → HT

where for all X = (Xt)t∈T ∈ Sα,

[Fα(X)]t =

∫

T̂

χ(t)α(χ) X̂(dχ), t ∈ T . (1.4)

This means that Y = Fα(X) if and only if Y is weakly stationary and dŶ = αdX̂. In this case,
it immediately follows that HY ⊂ HX , and dνY = |α|2 dνX . The two following propositions
deal with the composition and the inversion of such linear filters. A more general version of
them will be stated in Section 3.
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Proposition 1.3 (Composition of filters). Let α and β be measurable functions from
(T̂,B(T̂)) to (C,B(C)),

1. If X ∈ Sα ∩ Sαβ, then Fα(X) ∈ Sβ and

Fβ ◦ Fα(X) = Fαβ(X)

2. If X ∈ Sα ∩ Sαβ ∩ Sβ, then Fα(X) ∈ Sβ, Fβ(X) ∈ Sα and

Fβ ◦ Fα(X) = Fα ◦ Fβ(X) = Fαβ(X)

Proposition 1.4 (Inversion of filters). Let α be a measurable function from (T̂,B(T̂)) to
(C,B(C)), X ∈ Sα and Y = Fα(X). If α > 0 νX-a.e. then HY = HX , Y ∈ S1/α and
X = F1/α(Y ).

The advantages of describing objects in the spectral domain rather than in the time domain
are numerous. Obviously, from a general point of view, a spectral measure is a simpler object
than an autocovariance function, and the space L2(T̂,B(T̂), νX) is easier to describe than HX .
Similarly, shift-invariant linear filtering is much easier to describe in the spectral domain than
in the time domain, in the same way as convolutions of functions of time become pointwise
products through the Fourier transform. Composition and inversion of filters can be easily
treated as just explained. To conclude this reminder, let us briefly sketch the most direct
way to prove Theorem 1.2, following the approach described in [24, 19]. A complete proof is
provided in the more general case of Hilbert valued time series, see Theorem 3.2 and its proof
in Section 5.2.

Proof of Theorem 1.2 (sketch). As we explained previously, the essential point is to build
the unitary mapping between L2(T̂,B(T̂), νX) and HX . To this end, one can rely on the
unitary representation provided by the shift operators UXh , h ∈ T, derived in Lemma 1.1.
Then Stone’s theorem gives that there exists a regular measure ξX on (T̂,B(T̂)), valued in
the space of orthogonal projections on HX , such that for all h ∈ T,

UXh =

∫

T̂

χ(h) ξX(dχ) . (1.5)

The mapping

X̂ :
B(T̂) → H
A 7→ ξX(A)X0

is then a regular c.a.o.s. measure on (T̂,B(T̂),H) and from (1.5) we get

Xt = UXt X0 =

∫

T̂

χ(t) ξX(dχ)X0 =

∫

T̂

χ(t) X̂(dχ), t ∈ T ,

which is exactly (1.2). Then, by properties of c.a.o.s. measures this relation defines an isometry
and (1.1) comes as a consequence of this result taking for νX the intensity measure of X̂ .

It is also common to find a proof of Theorem 1.2 where (1.1) is proved first and is used
to prove (1.2) (see e.g. [6]). This is a consequence of the close relationship between the
functional analysis tools used in the proofs and will be discussed in Section 6.1.

Having recalled the classical univariate case, we can now give more details about the
goals of this paper. In the functional case, we consider the space L2(Ω,F ,H0,P) of random
variables X defined on a probability space (Ω,F ,P) and valued in a separable Hilbert space

H0 such that E
[

‖X‖2H0

]

< +∞. In this setting, Definition 1.1 is extended as follows.

Definition 1.3 (Functional weakly stationary process). Let (Ω,F , P) be a probability space,
H0 a separable Hilbert space and (T,+) an l.c.a. group. Then a sequence X := (Xt)t∈T is
said to be an H0-valued, weakly-stationary process if

(i) For all t ∈ T, Xt ∈ L2(Ω,F ,H0,P).

(ii) For all t ∈ T, E [Xt] = E [X0]. We say that X is centered if E [X0] = 0.

(iii) For all t, h ∈ T, Cov (Xt+h, Xt) = Cov (Xh, X0).

(iv) The autocovariance operator function ΓX : h 7→ Cov (Xh, X0) is weakly continuous i.e.
for all Φ ∈ Lb(H0), h 7→ Tr(ΦΓX (h)) is continuous.
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Given a separable Hilbert space H0 and a centered weakly stationary H0-valued process
X := (Xt)t∈T, we want to derive

R1 A spectral version of the covariance structure of X similar to (1.1) :

Cov (Xs, Xt) =

∫

T̂

χ(s− t) νX(dχ), s, t ∈ T , (1.6)

where νX will be called the spectral operator measure of X.

R2 A spectral representation of X similar to (1.2) :

Xt =

∫

T̂

χ(t) X̂(dχ), P-a.e. t ∈ T , (1.7)

as well as a description of the isomorphic relationship that this mapping induces.

R3 A practical definition of shift-invariant linear filters, with results for composition and
inversion in the spectral domain.

In [19], the univariate and functional cases are described in a unified setting, by directly
considering (Xt)t∈Z as a H-valued sequence, where H = L2(Ω,F ,P) in the univariate case
and H = L2(Ω,F ,H0,P) in the functional case. However, in the second case, as explained
later, H should be seen as a normal Hilbert module rather than just a Hilbert space and this
fact has consequences on the previous points, as suggested in the following remarks.

Remark 1.2. 1) About R1 : Firstly, since the left hand side term of (1.6) is an operator
on H0 and for all χ ∈ T̂ and h ∈ T, χ(h) ∈ C, the measure νX must be operator-
valued. Since in the univariate case νX is a non-negative measure, we expect it to verify
an analogous property for the functional case that is to be a Positive Operator Valued
Measure (p.o.v.m.).

2) About R2 : In the univariate case, X̂ is a measure valued in L2(Ω,F ,P) and, as dis-
cussed above, an advantage of the spectral representation (which is the basis of the general
definition of filtering) is to describe linear transformations of the Xt’s in the time domain
HX by integrating functions in the spectral domain L2(T̂,B(T̂), νX) with respect to X̂.
In the functional case, we naturally expect X̂ to be a measure valued in L2(Ω,F ,H0,P)
and the spectral domain to be an L2 space related to the spectral operator measure.

3) About R3 : In (1.4), one can interpret the filter Fα in the spectral domain as a multipli-
cation of X̂ by a scalar α(χ) depending on the frequency χ. Similarly, in the functional
case we need to investigate how to apply an operator Φ(χ), say from H0 to G0 for all fre-
quency χ, inside the integral in the right-hand side of (1.7). Then two crucial questions
arise:

a) In which operator space should be valued the Φ(χ) ?

b) Which structure can be associated to the mapping Φ 7→
∫

T̂
ΦdX̂ ?

Remark 1.3. In Definition 1.3, one could have chosen a weaker notion of continuity for the
autocovariance operator function, such as continuity for the w.o.t. The necessity of weak-
continuity to get R1, R2, R3 will be made clearer in Section 3 and, in Section 6.2, we
will see that, for autocovariance operator functions, weak-continuity is actually equivalent to
continuity for the w.o.t.

The paper is organized as follows. In Section 2 we gather preliminary definitions and
results needed all along the paper. In Section 3 we derive precise statements on the spectral
representation for functional processes. Then, two applications of these results will be provided
in Section 4 to illustrate the advantage of a spectral domain approach over a time domain
approach for extending popular univariate time series to the functional case. Proofs are
postponed in Section 5, additional comments (including discussion on recent approaches) are
made in Section 6 and results on functional analysis and l.c.a. groups are gathered in the
appendices.

5



2 Preliminaries

2.1 Definitions and notation for operator spaces, measurability

and Lp spaces

Here we introduce classical definitions for operators on Hilbert spaces (see e.g. [17] for details)
and integrals of functions with respect to a measure in the case where the function or the
measure is vector-valued (see e.g. [13, Chapter 1] for a nice overview and [12], [11] for a
thorough study). This section also contains most of the notation used throughout the paper.

Let H0 and G0 be two separable Hilbert spaces. The inner product and norm, e.g. associ-
ated to H0, are denoted by 〈·, ·〉H0

and ‖·‖H0
. Let O(H0,G0) denote the set of linear operators

from H0 to G0 whose domain (denoted by D(Φ)) is a linear subspace of H0, Lb(H0,G0) the
set of all H0 → G0 continuous operators. We also denote by K(H0,G0) the set of all compact
operators in Lb(H0,G0) and for all p ∈ [1,∞), Sp(H0,G0) the Schatten-p class. The space
Lb(H0, G0) and the Schatten-p classes are Banach spaces when respectively endowed with the
norms

‖Φ‖ := sup
‖x‖H0

≤1

‖Φx‖G0
and ‖Φ‖p :=




∑

σ∈sing(Φ)

σp





1/p

where sing(Φ) is the set of singular values of Φ. Following these definitions, we have, for all
1 ≤ p ≤ p′

Sp(H0,G0) ⊂ Sp′(H0,G0) ⊂ K(H0,G0) ⊂ Lb(H0,G0) ⊂ O(H0,G0). (2.1)

The space K(H0, G0) is endowed with the operator norm and the first three inclusions in (2.1)
are continuous embeddings. If G0 = H0, we omit the G0 in the notations above. As a Banach
space, Lb(H0,G0) can be endowed with its norm topology but other common topologies are
useful. The two most common ones are the strong and weak topologies (respectively denoted
by s.o.t. and w.o.t.). We say that a sequence (Φn)n∈N ∈ Lb(H0, G0)

N converges to an operator
Φ ∈ Lb(H0,G0) for the s.o.t. if for all x ∈ H0, limn→+∞ Φnx = Φx in G0 and for the w.o.t. if
for all x ∈ H0, for all y ∈ G0, limn→+∞ 〈Φnx, y〉G0

= 〈Φx, y〉G0
.

An operator Φ ∈ Lb(H0), is said to be positive if for all x ∈ H0, 〈Φx, x〉H0
≥ 0 and we

will use the notations L+
b (H0), K

+(H0), S
+
p (H0) for positive, positive compact and positive

Schatten-p operators. If Φ ∈ L+
b (H0) then there exists a unique operator of L+

b (H0), denoted

by Φ1/2, which satisfies Φ =
(

Φ1/2
)2

. If Φ is, in addition, compact, then so is Φ1/2. For

any Φ ∈ Lb(H0,G0) we denote its adjoint by ΦH (which is compact if Φ is compact). An
operator of Lb(H0) is said to be auto-adjoint is it is equal to its adjoint and it is known
that any positive operators is auto-adjoint. If Φ ∈ Lb(H0,G0), then ΦHΦ ∈ L+

b (H0) and
ΦΦH ∈ L+

b (G0) (which are compact if Φ is compact). We define the absolute value of Φ as

the operator |Φ| :=
(
ΦHΦ

)1/2
∈ L+

b (H0). Moreover, if Φ ∈ S1(H0), Tr(Φ) will denote its
trace, if Φ ∈ S+

1 (H0), it is known that Tr(Φ) = ‖Φ‖1. Schatten-1 and Schatten-2 operators
are usually referred to as trace-class and Hilbert-Schmidt operators respectively.

For functions defined on a measurable space (X,X ) and valued in a Banach space (E, ‖·‖E),
measurability is defined as follows. A function f : X 7→ E is said to be measurable if it is
the pointwise limit of a sequence of E-valued simple functions, i.e. functions belonging in
the space Span (1Ax : A ∈ X , x ∈ E). When E is separable, this notion is equivalent to the
usual Borel-measurability, i.e. to having f−1(A) ∈ X for all A ∈ B(E), the Borel σ-field on
E. We denote by F(X,X , E) (resp. Fb(X,X , E)) the space of measurable (resp. bounded
measurable) functions from X to E. For a non-negative measure µ and p ∈ [1,∞], we denote
by Lp(X,X , E, µ) the space of functions f ∈ F(X,X , E) such that

∫
‖f‖pE dµ (or µ- essup ‖f‖E

for p = ∞) is finite and by Lp(X,X , E, µ) its quotient space with respect to µ-a.e. equality,
or, equivalently, with respect to the subspace of functions f such that f = 0 µ-a.e., which we
write

Lp(X,X , E, µ) = Lp(X,X , E, µ)
/

{f : f = 0 µ-a.e.} .

The corresponding norms are denoted by ‖f‖Lp(X,X ,E,µ). For p ∈ [1,∞),
the space of simple measurable functions with finite-measure support, i.e.
Span (1Ax : A ∈ X , µ(A) <∞, x ∈ E), is dense in Lp(X,X , E, µ). For f ∈
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Span (1Ax : A ∈ X , µ(A) <∞, x ∈ E) with range {α1, · · · , αn}, the integral (often
referred to as the Bochner integral) of the E-valued function f with respect to µ is defined by

∫

f dµ =
n∑

k=1

αk µ
(
f−1({αk})

)
∈ E . (2.2)

This integral is extended to L1(X,X , E, µ) by continuity (and thus also to Lp if µ is finite).
An E-valued measure is a mapping µ : X → E such that for any sequence (An)n∈N ∈ X N

of disjoint sets then µ
(⋃

n∈N
An
)
=
∑

n∈N
µ(An) where the series converges in E, that is

lim
N→+∞

∥
∥
∥
∥
∥
µ

(
⋃

n∈N

An

)

−
N∑

n=0

µ(An)

∥
∥
∥
∥
∥
E

= 0 .

We denote by M(X,X , E) the set of E-valued measures. For such a measure µ, the mapping

‖µ‖E : A 7→ sup

{
∑

i∈N

‖µ(Ai)‖E : (Ai)i∈N ∈ X N is a countable partition of A

}

defines a non-negative measure on (X,X ) called the variation measure of µ. The notation
‖µ‖E will be adapted to the notation chosen for the norm in E (for example if µ is a complex
measure we will use |µ| and if µ is valued in a Schatten-p space we will use ‖µ‖p). The variation
of a complex-valued measure is always finite and the variation of a non-negative measure is
itself. We will denote by Mb(X,X , E) the set of E-valued measures with finite variation. It is
a Banach space when endowed with the norm ‖µ‖TV,E = ‖µ‖E(X). If µ ∈ Mb(X,X , E), then
for a simple function f : X 7→ C with range {α1, . . . , αn}, the integral of f with respect to µ
is defined by the same formula as in (2.2) (but this time the αk’s are scalar and the µ’s are
E-valued). This definition is extended to L1(X,X , ‖µ‖E) by continuity.

When X is a locally-compact topological space, a vector measure µ ∈ M(X,X , E) is said
to be regular if for all A ∈ X , for all ǫ > 0, there exist a compact set K ∈ X and an open set
U ∈ X with K ⊂ A ⊂ U such that for all B ∈ X satisfying B ⊂ U \ K, ‖µ(B)‖E ≤ ǫ. We
denote by Mr(X,X , E) the linear space of such measures. The notion of regularity is extended
to non-finite, non-negative measures by restricting A to be such that µ(A) < +∞. From the
straightforward inequality ‖µ(A)‖E ≤ ‖µ‖E(A) for all A ∈ X , we get that if µ ∈ Mb(X,X , E)
has a regular variation, then µ is regular. The converse is not always true but holds for
complex measures. An interesting result (see [20, Remark 3.6.2]) is that an E-valued measure
ν is regular if and only if for all φ ∈ E∗, φ ◦ ν is a regular complex measure.

Finally, we recall another notion of measurability for functions valued in the operator
spaces Lb(H0,G0) or O(H0,G0). Namely, a function Φ : X → Lb(H0,G0) is said to be simply
measurable if for all x ∈ H0, t 7→ Φ(t)x is measurable as a G0-valued function. The set of such
functions is denoted by Fs (X,X ,H0,G0). For a function Φ : X → O(H0,G0), adapting [27],
[20, Section 3.4], we will say that Φ is O-measurable if it satisfies the two following conditions.

(i) For all x ∈ H0, {t ∈ X : x ∈ D(Φ(t))} ∈ X .

(ii) There exist a sequence (Φn)n∈N valued in Fs (X,X ,H0,G0) such that for all t ∈ X and
x ∈ D(Φ(t)), Φn(t)x converges to Φ(t)x in G0 as n→ ∞.

We denote by FO (X,X ,H0,G0) the space of such functions Φ. Note that for all Banach space
E which is continuously embedded in Lb(H0,G0) (e.g. Sp(H0,G0) for p ≥ 1 or K(H0,G0)), the
following inclusions hold

F(X,X , E) ⊂ Fs (X,X ,H0,G0) ⊂ FO (X,X ,H0,G0) . (2.3)

In this paper we will mainly take E as the set of trace-class, Hilbert-Schmidt or compact
H0 → G0 operators for which measurability and simple measurability are equivalent as stated
in the following lemma.

Lemma 2.1. Let E = K(H0,G0) or Sp(H0,G0) where p ∈ {1, 2} and H0, G0 are separable
Hilbert spaces. Then a function Φ : X → E is measurable if and only if it is simply measurable.

Proof. See Section 5.1.

We also need to consider operator-valued measures for our study, and more particularly
p.o.v.m.’s which are studied in the next section.
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2.2 Positive Operator Valued Measures

The notion of Positive Operator Valued Measures is widely used in Quantum Mechanics and
a good study of such measures can be found in [4]. Here we provide useful definitions and
results for our purpose.

Definition 2.1 (Positive Operator Valued Measures). Let (X,X ) be a measurable space and
H0 be a separable Hilbert space. A Positive Operator Valued Measure (p.o.v.m.) on (X,X ,H0)
is a mapping ν : X → L+

b (H0) such that for all sequence of disjoint sets (An)n∈N ∈ X N,

ν

(
⋃

n∈N

An

)

=
∑

n∈N

ν(An) (2.4)

where the series converges in L+
b (H0) for the s.o.t.

Due to properties of positive operators, convergence in the w.o.t. would be sufficient in
Definition 2.1, see [4, Proposition 1]. Note that, with this definition, a p.o.v.m. is not a
vector-valued measure in the sense of Section 2.1 since we do not suppose that the series
in (2.4) converges in operator norm. However, this definition is sufficient to derive a useful
characterization which links a p.o.v.m. to a sesquilinear, hermitian, positive semi-definite,
continuous mapping valued in M(X,X ).

Definition 2.2. Let (X,X ) be a measurable space and H0 be a separable Hilbert space. A
mapping φ : H2

0 → M(X,X ) is said to be sesquilinear, hermitian, positive semi-definite,
continuous if for all A ∈ X , the mapping (x, y) 7→ φ(x, y)(A) is sesquilinear, hermitian,
positive semi-definite, continuous.

The characterization of p.o.v.m.’s then reads as follows (see [4, Theorem 2]).

Proposition 2.2. Let (X,X ) be a measurable space and H0 be a separable Hilbert space, then
the following assertions hold.

(i) For all p.o.v.m. ν on (X,X ,H0) and all x, y ∈ H0, the mapping yHνx : A 7→ 〈ν(A)x, y〉H0

is a complex-valued measure on (X,X ). Moreover, the mapping (x, y) 7→ yHνx is
sesquilinear, hermitian, positive semi-definite, continuous.

(ii) Conversely, if φ : H2
0 → M(X,X ) is a sesquilinear, hermitian, positive semi-definite

bounded mapping, then there exists a unique p.o.v.m. ν on (X,X ,H0) such that for all
x, y ∈ H0, φ(x, y) = yHνx.

This characterization can be used to construct integrals of bounded complex-valued func-
tions with respect to p.o.v.m.’s and we refer to [4, Section 5] for details. When X is a
locally-compact topological space, this also gives a simple notion of regularity for p.o.v.m.’s,
namely a p.o.v.m. ν on (X,X ,H0) is said to be regular if for all x, y ∈ H0, the measure
yHνx is a regular complex measure. We will say that a p.o.v.m. on (X,X ,H0) is trace-class
if it is S1(H0)-valued. The following lemma states that trace-class p.o.v.m.’s can be seen as
vector-valued measures.

Lemma 2.3. A p.o.v.m. ν on (X,X ,H0) is trace-class if and only if ν(X) ∈ S1(H0). In this
case, ν is a S1(H0)-valued measure (in the sense that (2.4) holds in ‖·‖1-norm) with finite
variation measure ‖ν‖1 : A 7→ ‖ν(A)‖1. Moreover, regularity of ν as a p.o.v.m. is equivalent
to regularity of ν as a S1(H0)-valued measure which is itself equivalent to regularity of ‖ν‖1.

Proof. See Section 5.1.

Thanks to this result, integration of complex-valued functions with respect to a trace-class
p.o.v.m. is possible using the theory of vector-valued measures with finite variation recalled
in Section 2.1. Finally, the following Radon-Nikodym property holds.

Theorem 2.4. Let (X,X ) be a measure space, H0 a separable Hilbert space and ν a trace-class
p.o.v.m. on (X,X ,H0). Let µ be a finite non-negative measure on (X,X ). Then ‖ν‖1 ≪ µ (i.e.
for all A ∈ X , µ(A) = 0 ⇒ ‖ν‖1(A) = 0), if and only if there exists g ∈ L1(X,X ,S1(H0), µ)
such that dν = g dµ, i.e. for all A ∈ X ,

ν(A) =

∫

A

g dµ . (2.5)

In this case, g is unique and is called the density of ν with respect to µ and denoted as g = dν
dµ

.
Moreover,
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(a) For µ-almost every t ∈ X, g(t) ∈ S+
1 (H0).

(b) The density of ‖ν‖1 with respect to µ is ‖g‖1. In particular, g = dν
d‖ν‖1

‖g‖1.

(c) If ‖ν‖1 ≤ µ, then ‖g‖1 ≤ 1 µ-a.e., and if µ = ‖ν‖1, then ‖g‖1 = 1 µ-a.e.

2.3 Normal Hilbert modules

Modules extend the notion of vector spaces to the case where scalar multiplication is replaced
by a multiplicative operation with elements of a ring. When the ring is a C∗-algebra, it
is possible to endow a module with a structure similar to a Hilbert space (see [22]). In
the following we consider the C∗-algebra Lb(H0) where H0 is a separable Hilbert space as
presented in [20].

Definition 2.3 (Lb(H0)-module). Let H0 be a separable Hilbert space. A Lb(H0)-module is a
commutative group (H,+) such that there exists a multiplicative operation (called the module
action)

Lb(H0)×H → H
(Φ, x) 7→ Φ • x

which satisfies the usual distributive properties : for all Φ,Ψ ∈ Lb(H0), and x, y ∈ H,

Φ • (x+ y) = Φ • x+ Φ • y,

(Φ + Ψ) • x = Φ • x+Ψ • x,

(ΦΨ) • x = Φ • (Ψ • x),

IdH0 • x = x.

Definition 2.4 ((Normal) pre-Hilbert Lb(H0)-module). Let H0 be a separable Hilbert space.
A pre-Hilbert Lb(H0)-module H is a Lb(H0)-module endowed with a mapping [·, ·]H : H×H →
Lb(H0) satisfying for all x, y, z ∈ H, and Φ ∈ Lb(H0),

(i) [x, x]H ∈ L+
b (H0),

(ii) [x, x]H = 0 if and only if x = 0,

(iii) [x+ Φ • y, z]H = [x, z]H + Φ[y, z]H,

(iv) [y, x]H = [x, y]HH.

If moreover, for all x, y ∈ H, [x, y]H ∈ S1(H0), we say that [·, ·]H is a gramian and that H is
a normal pre-Hilbert Lb(H0)-module.

The mapping [·, ·]H generalizes the notion of scalar products for Lb(H0)-modules and is
often called a Lb(H0)-valued scalar product. In the following, we only consider normal pre-
Hilbert Lb(H0)-modules even if some notions can be defined when [·, ·]H is not a gramian.
Note that a Lb(H0)-module is a vector space if we define the scalar-vector multiplication
by αx = (αIdH0) • x for all α ∈ C, x ∈ H and that, in the particular case where [·, ·] is
a gramian, then 〈·, ·〉 := Tr[·, ·] is a scalar product. Hence a normal pre-Hilbert Lb(H0)-

module is also a pre-Hilbert space. If it is complete (for the norm ‖x‖H =
∥
∥[x, x]H

∥
∥1/2

1
),

then it is called a normal Hilbert Lb(H0)-module. For normal Hilbert Lb(H0)-modules, the
notions of sub-modules and Lb(H0)-linear span as well as Lb(H0)-linear operators, gramian-
isometries, gramian-unitary operators, gramian-orthogonality, gramian-projections come as
natural extensions of their vector space counterparts. For completeness, we provide here the
necessary definitions and refer to chapter II of [20] for a complete study.

Definition 2.5 (Submodules and Lb(H0)-linear operators). Let H0 be a separable Hilbert
space and H, G two Lb(H0)-modules. Then a subset of H is called a submodule if it is a
Lb(H0)-module. An operator T ∈ Lb(H,G) is said to be Lb(H0)-linear if for all Φ ∈ Lb(H0)
and x ∈ H, T (Φ • x) = Φ • (Tx).

Definition 2.6 (Gramian-isometries). Let H0 be a separable Hilbert space, H, G be two pre-
Hilbert Lb(H0)-modules and U : H → G a Lb(H0)-linear operator. Then U is said to be

(i) a gramian-isometry (or gramian-isometric) if for all x, y ∈ H, [Ux,Uy]G = [x, y]H,

(ii) gramian-unitary if it is a bijective gramian-isometry.
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The space H is said to be gramian-isometrically-embedded in G (denoted H ⊆
∼ G) if there

exists a gramian-isometry from H to G. The spaces H and G are said to be gramian-isomorphic
(denoted H ∼= G) if there exists a gramian-unitary operator from H to G.

Definition 2.7 ((Continuous) gramian unitary representations). Let (T,+) be an l.c.a. group,
H0 a Hilbert space and H a normal Hilbert Lb(H0)-module with gramian [·, ·]H. A mapping

U :
T 7→ Lb(H)
t 7→ Ut

is said to be a gramian unitary representation (g.u.r.) of T on H if it

is an u.r. of T on H such that for all h ∈ T, Uh is gramian-unitary. A g.u.r. is continuous,
then called a c.g.u.r., if it is continuous as an u.r.

For later reference we state a simple extension result for gramian isometric operators.

Proposition 2.5 (Gramian-isometric extension). Let H be a normal pre-Hilbert Lb(H0)-
module, G a normal Hilbert Lb(H0)-module. Let (vj)j∈J and (wj)j∈J be two sets of vectors
in H and G respectively with J an arbitrary index set. If for all i, j ∈ J, [vi, vj ]H = [wi, wj ]G
then there exists a unique gramian-isometry

S : Span
H
(Φ • vj ,Φ ∈ Lb(H0), j ∈ J) → G

such that for all j ∈ J, Svj = wj . If moreover H is complete then

S
(

Span
H
(Φ • vj ,Φ ∈ Lb(H0), j ∈ J)

)

= Span
G
(Φ • wj ,Φ ∈ Lb(H0), j ∈ J)

We can now state an important result, which generalizes Stone’s theorem to c.g.u.r.’s. We
refer to [20, Proposition 2.5.4] for a proof and Appendix C.1 for the definition of gramian-
projection valued measures.

Theorem 2.6 (Stone’s theorem for modules). Let (T,+) be an l.c.a. group, H0 a Hilbert

space, H a normal Hilbert Lb(H0)-module with gramian [·, ·]H and U :
T 7→ Lb(H)
t 7→ Ut

a

c.g.u.r of T on H. Then there exists a unique regular gramian-projection valued measure ξ on
(T̂,B(T̂)) such that

Uh =

∫

T̂

χ(h) ξ(dχ), h ∈ T . (2.6)

We conclude this section with some examples of normal Hilbert Lb(H0)-modules.

Example 2.1. Let H0,G0 be separable Hilbert spaces.

• H0 is itself a normal Hilbert Lb(H0)-module with module action Φ•x = Φx and gramian
[x, y]H0

= x⊗ y where (x⊗ y)u = 〈u, y〉H0
x for all u ∈ H0.

• S2(H0,G0) is a normal Hilbert Lb(G0)-module with module action Φ • Ψ = ΦΨ and
gramian [Ψ,Θ]S2(H0,G0)

= ΨΘH.

• Let (X,X ) be a measurable space and µ a finite non-negative measure on (X,X ). Then
for all normal Hilbert Lb(H0)-module H, the space L2(X,X ,H, µ) is a normal Lb(H0)-
Hilbert module for the module action (Φ•f)(·) = Φ•[f(·)] and gramian [f, g]L2(X,X ,H,µ) =∫
[f, g]H dµ.

Let (Ω,F , P) be a probability space, then, combining the first and last examples, we get
that the space M(Ω,F ,H0,P) of centered variables in L2(Ω,F ,H0,P) is a normal Hilbert
Lb(H0)-module when endowed with the module action and gramian defined, for all Φ ∈
Lb(H0), and X,Y ∈ M(Ω,F ,H0,P), by

Φ •X = ΦX and [X,Y ]M(Ω,F,H0,P)
= Cov (X,Y ) = E [X ⊗ Y ] .

In the univariate case, the measure X̂ obtained by Theorem 1.2 is valued in the space of
centered L2(Ω,F , P) variables and is orthogonally scattered. In the functional case, we expect
it to be in M(Ω,F ,H0,P). Since the latter is a normal Hilbert Lb(H0)-module, it is natural
to extend the notion of c.a.o.s. measures for such spaces and to expect X̂ to satisfy this new
property. As explained earlier, the extension of orthogonality in a normal Hilbert Lb(H0)-
module is gramian-orthogonality leading naturally to the notion of countably additive gramian-
orthogonally scattered measures that we now introduce.
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2.4 Countably additive gramian orthogonally scattered mea-

sures

This section aims at presenting the generalization of c.a.o.s. measures to normal Hilbert
modules. Let H0 be a separable Hilbert space, H a normal Hilbert Lb(H0)-module and
(X,X ) a measurable space. Let ν be a trace-class p.o.v.m. on (X,X ,H0). A c.a.g.o.s. measure
W on (X,X ,H) with intensity operator measure ν is a mapping W : X → H such that, for
all A,B ∈ X , [W (A),W (B)]H = ν(A ∩ B). In fact, the intensity operator measure ν can be
deduced from W as in the following definition.

Definition 2.8 (c.a.g.o.s. measure). Let H0 be a separable Hilbert space, H a normal Hilbert
Lb(H0)-module and (X,X ) a measurable space. We say that W : X → H is a countably
additive gramian-orthogonally scattered measure (c.a.g.o.s. measure) on (X,X ,H) if it is a
H-valued measure on (X,X ) such that for all A,B ∈ X ,

A ∩ B = ∅ ⇒ [W (A),W (B)]H = 0 .

In this case, the mapping
νW : A 7→ [W (A),W (A)]H

is a trace-class p.o.v.m. on (X,X ,H0) called the intensity operator measure of W and we have
that, for all A,B ∈ X ,

νW (A ∩ B) = [W (A),W (B)]H .

In is straightforward to see that a c.a.g.o.s. measure W is a c.a.o.s. measure with intensity
measure ‖νW ‖1 which, in particular implies that, when X is a locally-compact topological
space, W is regular if and only if ‖νW ‖1 is regular. By the known integration theory for
c.a.o.s. measures (see Appendix C.2), it is possible to integrate scalar-valued functions of
L2(X,X , ‖νW ‖1) with respect toW , but this does not make entire use of the module structure
of H and we would like to define an integral satisfying the natural property that for all
Φ ∈ Lb(H0),

∫
Φ1A dW = ΦW (A). More generally, as explained in Remark 1.2, we want to

define integrals of operator-valued functions with respect to a c.a.g.o.s. measure. By analogy
to the case of c.a.o.s. measures, we therefore need to define a L2-kind of space to integrate
operator-valued functions with respect to a p.o.v.m. In the next section we present and discuss
the construction of such a space and of integration of operator-valued functions with respect
to a c.a.g.o.s. measure.

2.5 Square-integrable bounded-operator-valued functions with

respect to a trace-class p.o.v.m.

Let H0 be a separable Hilbert space, (X,X ) a measurable space and ν a trace-class p.o.v.m. on
(X,X ,H0). Let G0 be another separable Hilbert space and Φ,Ψ ∈ Lb(H0, G0), then it is easy
to check that A 7→ Φν(A)ΨH defines a S1(H0)-valued measure. By linearity, such a definition
can be extended to the case where Φ, Ψ are simple functions from X to Lb(H0, G0) and it is
then natural to want to provide a meaning to an integral of the type

∫

X
Φ(t)ν(dt)Ψ(t)H where

Φ,Ψ ∈ F(X,X ,Lb(H0,G0)) or, more generally, in Fs (X,X ,H0,G0). Since ν has a density with
respect to any measure µ dominating ‖ν‖1, the construction of such integrals is very similar
to the work done in [38] but is more general as discussed in Section 6.3. This approach is a
natural extension of the work done in finite dimension in [33] and is followed in [20, 27].

Definition 2.9. Let H0,G0 be separable Hilbert spaces, (X,X ) a measurable space, ν a trace-
class p.o.v.m. on (X,X ,H0) with density f = dν

d‖ν‖1
. Let Φ,Ψ ∈ Fs (X,X ,H0,G0), then the

pair (Φ,Ψ) is said to be ν-integrable if ΦfΨH ∈ L1(X,X ,S1(G0), ‖ν‖1) and in this case we
define ∫

ΦdνΨH :=

∫

ΦfΨH d‖ν‖1 ∈ S1(G0) . (2.7)

If (Φ,Φ) is ν-integrable we say that Φ is square ν-integrable and denote by
L

2(X,X ,Lb(H0,G0), ν) the space of square ν-integrable functions.

To check that Φ is square ν-integrable, we can replace ‖ν‖1 by an arbitrary dominating
measure µ (often taken as Lebesgue’s measure, as in [38]), as stated in the following result.
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Proposition 2.7. Let H0,G0 be separable Hilbert spaces, (X,X ) a measurable space and ν
a trace-class p.o.v.m. on (X,X ,H0). Let µ be a finite non-negative measure on (X,X ) which
dominates ‖ν‖1 and g = dν

dµ
. Let Φ,Ψ ∈ Fs (X,X ,H0,G0). Then (Φ,Ψ) is ν-integrable if and

only if ΦgΨH ∈ L1(X,X ,S1(G0), µ), and, in this case, we have

∫

ΦdνΨH =

∫

ΦgΨH dµ . (2.8)

Moreover, we have

Φ ∈ L
2(X,X ,Lb(H0,G0), ν) ⇔ Φg1/2 ∈ L2(X,X ,S2(H0,G0), µ) , (2.9)

and, if Φ,Ψ ∈ L
2(X,X ,Lb(H0,G0), ν), then (Φ,Ψ) is ν-integrable and

∫

ΦdνΨH =

∫

(Φg1/2)(Ψg1/2)H dµ. (2.10)

The equivalence in (2.9) says that L
2(X,X ,Lb(H0,G0), ν) is the preimage of

L2(X,X ,S2(H0,G0), µ) by the mapping

Fs (X,X ,Lb(H0,G0)) → F(X,X ,S2(H0,G0))

Φ 7→ Φg1/2

and (2.10) can be rewritten as

∫

ΦdνΨH =
[

Φg1/2,Ψg1/2
]

L2(X,X ,S2(H0,G0),µ)

where [·, ·]L2(X,X ,S2(H0,G0),µ)
is the pseudo-gramian (in the sense that is satisfies all the con-

ditions of Definition 2.4 except (ii)) defined on L2(X,X ,S2(H0,G0), µ) in Example 2.1. This
pseudo-gramian becomes a gramian on L2(X,X ,S2(H0,G0), µ) which we recall is obtained by
quotienting L2(X,X ,S2(H0,G0), µ) with the µ-a.e. equality and this new space is a normal
Hilbert Lb(G0)-module. This leads easily to the following proposition.

Proposition 2.8. Let H0,G0 be separable Hilbert spaces, (X,X ) a measurable space, ν a
trace-class p.o.v.m. on (X,X ,H0) and f = dν

d‖ν‖1
. Then L

2(X,X ,Lb(H0, G0), ν) is a left

Lb(G0)-module with module action

Θ • Φ : t 7→ ΘΦ(t), Θ ∈ Lb(G0),Φ ∈ L
2(X,X ,Lb(H0,G0), ν)

and the relation

[Φ,Ψ]
L2(X,X ,Lb(H0,G0),ν)

:=

∫

ΦdνΨH Φ,Ψ ∈ L
2(X,X ,Lb(H0,G0), ν) (2.11)

is a pseudo-gramian on L
2(X,X ,Lb(H0,G0), ν) and a gramian on the quotient space

L
2(X,X ,Lb(H0,G0), ν) := L

2(X,X ,Lb(H0,G0), ν)
/
{

Φ : Φf1/2 = 0 ‖ν‖1-a.e.
}

.

Moreover
(

L
2(X,X ,Lb(H0, G0), ν), [·, ·]L2(X,X ,Lb(H0,G0),ν)

)

is a normal pre-Hilbert Lb(H0)-

module and, for any finite non-negative measure µ dominating ‖ν‖1 with density g = dν
dµ

,

{

Φ : Φg1/2 = 0 µ-a.e.
}

=
{

Φ : Φf1/2 = 0 ‖ν‖1-a.e.
}

, (2.12)

and the mapping Φ 7→ Φg1/2 is a gramian-isometry from L
2(X,X ,Lb(H0,G0), ν) to

L2(X,X ,S2(H0,G0), µ).

In the multivariate case (i.e. when H0 and G0 have finite dimensions) the completeness
of L2(X,X ,Lb(H0,G0), ν) is proven in [33]. However completeness is not guaranteed in the
infinite dimensional case, see [27], where the authors refer to [25] for a counter-example. In
Section 6.4, we complete this line of thoughts by providing a necessary and sufficient condition
for the completeness of L

2(X,X ,Lb(H0,G0), ν) in the general case. Since the integral of
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operator-valued functions with respect to a c.a.g.o.s. measure is expected to be a gramian-
unitary operator, it must be defined on a complete space. A first option is then to complete
the space L

2(X,X ,Lb(H0,G0), ν) by taking the equivalence classes of Cauchy sequences such
that two such sequences (Un) and (Vn) are in the same class if lim(Un−Vn) = 0. However, the
completed space is very abstract and hard to describe in an intuitive way. More concretely the
uncompleteness of L2(X,X ,Lb(H0,G0), ν) comes from the fact that we restrict ourselves to
Lb(H0, G0)-valued functions. A more concrete complete extension of L2(X,X ,Lb(H0,G0), ν),
as noticed in [20, Section 3.4] and [27], simply consists in extending this space to include well
chosen O(H0,G0)-valued functions. We summarize their construction in the following section.

2.6 Square-integrable operator-valued functions with respect

to a trace-class p.o.v.m.

Definition 2.10. Let H0, G0 be two separable Hilbert spaces, ν be a trace-class p.o.v.m. on
(X,X ,H0) and f = dν

d‖ν‖1
. Let Φ,Ψ ∈ FO (X,X ,H0,G0), then the pair (Φ,Ψ) is said to be

ν-integrable if the three following assertions hold.

(i) Im(f1/2) ⊂ D(Φ) and Im(f1/2) ⊂ D(Ψ) ‖ν‖1-a.e.

(ii) Φf1/2 and Ψf1/2 are S2(H0,G0)-valued.

(iii) (Φf1/2)(Ψf1/2)H ∈ L1(X,X ,S1(G0), ‖ν‖1).

In this is the case, we define for all A ∈ X ,
∫

A

ΦdνΨH :=

∫

A

(Φf1/2)(Ψf1/2)H d‖ν‖1 ∈ S1(G0) . (2.13)

If (Φ,Φ) is ν-integrable, then Φ is said to be square ν-integrable and we denote by
L

2(X,X ,O(H0,G0), ν) the set of square ν-integrable functions.

Note that, when Φ and Ψ are Lb(H0,G0)-valued, we can write (Φf1/2)(Ψf1/2)H = ΦfΨH

because the adjoint of Ψ exists. In the general case the latter exists only when D(Ψ) is
dense in H0. The left hand side term of (2.13) should therefore be taken only as a shorthand
notation for the right hand side term which makes sense because of (ii). As previously, we
can show that ‖ν‖1 can be replaced by any finite non-negative measure µ dominating ‖ν‖1
and the following characterization holds.

Proposition 2.9. Let H0,G0 be separable Hilbert spaces, (X,X ) a measurable space and ν a
trace-class p.o.v.m. on (X,X ,H0). Let µ be a finite non-negative measure dominating ‖ν‖1
and g = dν

dµ
. Let Φ,Ψ ∈ FO (X,X ,H0, G0), then (Φ,Ψ) is ν-integrable if and only if it satisfies

(i’) Im(g1/2) ⊂ D(Φ) and Im(g1/2) ⊂ D(Ψ) µ-a.e.

(ii’) Φg1/2 and Ψg1/2 are S2(H0,G0)-valued.

(iii’) (Φg1/2)(Ψg1/2)H ∈ L1(X,X ,S1(G0), µ).

In this case we have for all A ∈ X ,

∫

A

ΦdνΨH =

∫

A

(Φg1/2)(Ψg1/2)H dµ . (2.14)

Moreover, we have

Φ ∈ L
2(X,X ,O(H0,G0), ν) ⇔

{

Im(g1/2) ⊂ D(Φ) µ-a.e.

Φg1/2 ∈ L2(X,X ,S2(H0,G0), µ)
(2.15)

and, if Φ,Ψ ∈ L
2(X,X ,O(H0,G0), ν), then (Φ,Ψ) is ν-integrable and

∫

ΦdνΨH =

∫

(Φg1/2)(Ψg1/2)H dµ =
[

Φg1/2,Ψg1/2
]

L2(X,X ,S2(H0,G0),µ)
. (2.16)

Similarly as before, we get the following (stronger) result.
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Theorem 2.10. Let H0, G0 be separable Hilbert spaces, (X,X ) a measurable space, ν a trace-
class p.o.v.m. on (X,X ,H0) and f = dν

d‖ν‖1
. Then L

2(X,X ,O(H0,G0), ν) is a Lb(G0)-module

with module action

Θ • Φ : t 7→ ΘΦ(t), Θ ∈ Lb(G0),Φ ∈ L
2(X,X ,O(H0,G0), ν)

and the relation

[Φ,Ψ]
L2(X,X,O(H0 ,G0),ν)

:=

∫

ΦdνΨH Φ,Ψ ∈ L
2(X,X ,O(H0, G0), ν) , (2.17)

is a pseudo-gramian on L
2(X,X ,O(H0,G0), ν) and a gramian on the quotient space

L
2(X,X ,O(H0,G0), ν) := L

2(X,X ,O(H0,G0), ν)
/
{

Φ : Φf1/2 = 0 ‖ν‖1-a.e.
}

.

Moreover,
(

L
2(X,X ,O(H0,G0), ν), [·, ·]L2(X,X ,O(H0,G0),ν)

)

is a normal Hilbert Lb(H0)-module

and, for any finite non-negative measure µ dominating ‖ν‖1 with density g = dν
dµ

, then

{

Φ : Φg1/2 = 0 µ-a.e.
}

=
{

Φ : Φf1/2 = 0 ‖ν‖1-a.e.
}

, (2.18)

and the mapping Φ 7→ Φg1/2 is a gramian unitary operator from L
2(X,X ,O(H0, G0), ν) to

L2(X,X ,S2(H0,G0), µ).

We now have three different kinds of L2 spaces for operator-valued functions which are
linked by the easily verified inclusions

L2(X,X ,Lb(H0,G0), ‖ν‖1) ⊂ L
2(X,X ,Lb(H0,G0), ν) ⊂ L

2(X,X ,O(H0,G0), ν) , (2.19)

where the second inclusion is an isometric embedding and the first one a continuous embed-
ding. More precisely, if Φ ∈ L2(X,X ,Lb(H0,G0), ν), then

‖Φ‖L2(X,X ,Lb(H0,G0),‖ν‖1)
≥ ‖Φ‖

L2(X,X ,Lb(H0,G0),ν)
= ‖Φ‖

L2(X,X ,O(H0,G0),ν)
, (2.20)

with the convention that ‖Φ‖L2(X,X ,Lb(H0,G0),‖ν‖1)
= ∞ if Φ /∈ L2(X,X ,Lb(H0,G0), ‖ν‖1).

We conclude this section by the following theorem stating that L
2(X,X ,O(H0,G0), ν)

satisfies the usual density properties.

Theorem 2.11. Let H0,G0 be two separable Hilbert spaces, (X,X ) a measurable space,
and ν a trace-class p.o.v.m. on (X,X ,H0). Then the space L2(X,X ,Lb(H0,G0), ‖ν‖1)
is dense in L

2(X,X ,O(H0,G0), ν). In particular, this implies that the space
Span (t 7→ 1A(t)Φ : A ∈ X ,Φ ∈ Lb(H0,G0)) of simple Lb(H0,G0)-valued functions is dense
in L

2(X,X ,O(H0,G0), ν) and that, if T is an l.c.a. group and ν is a regular p.o.v.m. on

(T,B(T)), the space Span
(

t 7→ χ(t)Φ : χ ∈ T̂,Φ ∈ Lb(H0,G0)
)

of Lb(H0,G0)-valued trigono-

metric polynomials is dense in L
2(T,B(T),O(H0,G0), ν).

2.7 Integration with respect to a c.a.g.o.s. measure

Now that we have constructed a normal Hilbert module of square-integrable operator-valued
functions with respect to a trace-class p.o.v.m. we can provide a gramian-isometry which
will give a meaning to integrals of operator-valued functions with respect to a c.a.g.o.s. mea-
sure. Let (X,X ) be a measurable space, H0,G0 two separable Hilbert spaces, to simplify the
construction we will consider the normal Hilbert Lb(H0)-modules H := M(Ω,F ,H0,P) and
normal Hilbert Lb(G0)-modules G := M(Ω,F , G0,P) where (Ω,F , P) is a given probability
space. We restrict ourselves to this special case because it is the one which will be useful for
spectral analysis of functional processes and this avoids technicalities necessary to define the
following integrals for more general H and G.
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Theorem 2.12. Let (X,X ) be a measurable space and (Ω,F , P) a probability space. Let H0

and G0 be two separable Hilbert spaces and set H = M(Ω,F ,H0,P) and G = M(Ω,F , G0,P).
Let W be a c.a.g.o.s. measure on (X,X ,H) with intensity operator measure νW . Then there
exists a unique gramian isometry

IG0
W : L2(X,X ,O(H0,G0), νW ) → G

such that, for all A ∈ X and Φ ∈ Lb(H0, G0),

IG0
W (1AΦ) = ΦW (A) .

Moreover, IG0
W is gramian-unitary from L

2(X,X ,O(H0,G0), νW ) to

Span
G
(ΦW (A) : A ∈ X ,Φ ∈ Lb(H0,G0)).

Definition 2.11 (Integral and density with respect to a c.a.g.o.s. measure). Under
the assumptions of Theorem 2.12, we use an integral sign to denote IG0

W (Φ) for Φ ∈
L
2(X,X ,O(H0,G0), νW ). Namely, we write

∫

ΦdW =

∫

Φ(t)W (dt) := IG0
W (Φ) . (2.21)

It is easy to show that, for any Φ ∈ Lb(H0, G0), the mapping

V : A 7→

∫

A

ΦdW = IG0
W (1AΦ)

is a c.a.g.o.s. measure on (X,X ,G) with intensity operator measure ΦνΦH : A 7→
∫

A
ΦdνΦH .

We say that V has density Φ with respect to W and write dV = ΦdW (or, equivalently,
V (dt) = Φ(t)W (dt)). Given Φ ∈ FO (X,X ,H0,G0), we will denote

• by MΦ the set of trace-class p.o.v.m. ν on (X,X ,H0) such that Φ ∈
L
2(X,X ,O(H0, G0), ν),

• by ŜΦ the set of c.a.g.o.s. measures on (X,X ,H) whose intensity operator measure is in
MΦ,

• and by F̂Φ the mapping which maps any c.a.g.o.s. measure W ∈ ŜΦ to the c.a.g.o.s.
measure with density Φ with respect to W .

As for c.a.o.s. measures we show the converse property deriving a c.a.g.o.s. measure from
a gramian isometry.

Theorem 2.13. Let (X,X ) be a measurable space and (Ω,F ,P) a probability space. Let H0 be
separable Hilbert spaces, H = M(Ω,F ,H0,P) and ν a trace-class p.o.v.m. on (X,X ,H0). Then
for any gramian-isometry w : L2(X,X ,O(H0), ν) → H, there exists a unique c.a.g.o.s. measure
W on (X,X ,H) with intensity operator measure ν such that for all Φ ∈ L

2(X,X ,O(H0), ν),

w(Φ) =

∫

ΦdW . (2.22)

3 Functional weakly-stationary processes in the

spectral domain

Now, we have all the tools to derive spectral analysis for functional weakly-stationary pro-
cesses. We follow Section 4.2 of [20] and then study linear filtering based on the spectral
representation thereby constructed.

3.1 Spectral representation of a centered weakly-stationary H0-

valued process and definition of linear filtering

Let (Ω,F ,P) be a probability space, H0 a separable Hilbert space and H = M(Ω,F ,H0, P).
Let X = (Xt)t∈T ∈ HT be a centered, weakly-stationary, H0-valued process indexed by an
l.c.a. group (T,+). By analogy to the univariate case, and taking into account the module
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structure of H, let us define the modular time domain of X as the submodule of H generated
by the Xt’s, that is

HX := Span
H
(ΦXt : Φ ∈ Lb(H0), t ∈ T) .

Similarly, given another separable Hilbert space G0, we define

HX,G0 := Span
G
(ΦXt : Φ ∈ Lb(H0,G0), t ∈ T)

which is a submodule of G := M(Ω,F , G0,P). For all h ∈ T, define (using Proposition 2.5)
the shift operator of lag h as the unique gramian-unitary operator UXh : HX → HX which
maps Xt to Xt+h for all t ∈ T. As in the univariate case (see Lemma 1.1), weak stationarity
is characterized by the representation properties of UX seen in Definition 2.7.

Lemma 3.1. Let X = (Xt)t∈T be a centered L2 H0-valued process. Then X is weakly
stationary if and only if UX is a c.g.u.r. of T on HX .

In particular (see also Remark 1.3), continuity of UX is equivalent to weak-continuity of
ΓX from Definition 1.3 (see [20, Proposition 2.5.2]). The following theorem (analogous to [20,
Theorem 4.2.2, Theorem 4.2.4]) gives R1, R2.

Theorem 3.2. Let (Ω,F ,P) be a probability space and (T,+) an l.c.a. group. Let H0 be a
separable Hilbert space and set H = M(Ω,F ,H0,P). Let X := (Xt)t∈T ∈ HT. Then X is
weakly stationary if and only if there exists a regular c.a.g.o.s. measure X̂ on (T̂,B(T̂),H)
such that

Xt =

∫

T̂

χ(t) X̂(dχ) for all t ∈ T . (3.1)

In this case, X̂ is uniquely determined by (3.1) and is called the spectral representation of X.
The intensity operator measure νX of X̂ is called the spectral operator measure of X. It is a
regular trace-class p.o.v.m. on (T̂,B(T̂),H0) and is the unique regular p.o.v.m. satisfying

ΓX(h) =

∫

T̂

χ(t) νX(dχ) for all h ∈ T . (3.2)

Note that, like for Bochner’s theorem in the univariate case, Relation (3.2) can be obtained
without using stochastic processes and this result can also be used to derive spectral analysis
for weakly-stationary stochastic processes. This will be discussed in Section 6. With these
results, we can now define linear filtering for functional weakly stationary processes in the
spectral domain. First, we characterize integration with respect to X̂ by the following result.

Corollary 3.3. Let (Ω,F ,P) be a probability space and (T,+) an l.c.a. group. Let H0 be a
separable Hilbert space and set H = M(Ω,F ,H0,P). Let X := (Xt)t∈T be a centered, weakly
stationary, H0-valued process with spectral representation X̂ and spectral operator measure
νX . Then for any separable Hilbert space G0, the mapping Ψ 7→

∫
ΨdX̂ is the unique gramian

isometry from L
2(T̂,B(T̂),O(H0,G0), νX) to G = M(Ω,G,G0,P) such that
∫

T̂

χ(t)Φ X̂(dχ) = ΦXt for all t ∈ T and Φ ∈ Lb(H0,G0) .

This mapping is, in addition, gramian-unitary from L
2(T̂,B(T̂),O(H0,G0), νX) to HX,G0 . In

particular, we have that Span
G
(

ΦX̂(A) : A ∈ B(T̂),Φ ∈ Lb(H0,G0)
)

= HX,G0 .

Denote by FH0 the function which maps a centered weakly stationary H0-valued process
X indexed by T to its spectral representation X̂ valued in the space of regular c.a.g.o.s.
measures on (T̂,B(T),H). Then, by Theorem 3.2, FH0 is bijective and we can define linear
filtering using the notions introduced in Definition 2.11 for c.a.g.o.s. measures.

Definition 3.1. Let (Ω,F , P) be a probability space, H0, G0 separable Hilbert spaces and
(T,+) an l.c.a. group. Call H = M(Ω,F ,H0,P) and G = M(Ω,F ,G0,P). For Φ ∈

FO

(

T̂,B(T̂),H0,G0

)

we denote by SΦ the set of centered weakly-stationary H0-valued pro-

cesses indexed by T whose spectral operator measure is in MΦ (or equivalently SΦ =

F
−1
H0

(

ŜΦ

)

). We define the filter FΦ with transfer operator function Φ as the operator de-

fined on SΦ by FΦ = F
−1
G0

◦ F̂Φ ◦ (FH0). In other words, for all X ∈ SΦ, Y = FΦ(X) is the

G0-valued weakly stationary process satisfying dŶ = ΦdX̂, that is, for all t ∈ T,

Yt =

∫

T̂

χ(t)Φ(χ) X̂(dχ) . (3.3)
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In order to compose filters defined this way, we now need to explain how to compose
mappings of the form F̂Φ, which is closely linked to composition of square-integrable operator-
valued functions with respect to trace-class p.o.v.m. In the next section we explain how this
is done and conclude giving results on composition and inversion of filters.

3.2 Composition and inversion of linear filters

Let H0, G0, I0 be separable Hilbert spaces and ν a trace-class p.o.v.m. on (X,X ,H0). Let
Φ ∈ L

2(X,X ,O(H0,G0), ν), then ΦνΦH : A 7→
∫

A
ΦdνΦH is a trace-class p.o.v.m. on (X,X ,G0)

and the space L
2(X,X ,O(H0, I0),ΦνΦ

H) is characterized by the following theorem.

Theorem 3.4. Let (X,X ) be a measurable space, H0, G0, I0 separable Hilbert spaces and ν a
trace-class p.o.v.m. on (X,X ,H0). Let Φ ∈ L

2(X,X ,O(H0,G0), ν) and Ψ ∈ FO (X,X ,G0, I0).
Then

Ψ ∈ L
2(X,X ,O(G0, I0),ΦνΦ

H) ⇔ ΨΦ ∈ L
2(X,X ,O(H0, I0), ν) . (3.4)

Moreover, the following assertions hold.

(a) For all Ψ,Θ ∈ L
2(X,X ,O(G0, I0),ΦνΦ

H),

(ΨΦ)ν(ΘΦ)H = Ψ(ΦνΦH)ΘH .

(b) The mapping Ψ 7→ ΨΦ is a well defined gramian-isometry from
L
2(X,X ,O(G0, I0),ΦνΦ

H) to L
2(X,X ,O(H0, I0), ν).

(c) Suppose moreover that Φ is injective ‖ν‖1-a.e., then we have that

Φ−1 ∈ L
2(T̂,B(T̂),O(G0,H0),ΦνΦ

H) ,

where we define Φ−1(λ) :=
(
Φ(λ)|D(Φ(λ))→Im(Φ(λ))

)−1
with domain Im(Φ(λ)) for all

λ ∈ {Φ is injective} and Φ−1(λ) = 0 otherwise.

The following corollaries are obtained from this theorem and allow us to deal with the
composition and inversion of filters.

Corollary 3.5. Let (X,X ) be a measurable space and (Ω,F ,P) be a probability space. Let
H0,G0 be separable Hilbert spaces and Φ ∈ FO (X,X ,H0,G0). Let W ∈ ŜΦ and V = F̂Φ(W ),
then for all separable Hilbert space I0, denoting by I = M(Ω,F , I0,P), we have

Span
I
(ΨV (A) : A ∈ X ,Ψ ∈ Lb(G0, I0)) ⊆

∼ Span
I
(ΨW (A) : A ∈ X ,Ψ ∈ Lb(H0, I0)) .

(3.5)

Corollary 3.6 (Composition of filters). Let (X,X ) be a measurable space, H0, G0, I0 separable
Hilbert spaces and Φ ∈ FO (X,X ,H0,G0), Ψ ∈ FO (X,X ,G0, I0). Let W ∈ ŜΦ, then W ∈ ŜΨΦ

if and only if F̂Φ(W ) ∈ ŜΨ and in this case

F̂Ψ ◦ F̂Φ(W ) = F̂ΨΦ(W ). (3.6)

Remark 3.1. The identity (3.6) can be reformulated with integrals as follows. If dV = ΦdW
(i.e. V = F̂Φ(W )) then for all Ψ ∈ L2(X,X ,O(G0, I0), νV ) and A ∈ X ,

∫

A

ΨdV =

∫

A

ΨΦdW. (3.7)

Corollary 3.7 (Inversion of filters). Let (X,X ) be a measurable space and (Ω,F , P) be a
probability space. Let H0,G0 be separable Hilbert spaces and set H = M(Ω,F ,H0,P) and
G = M(Ω,F , G0,P). Let W be a c.a.g.o.s. measure on (X,X ,H) with intensity operator
measure νW and Φ ∈ L

2(X,X ,O(H0,G0), νW ). Suppose that Φ is injective ‖νW ‖1-a.e. and
let V = FΦ(W ). Then W = FΦ−1(V ) and the ⊆

∼ in Equation (3.5) becomes a ∼= .

Remark 3.2. These corollaries have time domain counterparts. Namely, if X is a cen-
tered weakly stationary H0-valued process indexed by an l.c.a. group (T,+) and Φ ∈
L

2(T̂,B(T̂),O(H0,G0), νX). Then, calling Y = FΦ(X), we get that HY,I0 ⊆
∼ HX,I0 for

all separable Hilbert space I0. Moreover, if Ψ ∈ FO

(

T̂,B(T̂),G0, I0

)

, then X ∈ SΨΦ if and

only if Y ∈ SΨ and in this case FΨ(Y ) = FΨΦ(X). Finally, if Φ is injective ‖νX‖1-a.e., then
X = FΦ−1(Y ) and HY,I0 ∼= HX,I0 .
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4 Applications to functional time series

In the following applications we consider discrete time processes, that is T = Z and T̂ = T,
valued in a separable Hilbert space H0.

4.1 Functional ARMA processes

Let p be a positive integer and consider the p-order linear recursive equation

Yt =

p
∑

k=1

AkYt−k + ǫt , t ∈ Z , (4.1)

where ǫ = (ǫt)t∈Z is a centered weakly stationary process valued in H0 and A1, . . . , Ap ∈
Lb(H0). If ǫ is a white noise (that is, it admits a constant spectral density operator), then
Equation (4.1) is called a (functional) auto-regressive process of order p (AR(p)) equation. If
ǫ can be written for some positive integer q as

ǫt = Zt +

q
∑

k=1

BkZt−k , t ∈ Z ,

where Z = (Zt)t∈Z is a centered white noise valued in H0 and B1, . . . , Bp ∈ Lb(H0), then ǫ is
called a (functional) moving average process of order q (MA(q)) and Eq. (4.1) is called a (func-
tional) auto-regressive moving average process of order (p, q) (ARMA(p, q)) equation. Weakly
stationary solutions of AR(p) or ARMA(p, q) equations are called AR(p) or ARMA(p, q) pro-
cesses.

The existence of a weakly stationary solution to Eq. (4.1) occurs under the assumption
that

Q(z) = IdH0 −

p∑

k=1

Akz
k is invertible in Lb(H0) for all z ∈ C such that |z| = 1. (4.2)

It is usually proven by using an explicit expansion of the form (see [36, Corollary 2.2] for the
Banach space valued case and the references in the proof)

Yt =
∑

k∈Z

ψkǫt−k , t ∈ Z , (4.3)

where (ψk)k∈Z ∈ Lb(H0) and the series
∑

k∈Z
ψk converges absolutely in Lb(H0).

Now, note that (4.2) implies that Φ−1 ∈ Fb(T,B(T),Lb(H0))) with Φ(λ) = Q(e−iλ) for
all λ ∈ R. Thus, Corollary 3.6 immediately gives that Y = FΦ−1(ǫ) is a solution of (4.1)
and Corollary 3.7 that it is the unique one which is weakly stationary. Then the representa-
tion (4.3) holds as an immediate consequence of the fact that z 7→ Q−1(z) is homomorhic on
a ring containing the unit circle, so that

Φ−1(λ) = Q−1(e−iλ) =
∑

k∈Z

ψke
−iλk ,

where (ψk)k∈Z has exponential decay at ±∞.

4.2 Functional long-memory processes

Processes with long-memory have a non-summable autocovariance function and therefore
do not satisfy the assumptions of [31, 30, 38]. However, in the univariate case, spectral
analysis is widely used for such processes and the goal of this section is to show how the more
general spectral theory presented in Section 3 can by used to define long-memory for processes
valued in a separable Hilbert space H0. Results on long-memory H0-valued processes have
been derived recently using a time domain definition, namely Xt =

∑+∞
k=0(k + 1)−N ǫt−k

where (ǫt)t∈Z is a white noise in M(Ω,F ,H0, P) and N ∈ Lb(H0) is a normal operator. We
refer to [14] and the references therein for details. In particular, existence of the process
X = (Xt)t∈Z (i.e. the L2 convergence of the series) is shown, under assumptions on N
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and (ǫt)t∈Z, in [14, Lemma A.1]. In this section, we define, under the same assumptions,
a long-memory H0-valued process from its spectral representation by naturally extending
the celebrated (univariate) autoregressive fractionaly integrated moving average (ARFIMA)
models, and explain how it is related to the process X defined above. For later use, we recall
that (see [9, Theorem 9.4.6, Proposition 9.4.7]), if N ∈ Lb(H0) is normal, then there exists a
σ-finite measure space (X,X , µ) and a function d ∈ L∞(X,X , µ), such that N has a singular
values decomposition of the type UNUH = Md where U : H0 → L2(X,X , µ) is unitary andMd

is the multiplicative operator on L2(X,X , µ) associated to d, that isMd : f 7→ (s 7→ d(s)f(s)).
In the following, we will also denote the open and closed unit discs by D := {z ∈ C : |z| < 1}
and D = {z ∈ C : |z| ≤ 1} and we use the notation (1 − z)A for some A ∈ Lb(H0) and
z ∈ D \ {1}. This must be understood as

(1− z)A = exp(A ln(1− z)) =

∞∑

k=0

1

k!
(A ln(1− z))k ,

where ln denotes the principal complex logarithm, so that z 7→ ln(1 − z) is holomorphic
on C \ [1,∞). Finally, if Y : Ω → L2(X,X , µ) is a random variable, we make the implicit
assumption that (ω, s) 7→ Y (ω)(s) is measurable from (Ω × X,F ⊗ X ) to (C,B(C)) and we
define for all s ∈ X, Y (s) : ω 7→ Y (ω)(s).

Proposition 4.1. Let H0 be a separable Hilbert space, N ∈ Lb(H0) be a normal operator
with singular values decomposition UNUH =Md as above. Let h : s 7→ ℜ(d(s)) and

Φ :
T → Lb(H0)

λ 7→
(
1− e−iλ

)N−Id .

Let ǫ := (ǫt)t∈Z be a white noise in M(Ω,F ,H0,P) and σ2
U : s 7→ E

[
|(Uǫ0)(s)|

2
]
. Suppose

that

h >
1

2
µ-a.e. and

∫

X

σ2
U (s)

2h(s)− 1
µ(ds) < +∞ . (4.4)

Then ǫ ∈ SΦ and, if FΦ(ǫ), there exists C ∈ Lb(H0) and (∆k)k∈N ∈ Lb(H0)
N with

∑

k≥0 ‖∆k‖ < +∞ such that for all t ∈ Z,

[FΦ(ǫ)]t =

∫

T

eiλt
(

1− e−iλ
)N−Id

ǫ̂(dλ) = C

(
∞∑

k=0

(k + 1)−N ǫt−k

)

+
∞∑

k=0

∆kǫt−k , (4.5)

where, in the right-hand-side, the first series converges in M(Ω,F ,H0,P) and the second
series is absolutely convergent in M(Ω,F ,H0,P).

Adopting the univariate definition, we call the process FΦ(ǫ) in (4.5) a functional
ARFIMA(0, Id − N, 0) process, the functional ARFIMA(p, Id − N, q) process corresponding
to the case where ǫ is a functional ARMA(p, q) process. Thus, the second equality in (4.5)
says that, up to the application of the operator C and to the additional short-memory process
∑∞
k=0 ∆kǫt−k, t ∈ Z, the process Xt =

∑∞
k=0(k +1)−N ǫt−k, t ∈ Z, coincide with a functional

ARFIMA(0, Id−N, 0) process.
The proof of Proposition 4.1 relies on three lemmas.

Lemma 4.2. For all z ∈ C with ℜ(z) > − 1
2
, we have

∫ π

−π

∣
∣
∣(1− e−iλ)z

∣
∣
∣

2

dλ ≤
π2(ℜ(z)+1)

2ℜ(z) + 1
eπ|ℑ(z)| .

Proof. Let z ∈ C with ℜ(z) > − 1
2
, then it can be shown that, for all λ ∈ (−π, π] \ {0},

∣
∣(1− e−iλ)z

∣
∣
2

=
∣
∣1− e−iλ

∣
∣
2ℜ(z)

e−2ℑ(z)b(e−iλ), where b(e−iλ) denotes the argument of 1 −

e−iλ that belongs to
(
−π

2
, π
2

)
. It follows that e−2ℑ(z)b(e−iλ) ≤ eπ|ℑ(z)|. Using that |λ|

π
≤

|sin(λ/2)| ≤ |λ|
2

for all λ ∈ (−π, π) and ℜ(z) > −1/2, we easily get

∫ π

−π

∣
∣
∣1− e−iλ

∣
∣
∣

2ℜ(z)

dλ =

∫ π

−π

|2 sin(λ/2)|2ℜ(z) dλ ≤ π

∫ π

0

|λ|2ℜ(z) dλ =
π2(ℜ(z)+1)

2ℜ(z) + 1
.

The result follows.
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Lemma 4.3. Let E be a Banach space and (an)n∈N ∈ EN such that ‖an‖E −−−−−→
n→+∞

0 and the

series
∑

‖an − an+1‖E converges. Then for all z0 ∈ D \ {1}, the series
∞∑

n=0

anz
n
0 converges in

E and the mapping z 7→
∞∑

n=0

anz
n is uniformly continuous on [0, z0].

Proof. By assumption on (an),
∑
anz

n is a power series valued in E with convergence radius
at least equal to 1, hence is uniformly continuous on the open disk with radius 1. When
|z0| = 1, the result follows using Abel’s transform.

Lemma 4.4. Let H0 be a separable Hilbert space, N ∈ Lb(H0) be a normal operator with
singular values decomposition UNUH =Md on L2(X,X , µ) as above. Define

̺ = µ- essinf
s∈X

ℜ(d(s)) .

Then there exist C ∈ Lb(H0) and (∆k)k∈N ∈ Lb(H0)
N with ‖∆k‖ = O

(
k−1−̺

)
such that, for

all z ∈ D,

(1− z)N−Id = C

(
∞∑

k=0

(k + 1)−Nzk
)

+
∞∑

k=0

∆kz
k , (4.6)

where the series on the right-hand side are Lb(H0)-valued power series with convergence radius
at least equal to 1. Moreover, if ̺ > 0, then the identity (4.6) holds for all z ∈ D \ {1}, where
the two series of the right-hand side still converge in Lb(H0) .

Proof. The proof is three steps. We first show Relation (4.6) for all z ∈ D, then that ‖∆k‖ =
O
(
k−1−̺

)
and finally extend the relation to z ∈ D \ {1} when ̺ > 0.

Step 1. Let z ∈ D, then

(1− z)N−Id = Id +
∑

k≥1

Nkz
k ,

where for all k ≥ 1, Nk =
∏k
j=1

(

Id− N
j

)

. Let k0 ≥ 1, such that ‖N‖
k0

< 1 and take k ≥ k0,

then

Id−
N

k
= exp

(

ln

(

Id−
N

k

))

= exp



−
∑

j≥1

N j

kjj



 ,

and therefore,

Nk =

k0−1
∏

j=1

(

Id−
N

j

)

exp



−
∑

j≥1

N j

j

k∑

t=k0

1

tj



 .

Moreover, we have the following asymptotic expansions,

k∑

t=k0

1

t
=

k∑

t=1

1

t
−

k0−1
∑

t=1

1

t
= ln(k + 1) + γe −

k0−1
∑

t=1

1

t
+
αk
k

and for all j ≥ 2,
k∑

t=k0

1

tj
=

+∞∑

k=k0

1

tj
−

+∞∑

k=k+1

1

tj
=
βj

kj0
+

ηk,j
(j − 1)kj−1

where γe is Euler’s constant and (αk)k≥1, (ηk,j)k≥1,j≥2 such that supk≥1 |αk| < +∞ and

supk≥1,j≥2 |ηk,j | < +∞ and βj =
∑+∞
t=k0

(
k0
t

)j
satisfies supj≥2 βj < +∞. This gives, for all

k ≥ k0,

Nk = C(k + 1)−N exp



−N
αk
k

−
∑

j≥2

N jηk,j
(j − 1)kj−1





where

C =

k0−1∏

j=1

(

Id−
N

j

)

exp

(

−N

(

γe −

k0−1∑

t=1

1

t

))

exp



−
∑

j≥2

(
N

k0

)j
βj
j



 .
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Combining everything, we get

(1− z)N−Id = Id +

k0−1∑

k=1

k∏

j=1

(

Id−
N

j

)

zk

+ C
∑

k≥k0

(k + 1)−N exp



−N
αk
k

−
∑

j≥2

N jηk,j
(j − 1)kj−1



 zk

which leads to Relation (4.6) with

∆0 = Id− C ,

∆k =

k∏

j=1

(

Id−
N

j

)

− C(k + 1)−N , 1 ≤ k ≤ k0 − 1,

∆k = C(k + 1)−N



exp



−N
αk
k

−
∑

j≥2

N jηk,j
(j − 1)kj−1



− Id



 , k ≥ k0.

Step 2. For all k ≥ k0, denoting by Φk := −N αk
k

−
∑

j≥2

Njηk,j

(j−1)kj−1 , we get

‖∆k‖ =
∥
∥
∥C(k + 1)−N

(

eΦk − Id
)∥
∥
∥ ≤ ‖C‖

∥
∥
∥(k + 1)−N

∥
∥
∥

∑

t≥1

‖Φk‖
t

t!
= O

(
k−1−̺)

because

‖Φk‖ ≤ ‖N‖
|αk|

k
+
∑

j≥2

‖N‖jηk,j
(j − 1)kj−1

= ‖N‖




|αk|

k
+
∑

j≥1

‖N‖j

jkj
ηk,j+1



 = O
(
k−1) ,

and
∥
∥
∥(k + 1)−N

∥
∥
∥ =

∥
∥
∥(k + 1)−Md

∥
∥
∥ =

∥
∥M(k+1)−d

∥
∥ = essup

s∈X

∣
∣
∣(k + 1)−d(s)

∣
∣
∣ = (k + 1)−̺ .

Step 3. We now assume ̺ > 0 and extend (4.6) to D\{1}. We already have for all λ ∈ T\{0},
for all 0 < a < 1,

(1− ae−iλ)N−Id = C
∑

k≥0

(k + 1)−Nake−iλk +
∑

k≥0

∆ka
ke−iλk .

Moreover, (1−e−iλ)N−Id = lima→1−(1−ae−iλ)N−Id by continuity of z 7→ (1−z)N−Id in D\{1}
and

∑

k≥0 ∆ke
−iλk = lima→1−

∑

k≥0 ∆ka
ke−iλk because

∑

k≥0 ‖∆k‖ < +∞. It remains to

show that lima 7→1−
∑

k≥0(k + 1)−Nake−iλk exists. For all k ∈ N, we have
∥
∥(k + 1)−N

∥
∥ =

(k + 1)−̺ and

∥
∥
∥(k + 1)−N − (k + 2)−N

∥
∥
∥ = essup

s∈X

∣
∣
∣(k + 1)−d(s) − (k + 2)−d(s)

∣
∣
∣

≤ essup
s∈X

∣
∣
∣(k + 1)−d(s)

∣
∣
∣ essup
s∈X

∣
∣
∣
∣
∣
1−

(

1−
1

k + 2

)d(s)
∣
∣
∣
∣
∣

= (k + 1)−̺ essup
s∈X

∣
∣
∣
∣
∣
∣

∑

j≥1

d(s) · · · (d(s)− j + 1)

(k + 2)j

∣
∣
∣
∣
∣
∣

≤ (k + 1)−̺
∑

j≥1

‖d‖∞ · · · (‖d‖∞ − j + 1)

(k + 2)j

= (k + 1)−̺O
(
k−1

)

= O
(
k−1−̺)

and therefore the assumptions of Lemma 4.3 are verified and Step 3 is completed.
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We can now prove Proposition 4.1.

Proof of Proposition 4.1. Suppose (4.4) holds and let Γǫ, νǫ be the autocovariance oper-
ator function and spectral operator measure of ǫ. We successively prove that ǫ ∈ SΦ (Step 1)
and that the second inequality in (4.5) holds (Step 2) Step 1. By definition, ǫ ∈ SΦ if
and only if Φ ∈ L

2(T,B(T),Lb(H0), νǫ) which is equivalent, by Proposition 2.9 and since

νǫ(dλ) =
Γǫ(0)
2π

dλ, to

∫

T

∥
∥
∥
∥
(1− e−iλ)N−IdΓǫ(0)

(

(1− e−iλ)N−Id
)
H
∥
∥
∥
∥
1

dλ < +∞ . (4.7)

This integral can be computed as follows.

∫

T

∥
∥
∥
∥
(1− e−iλ)N−IdΓǫ(0)

(

(1− e−iλ)N−Id
)H
∥
∥
∥
∥
1

dλ

=

∫

T

∥
∥
∥M(1−e−iλ)d−1UΓǫ(0)U

HMH

(1−e−iλ)d−1

∥
∥
∥
1
dλ

=

∫

T

∥
∥Cov

(
M(1−e−iλ)d−1Uǫ0

)∥
∥
1
dλ

=

∫

T

E

[∥
∥M(1−e−iλ)d−1Uǫ0

∥
∥2

L2(X,X ,µ)

]

dλ

=

∫

T

E

[∫

X

∣
∣
∣(1− e−iλ)d(s)−1

∣
∣
∣

2

|(Uǫ0)(s)|
2 µ(ds)

]

dλ

=

∫

X

σ2
U (s)

∫

T

∣
∣
∣(1− e−iλ)d(s)−1

∣
∣
∣

2

dλµ(ds) .

Applying Lemma 4.2 to z = d(s) − 1, with ℜ(z) = h(s) − 1 > − 1
2
, gives for µ-almost every

s ∈ X,
∫

T

∣
∣
∣(1− e−iλ)d(s)−1

∣
∣
∣

2

dλ ≤
π2h(s)

2h(s)− 1
eπ|ℑ(d(s))−1| ≤

K

2h(s)− 1
,

for some K > 0 not depending on s, since d is bounded. Thus (4.7) follows from the second
condition in (4.4).
Step 2. We now show Relation (4.5). Let us now define, for all n ∈ N, the function
Ψn : λ 7→

∑n
k=0(k + 1)−Ne−iλk, then for all n ∈ N, for all t ∈ Z,

[FΨn(ǫ)]t =
n∑

k=0

(k + 1)−N ǫt−k .

Moreover, by Corollary 3.3, the series
∑∞
k=0(k + 1)−N ǫt−k converges in M(Ω,G,H0,P) for

all t ∈ Z if and only if the sequence (Ψn)n∈N converges in L
2(T,B(T),O(H0), νǫ) and, in this

case, we have for all t ∈ Z,

∞∑

k=0

(k + 1)−N ǫt−k = [FΨ(ǫ)]t in M(Ω, G,H0,P) ,

where Ψ = limn→+∞ Ψn in L
2(T,B(T),O(H0), νǫ). Suppose such a convergence holds, then

(4.5) is equivalent to

(1− e−iλ)N−Id = CΨ(λ) +
∞∑

k=0

∆ke
−iλk for Leb-almost every λ ∈ T . (4.8)

We apply Lemma 4.4. By the first condition in (4.4), we have ̺ ≥ 1/2 and thus that
‖∆k‖ = O(k−3/2) (so that the series

∑∞
k=0 ∆kǫt−k converges absolutely in M(Ω,F ,H0,P))

and that (4.8) holds for Ψ : λ 7→
∑∞

k=0(k + 1)−Ne−iλk and that Ψn converges almost ev-
erywhere to Ψ. To conclude the proof, it only remains to show that Ψn converges to Ψ in
L
2(T,B(T),O(H0), νǫ). Using Parseval’s identity in L2(T,B(T),S2(H0),Leb) and the same
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ideas as in the previous step, we have for all n ∈ N,

∫

T

∥
∥
∥
∥
∥

(
∞∑

k=n+1

(k + 1)−Ne−iλk

)

Γǫ(0)
1/2

∥
∥
∥
∥
∥

2

2

dλ =

∞∑

k=n+1

∫

T

∥
∥
∥(k + 1)−NΓǫ(0)

1/2e−iλk
∥
∥
∥

2

2
dλ

=

∞∑

k=n+1

∫

T

E

[∥
∥M(k+1)−de−iλkUǫ0

∥
∥2

L2(X,X ,µ)

]

dλ

= 2π
∞∑

k=n+1

∫

X

σ2
U (s)

∣
∣
∣(k + 1)−d(s)

∣
∣
∣

2

µ(ds)

= 2π

∫

X

σ2
U (s)

∞∑

k=n+1

(k + 1)−2h(s) µ(ds)

≤ 2π

∫

X

σ2
U (s)

(n+ 1)1−2h(s)

2h(s)− 1
µ(ds)

where the last inequality is obtained from an obvious inequality between series and integral.
By the second condition in (4.4), using Lebesgue’s dominated convergence theorem, we get
that Ψn converges to Ψ in L

2(T,B(T),O(H0), νǫ).

5 Postponed proofs

5.1 Proofs of Section 2

Proof of Lemma 2.1. By (2.3), we only need to show that, if Φ is simply measurable then
it is measurable. The space E is separable because the set of finite rank operators is dense
in E for the norm ‖·‖ if E = K(H0,G0) and ‖·‖p if E = Sp(H0,G0). By Pettis’s measurability
theorem (see [11, Theorem II.1.2]), this implies that it is enough to show that for all f ∈ E∗,
f ◦ Φ is a measurable complex-valued function. By [8, Theorems 19.1, 18.14, 19.2] we get
that K(H0,G0)

∗, S1(H0,G0)
∗ and S2(H0,G0)

∗ are respectively isometrically isomorphic to
S1(H0,G0), Lb(H0,G0) and S2(H0,G0) and the duality relation can be defined on E × E∗ as
(Ψ,Θ) 7→ Tr(ΘHΨ). This means that we only have to show measurability of the complex-
valued functions t 7→ Tr(ΘHΦ(t)) for all Θ ∈ E∗. Let (φk)k∈N, (ψk)k∈N be Hilbert basis of H0

and G0 respectively, then Tr(ΘHΦ(t)) =
∑

k∈N
〈Φ(t)φk,Θψk〉G0

which defines a measurable
function of t by simple measurability of Φ.

Proof of Lemma 2.3. The first point comes from the fact that for all A ∈ X , ν(A) �
ν(X). Now, if ν is trace-class, then (2.4) is easily verified for the norm ‖·‖1 using the fact
that ‖·‖1 = Tr(·) for positive operators. Finally, by definition of ‖ν‖1, regularity of ‖ν‖1 is
equivalent to regularity of ν as a S1(H0)-valued measure which clearly implies regularity of
yHνx for all x, y ∈ H0. Suppose now that for all x, y ∈ H0, y

Hνx is regular, then let (ek)k∈N be
a Hilbert-basis of H0, and define for all n ∈ N, the non-negative measure µn :=

∑n
k=0 e

H

kνek
such that for all A ∈ X , ‖ν‖1(A) = limn→+∞ µn(A) = supn∈N

µn(A). Then by Vitali-Hahn-
Sakh-Nikodym’s theorem (see [7]) the sequence (µn)n∈N is uniformly countably additive which
implies regularity of ‖ν‖1 by [11, Lemma VI.2.13].

Proof of Theorem 2.4. Suppose ‖ν‖1 ≪ µ, then, since S1(H0) is separable and is the
dual of K(H0), it is a separable dual space and [11, theorem III.3.1] gives the existence and
uniqueness of a density g ∈ L1(X,X ,S1(H0), µ) satisfying (2.5). Then for all x ∈ H0, for all
A ∈ X , ∫

A

〈g(t)x,x〉H0
µ(dt) = 〈ν(A)x, x〉H0

≥ 0

and therefore there exists a set Ax ∈ X with µ(A) = 0 and 〈g(t)x,x〉H0
≥ 0 for all t ∈ Acx.

Taking (xn)n∈N a dense countable subset of H0 we get that f is positive on
(⋃

n∈N
Axn

)c

where µ
(⋃

n∈N
Axn

)
= 0 thus proving Assertion (a). Moreover, taking the trace in (2.5) gives

for all A ∈ X ,

‖ν‖1(A) =

∫

A

‖g‖1 dµ

which gives Assertion (b) and implies easily Assertion (c). The converse implication is a
consequence of Assertion (b).
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Proof of Proposition 2.7. The proof is easily derived from the fact that g = dν
d‖ν‖1

‖g‖1
(see Theorem 2.4) and the definition of L

2(X,X ,Lb(H0,G0), ν). Note that ΦgΦH ∈
F(X,X ,S1(G0)) and Φg1/2 ∈ F(X,X ,S2(H0, G0)) by simple-measurability of Φ and g and
Lemma 2.1.

Proof of Proposition 2.8. All theses results, except Relation (2.12), are easily derived from
the characterization of Proposition 2.7 and the module nature of L2(X,X ,S2(H0, G0), µ). We
now prove Relation (2.12). First note that ‖ν‖1({g = 0}) =

∫

{g=0}
‖g‖1 dµ = 0 and therefore

‖ν‖1

(

{Φf1/2 6= 0}
)

= ‖ν‖1

(

{Φf1/2 6= 0} ∩ {g 6= 0}
)

= ‖ν‖1

({

Φf1/2

‖g‖1/21

6= 0

}

∩ {g 6= 0}

)

= ‖ν‖1

(

{Φg1/2 6= 0} ∩ {g 6= 0}
)

≤ ‖ν‖1

(

{Φg1/2 6= 0}
)

which gives inclusion (⊂) of (2.12) since ‖ν‖1 ≪ µ. Conversely, if ‖ν‖1

(

{Φf1/2 6= 0}
)

= 0,

then

µ
(

{Φg1/2 6= 0}
)

= µ
(

{Φf1/2‖g‖1/21 6= 0}
)

= µ
(

{Φf1/2 6= 0} ∩ {g 6= 0}
)

= 0

because 0 = ‖ν‖1

(

{Φf1/2 6= 0}
)

=
∫

{Φf1/2 6=0}
‖g‖1 dµ.

Proof of Proposition 2.9. Since ‖ν‖1({g = 0}) = 0 and g = f‖g‖1, where f = dν
d‖ν‖1

, we
get

‖ν‖1

({

Im(f1/2) 6⊂ D(Φ)
})

= ‖ν‖1

({

Im(f1/2) 6⊂ D(Φ)
}

∩ {g 6= 0}
)

= ‖ν‖1

({

Im(g1/2) 6⊂ D(Φ)
}

∩ {g 6= 0}
)

≤ ‖ν‖1

({

Im(g1/2) 6⊂ D(Φ)
})

which gives (i’) ⇒ (i) since ‖ν‖1 ≪ µ. Conversely, if ‖ν‖1

({

Im(f1/2) 6⊂ D(Φ)
})

= 0, then

µ
({

Im(g1/2) 6⊂ D(Φ)
})

= µ
({

Im(f1/2) 6⊂ D(Φ)
}

∩ {g 6= 0}
)

= 0

because 0 = ‖ν‖1

({

Im(g1/2) 6⊂ D(Φ)
})

=
∫

{Im(g1/2) 6⊂D(Φ)} ‖g‖1 dµ. Hence (i’) ⇔ (i).

Moreover, Equivalences (ii) ⇔ (ii’) and (iii) ⇔ (iii’) and Relation (2.14) are easy con-
sequence of the fact that g = f‖g‖1 and the other results come easily using the definition

of L
2(X,X ,O(H0,G0), ν). Again, note that measurability of Φg1/2 and (Φg1/2)(Φg1/2) are

ensured by O-measurability of Φ, simple measurability of f and Lemma 2.1.

Proof of Theorem 2.10. As for Proposition 2.8, these results come easily using the defini-
tion and Identity (2.16). Relation (2.18) is proven the same way as (2.12).

Proof of Theorem 2.11. In the first two steps of the proof of [20, Theorem 3.4.12], [27,
Theorem 4.22] the authors show that, if Φ ∈ L

2(X,X ,O(H0,G0), ν) and ǫ > 0, there exists Ψ ∈
L2(X,X ,Lb(H0, G0), ‖ν‖1) ⊂ L

2(X,X ,O(H0,G0), ν) such that ‖Φ−Ψ‖
L2(X,X ,O(H0,G0),ν)

< ǫ.

This implies that L2(X,X ,Lb(H0,G0), ‖ν‖1) is dense in L
2(X,X ,O(H0,G0), ν). The other

results follow using (2.20) and density of simple functions and trigonometric polynomials in
L2(X,X ,Lb(H0, G0), ‖ν‖1) (see Theorem B.1).

Proof of Theorem 2.12. For all A,B ∈ X and Φ,Ψ ∈ Lb(H0,G0), we have, by Theo-
rem 2.10,

[1AΦ,1BΨ]
L2(X,X ,O(H0,G0),νW ) = ΦνW (A ∩B)ΨH

= ΦCov (W (A),W (B))ΨH

= Cov (ΦW (A),ΨW (B))

= [ΦW (A),ΨW (B)]G .
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Then Proposition 2.5, applied to J = X×Lb(H0,G0) with v(A,Φ) = 1AΦ and w(A,Φ) = ΦW (A),
gives that there exists a unique gramian-isometry

IG0
W : Span

L
2(X,X ,O(H0,G0),νW )

(1AΨΦ : A ∈ X ,Φ ∈ Lb(H0,G0),Ψ ∈ Lb(G0)) → G

such that for all A ∈ X ,Φ ∈ Lb(H0,G0), I
G
W (1AΦ) = ΦW (A) and, in addition,

Im(IG0
W ) = Span

G
(ΨΦW (A) : A ∈ X ,Φ ∈ Lb(H0,G0),Ψ ∈ Lb(G0)) . (5.1)

Now, note that
Lb(H0,G0) = {ΨΦ : Φ ∈ Lb(H0,G0),Ψ ∈ Lb(G0)} . (5.2)

This gives

Span (1AΨΦ : A ∈ X ,Φ ∈ Lb(H0,G0),Ψ ∈ Lb(G0)) = Span (1AΦ : A ∈ X ,Φ ∈ Lb(H0, G0))

and therefore, by Theorem 2.11,

Span
L
2(X,X ,O(H0,G0),νW )

(1AΨΦ : A ∈ X ,Φ ∈ Lb(H0,G0),Ψ ∈ Lb(G0)) = L
2(X,X ,O(H0,G0), νW ) .

Finally, (5.2) with (5.1) gives

Im(IG0
W ) = Span

G
(ΦW (A) : A ∈ X ,Φ ∈ Lb(H0,G0))

which concludes the proof.

Proof of Theorem 2.13. It is easily seen that the mapping

W :
X → H
A 7→ w(1AIdH0)

defines a c.a.g.o.s. measure on (X,X ,H) with intensity operator measure ν. Then

Cov (W (A),W (B)) = [w(1AIdH0), w(1BIdH0)]H = [1AIdH0 ,1BIdH0 ]L2(X,X ,O(H0),ν)

= ν(A ∩B).

Moreover, we have for all A ∈ X , Φ ∈ Lb(H0), ΦW (A) = Φw(1AId) = w(1AΦId) = w(1AΦ).
Hence by Theorem 2.12, (2.22) holds, which uniquely defines W .

5.2 Proofs of Section 3

Proof of Theorem 3.2. If X is weakly-stationary then, by Lemma 3.1, the family of shifts
(UXh )h∈T is a c.g.u.r. of T on HX . Hence Theorem 2.6 gives that there exists a unique regular
gramian-projection valued measure ξX on (T̂,B(T̂),HX) such that, for all h ∈ T,

UXh =

∫

T̂

χ(h) ξX(dχ) . (5.3)

The mapping

X̂ :
B(T̂) → H
A 7→ ξX(A)X0

is then a c.a.g.o.s. measure on (T̂,B(T̂),HX) and is regular because for all Y ∈ HX ,
〈

X̂(·), Y
〉

HX
= Y HξX(·)X0 is regular. Since HX is gramian isometrically embedded in H, X̂

is also a regular c.a.g.o.s. measure on (T̂,B(T̂),H). Then, from (5.3) we get that for all t ∈ T,

Xt = UXt X0 =

∫

T̂

χ(t) ξX(dχ)X0 =

∫

T̂

χ(t) X̂(dχ) .

To show uniqueness, suppose there exists another regular c.a.g.o.s. measure W
on (T̂,B(T̂),H) satisfying (3.1), then the gramian-isometries IH0

X̂
and IH0

W coincide

on Span (χ 7→ χ(t)Φ : t ∈ T,Φ ∈ Lb(H0)) and therefore, on L
2(T̂,B(T̂),O(H0), νX) ∩
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L
2(T̂,B(T̂),O(H0), νW ) by Theorem 2.11. In particular for all A ∈ X we get W (A) =
IH0
W (1AIdH0) = IH0

X̂
(1AIdH0) = X̂(A).

Relation (3.2) follows from (3.1) and the gramian-isometric property of IH0

X̂
and uniqueness

of νX comes from (3.2) and Theorem B.1.
Finally, we show the converse statement in Theorem 3.2. Suppose that there exists a

regular c.a.g.o.s. X̂ on (T̂,B(T̂),H) satisfying (3.1). Then, the first two points of Definition 1.3
are straightforward and, calling νX the intensity operator measure of X̂ and using the gramian-
isometric property of integration with respect to X̂, we get for all t, h ∈ T, Cov (Xt+h, Xt) =∫

T̂
χ(t+h)χ(t)νX(dχ) =

∫

T̂
χ(h)νX(dχ) which gives the third point of Definition 1.3. Finally,

for all Φ ∈ Lb(H0), for all h ∈ T,

Tr(ΦΓ(h)) = Tr

(

Φ

∫

T̂

χ(h) νX(dχ)

)

=

∫

T̂

χ(h)Tr(ΦfνX (χ)) ‖νX‖1(dχ)

and, since for ‖νX‖1-almost every χ ∈ T̂, |Tr(ΦfνX (χ))| ≤ ‖Φ‖‖fνX (χ)‖1 = ‖Φ‖, we get
continuity of h 7→ Tr(ΦΓ(h)) by Lebesgue’s dominated convergence theorem thus showing the
last point of Definition 1.3.

Proof of Corollary 3.3. By gramian-isometry of integration with respect to X̂ , we get for
all h, t ∈ T, for all Φ,Ψ ∈ Lb(H0,G0),

[ΦXh,ΨXt]H =

[∫

T̂

χ(h)Φ X̂(dχ),

∫

T̂

χ(t)Ψ X̂(dχ)

]

H

= [ehΦ, etΨ]
L2(T̂,B(T̂),O(H0,G0),νX ) .

(5.4)
where et : χ 7→ χ(t) for all t ∈ T. Then, by Proposition 2.5 and Theorem 2.11, there is a
unique gramian-isometry

I : L2(T̂,B(T̂),O(H0,G0), νX) → G

which maps etΦ to ΦXt for all t ∈ T,Φ ∈ Lb(H0,G0) and Im(I) = HX,G0 . Since the mapping
IG0

X̂
: Φ 7→

∫

T̂
ΦdX̂ satisfies this condition we have IG0

X̂
= I thus concluding the proof.

Before proving the results on composition and inversion of filters, let us prove a useful
lemma.

Lemma 5.1. Let H0, G0, I0 be separable Hilbert spaces and A ∈ O(G0, I0), B ∈ K(H0,G0).
The following assertions hold.

(i) Im(
∣
∣BH

∣
∣) = Im(B).

(ii) If Im(B) ⊂ D(A), then (AB)(AB)H = (A
∣
∣BH

∣
∣)(A

∣
∣BH

∣
∣)H.

(iii) If Im(B) ⊂ D(A), then AB ∈ S2(H0, I0) if and only if A
∣
∣BH

∣
∣ ∈ S2(G0, I0). In this case

‖AB‖2 =
∥
∥A
∣
∣BH

∣
∣
∥
∥
2
.

Proof. Let us consider the singular values decomposition B =
∑

n∈N
σnψn⊗φn, then

∣
∣BH

∣
∣ =

∑

n∈N
σnψn ⊗ ψn .

Proof of (i). We have Im(B) =
{∑

n∈N
σnxnψn : (xn)n∈N ∈ ℓ2(N)

}
= Im(

∣
∣BH

∣
∣).

Proof of (ii). By the first point both composition AB and A
∣
∣BH

∣
∣ make sense. Consider the

polar decomposition of BH : BH = U
∣
∣BH

∣
∣, then B =

∣
∣BH

∣
∣UH and we get

(AB)(AB)H = (A
∣
∣
∣B

H

∣
∣
∣)U

HU(A
∣
∣
∣B

H

∣
∣
∣)

H = (A
∣
∣
∣B

H

∣
∣
∣)Pker(|BH|)⊥(A

∣
∣
∣B

H

∣
∣
∣)

H = (A
∣
∣
∣B

H

∣
∣
∣)(A

∣
∣
∣B

H

∣
∣
∣)

H

because
∣
∣BH

∣
∣Pker(|BH|)⊥ =

∣
∣BH

∣
∣.

Proof of (iii).We have that AB ∈ S2(H0, I0) if and only if (AB)(AB)H ∈ S1(I0), which is
equivalent to A

∣
∣BH

∣
∣ ∈ S2(G0, I0) by the previous point.

Proof of Theorem 3.4. Let µ be a dominating measure for ‖ν‖1 and g = dν
dµ

, then, by

definition of ΦνΦH, µ also dominates
∥
∥ΦνΦH

∥
∥
1

and dΦνΦH

dµ
= (Φg1/2)(Φg1/2)H. Hence,
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(
dΦνΦH

dµ

)1/2

=
∣
∣
∣(Φg1/2)H

∣
∣
∣ and we get, by Proposition 2.9,

Ψ ∈ L
2(X,X ,O(H0, I0),ΦνΦ

H) ⇔







Im
∣
∣
∣(Φg1/2)H

∣
∣
∣ ⊂ D(Ψ) µ-a.e.

Ψ
∣
∣
∣(Φg1/2)H

∣
∣
∣ ∈ L2(X,X ,S2(G0, I0), µ)

⇔

{

Img1/2 ⊂ D(ΨΦ) µ-a.e.

ΨΦg1/2 ∈ L2(X,X ,S2(H0, I0), µ)

⇔ ΨΦ ∈ L
2(X,X ,O(H0, I0), ν)

where the second equivalence comes from Lemma 5.1 and the fact that t ∈ X, D(Ψ(t)Φ(t)) =
Φ(t)−1(D(Ψ(t))) which gives that Im(g1/2(t)) ⊂ D(Ψ(t)Φ(t)) if and only if Im(Φ(t)g1/2(t)) ⊂
D(Ψ(t)). Moreover, Assertion (a) holds because for all Ψ,Θ ∈ L

2(X,X ,O(G0, I0),ΦνΦ
H)

and A ∈ X ,

(ΨΦ)ν(ΘΦ)H(A) =

∫

A

(

ΨΦg1/2
)(

ΘΦg1/2
)H

dµ

=

∫

A

(

Ψ
∣
∣
∣(Φg

1/2)H
∣
∣
∣

) (

Θ
∣
∣
∣(Φg

1/2)H
∣
∣
∣

)
H

dµ (by lemma 5.1)

= Ψ(ΦνΦH)ΘH(A)

which also gives Assertion (b) by taking A = X. Finally, to show Assertion (c), suppose that
Φ is injective ‖ν‖1-a.e. then Φ−1Φ : λ 7→ IdH01{Φ(λ) is injective} is in L

2(T,B(T),O(H0), ν)
which gives that Φ−1 ∈ L

2(T,B(T),O(G0,H0),ΦνΦ
H) by Assertion (a).

Proof of Corollary 3.5. This is a clear consequence of Assertion (b) of Theorem 3.4 and
Theorem 2.12.

Proof of Corollary 3.6. If W ∈ ŜΦ, then the equivalence between W ∈ ŜΨΦ and F̂Φ(W ) ∈
ŜΨ is just another formulation of the equivalence (3.4). Moreover, as explained in Remark 3.1,
showing (3.6) is equivalent to showing (3.7) with V = F̂Φ(W ) and A ∈ X .

We first prove (3.7) for Ψ of the form Ψ = Θ1B with Θ ∈ Lb(G0, I0) and B ∈ X . Calling
C = A ∩B, (3.7) becomes

Θ

(∫

C

Φ(λ)W (dλ)

)

=

∫

C

ΘΦ(λ)W (dλ) . (5.5)

When I0 = G0 this identity comes from the fact that the integral with respect toW is Lb(G0)-
linear. When I0 6= G0, we have to show it by hand. Using the notations IG0

W and II0
W , Relation

(5.5) is equivalent to
II0
W (1CΘΦ) = ΘIG0

W (1CΦ) (5.6)

If Φ is of the type Φ = Λ1D with Λ ∈ Lb(H0,G0) and D ∈ X , then ΘΛ ∈ Lb(H0, I0) and we
immediately get

II0
W (ΘΦ) = II0

W (ΘΛ1D) = ΘΛW (D) = ΘIG0
W (Λ1D) = ΘIG0

W (Φ)

This property extends to the case Φ is a simple Lb(H0,G0)-valued function by linearity and
if Φ ∈ L

2(X,X ,O(H0, G0), ν), Theorem 2.11 gives that there exists a sequence (Φn)n∈N of
simple Lb(H0,G0)-valued functions converging to Φ in L

2(X,X ,O(H0,G0), ν). Hence, calling
f = dν

d‖ν‖1
, we get

‖ΘΦ−ΘΦn‖
2
L2(X,X ,O(H0,I0),ν)

=

∫ ∥
∥
∥Θ(Φ−Φn)f

1/2
∥
∥
∥

2

2
d‖ν‖1

≤ ‖Θ‖

∫ ∥
∥
∥(Φ− Φn)f

1/2
∥
∥
∥

2

2
d‖ν‖1

= ‖Θ‖‖Φ−Φn‖
2
L2(X,X ,O(H0,G0),ν)

−−−−−→
n→+∞

0 .

Since for all n ∈ N, II0
W (ΘΦn) = IG0

W (Φn) and by continuity of II0
W and IG0

W , we finally get

(5.6), that is (3.7) for V = F̂Ψ(W ) where Ψ has the form Ψ = Θ1B with Θ ∈ Lb(G0, I0)
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and B ∈ X . By linearity, it follows that (3.7) still holds with V = F̂Φ(W ) and all simple
Lb(G0, I0)-valued function Ψ.

Finally, if Ψ ∈ L
2(X,X ,O(G0, I0), ν), then, by Theorem 2.11, there exists a sequence

(Ψn)n∈N of simple Lb(G0, I0)-valued functions converging to Ψ in L
2(X,X ,O(G0, I0), ν). Since

Ψ 7→ ΨΦ is a gramian-isometry from L
2(X,X ,O(G0, I0), νV ) to L

2(X,X ,O(H0, I0), νW ) (see
Theorem 3.4), the sequence (ΨnΦ)n∈N then converges to ΨΦ in L

2(X,X ,O(H0, I0), νW ) and
by continuity of the stochastic integral we get

∫

A

ΨdV = lim
n→+∞

∫

A

ΨndV = lim
n→+∞

∫

A

ΨnΦdW =

∫

A

ΨΦdW .

Proof of Corollary 3.7. As usual, we call νV = ΦνΦH the spectral operator measure of V .
Supposing that Φ is injective ‖νW ‖1-a.e, Assertions (c) and (a) of Theorem 3.4, give that

Φ−1 ∈ L
2(X,X ,O(G0,H0), νV ) (i.e. V ∈ ŜΦ−1) and Φ−1νV

(
Φ−1

)H
= νW . Hence, writing

Relation (3.6) with Ψ = Φ−1, we get F̂Φ−1(V ) = F̂Φ−1Φ(W ) = W . Then, reversing the roles
of W and V in Corollary 3.5 gives the reciprocal ⊇

∼ in (3.5).

6 Additional comments

6.1 Bochner’s and Stone’s theorems and their generalizations

to normal Hilbert modules

In the following, we consider an l.c.a. group (T,+) and a Hilbert space H0. We discuss
here the relations between Bochner’s and Stone’s theorem and their generalizations for the
functional case.

Definition 6.1 (Hermitian non-negative definite function). A function γ : T → C defined on
an l.c.a. group (T,+) is said to be hermitian non-negative definite if for all n ∈ N, t1, · · · , tn ∈
T and a1, · · · , an ∈ C,

n∑

i,j=1

aiajγ(ti − tj) ≥ 0.

Theorem 6.1 (Bochner). Let T be an l.c.a. group and γ : T → C be a continuous hermitian
non-negative definite function. Then there exists a unique regular finite non-negative measure
µ on (T̂,B(T̂)) such that

γ(h) =

∫

T̂

χ(h)µ(dχ), h ∈ T. (6.1)

Theorem 6.2 (Stone). Let T be an l.c.a. group and U :
T 7→ Lb(H0)
t 7→ Ut

be a c.u.r. of

T on a Hilbert space H0. Then there exists a unique regular projection-valued measure ξ on
(T̂,B(T̂)) such that

Uh =

∫

T̂

χ(h) ξ(dχ), h ∈ T. (6.2)

Stone’s theorem can be seen as a generalization of Bochner’s theorem for operator-valued
functions. However, it is not necessary to restrict ourselves to unitary representations of T on
H0 and, using an appropriate definition for hermitian non-negative definite operator-valued
functions, one can show that Bochner’s theorem still holds. We introduce the two following
definitions which will be proved to be equivalent.

Definition 6.2 (Hermitian non-negative definite operator-valued function). Let (T,+) be an
l.c.a. group and H0 a Hilbert space. Then a function Γ : T → Lb(H0) is said to be hermitian
non-negative definite if for all n ∈ N, t1, · · · , tn ∈ T and a1, · · · , an ∈ C,

n∑

i,j=1

aiajΓ(ti − tj) � 0.

Equivalently, Γ is hermitian non-negative definite if and only if for all x ∈ H0, t 7→
〈Γ(t)x, x〉H0

is hermitian non-negative definite.
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Definition 6.3 (Positive-type operator-valued function). Let (T,+) be an l.c.a. group and
H0 a Hilbert space. Then a function Γ : T → Lb(H0) is said to be of positive-type if for all
n ∈ N, t1, · · · , tn ∈ T and x1, · · · , xn ∈ H0,

n∑

i,j=1

〈Γ(ti − tj)xi, xj〉H0
≥ 0.

It is straightforward to see that a positive-type operator-valued function is hermitian non-
negative definite. The other implication is not as easy to prove and will be discussed below.
Note that unitary representations are hermitian non-negative definite and therefore Stone’s
theorem is, indeed, a generalization of Bochner’s theorem for a particular type of hermi-
tian non-negative definite operator-valued functions. As a full generalization, the following
theorem holds.

Theorem 6.3. Let (T,+) be an l.c.a. group, H0 a Hilbert space and Γ : T → Lb(H0)
continuous for the w.o.t. Then the following propositions are equivalent

(i) Γ is hermitian non-negative definite.

(ii) Γ is of positive-type.

(iii) There exists a regular p.o.v.m. ν on (T̂,B(T̂),H0) such that

Γ(h) =

∫

T̂

χ(h) ν(dχ), h ∈ T. (6.3)

Moreover ν is the unique regular p.o.v.m. satisfying (6.3).

These results, as well as Stone’s theorem for normal Hilbert modules (see Theorem 2.6)
can be proven in different ways, each of which exhibits a specific interest. They also emphasize
close relations between these concepts as it turns out that almost every result can be obtained
as a consequence of any of the others. As a summary, Figure 1 gives a graphical representation
of some interesting implications found in the literature. Arrows with the same color indicate
a path of implications usually followed by one or several authors. A few comments on such
paths are needed.

• Bochner’s and Stone’s theorems can be derived on their own using Fourier theory and
Riesz-Markov’s representation theorem.

• The proofs of Bochner’s theorem from Stone’s theorem (in cyan) and Naimark’s moment
theorem from the generalization of Stone’s theorem (in brown) use very similar concepts.

• These concepts are closely related to dilation theory (see [37, 3], [16, Section 8]) which
is used in [29] to prove Naimark’s moment theorem (in green).

• A particular proof of Stone’s theorem from Bochner’s theorem (in blue) is common in the
literature. The proof consists in showing (1.6) when Γ is an u.r. and then proving that
the p.o.v.m. ν obtained is actually a projection-valued measure. In fact, the hypothesis
that Γ is an u.r. is only useful to show that ν is projection-valued and not to show (1.6).
This means that this proof contains a proof of Bochner’s theorem for operators as we
explicitly represented in blue.

• Concerning the generalization of Bochner’s theorem (Theorem 6.3), two results can
be found depending on the hypothesis made on the function Γ (hermitian non-negative
definite or of positive type). The most general is (i) ⇒ (iii) and it is proven (as discussed
in the previous point) in a simpler way (without using modules nor dilation theory) than
the other implication ((ii) ⇒ (iii)). The converse implications are often omitted or stated
without proof and the equivalence of Theorem 6.3 is not common in the literature, but
can be found in [3]. The implication (iii) ⇒ (i) is easily verified using simple properties
of p.o.v.m. but (iii) ⇒ (ii) does not seem trivial to show. In [3, Theorem 2], the author
provides a proof which makes use of dilation theory. This can be avoided using the fact
that, if ν is a p.o.v.m. on (X,X ,H0), then for all n ∈ N

∗, and x1, · · · , xn ∈ H0, the
mapping

µ : A 7→






〈ν(A)x1, x1〉H0
· · · 〈ν(A)xn, x1〉H0

...
. . .

...
〈ν(A)x1, xn〉H0

· · · 〈ν(A)xn, xn〉H0
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Fourier theory on groups
and Riesz-Markov

representation theorem

Bochner’s theorem
(Theorem 6.1)

Stone’s theorem
(Theorem 6.2)

Bochner’s theorem
for operators

(Theorem 6.3 (i) ⇒ (iii))

Naimark’s moment theorem
(Theorem 6.3 (ii) ⇒ (iii))

Stone’s theorem for
modules (Theorem 2.6)

[26, §36E]

Using [16, Theorem 8.1]

[1, 2, 35, 3], [16, §VI]

[34, §1.4.3]

[20, Prop 2.5.4]

[20, Prop 2.5.5]

[29]
Obvious

Figure 1: Possible proof paths between the principal results and related concepts.

defines a p.o.v.m. on (T̂,B(T̂),Cn×n) (i.e. a hermitian non-negative matrix valued
measure). Then, using the results of [33, Section 2] we get that for all i, j ∈ J1, nK,
µi,j : A 7→ [µ(A)]i,j admits a density fi,j with respect to the non-negative fi-
nite measure ‖µ‖1 : A 7→ ‖µ(A)‖1 = Tr(µ(A)) and that the matrix-valued func-
tion f : χ 7→ (fi,j(χ))1≤i,j≤n is ‖µ‖1-a.e. hermitian, non-negative. Using this, if
Γ : h 7→

∫

T̂
χ(h) ν(dχ), we get for all n ∈ N

∗, t1, · · · , tn ∈ T and x1, · · · , xn ∈ H0

n∑

i,j=1

〈Γ(ti − tj)xi, xj〉H0
=

n∑

i,j=1

∫

T̂

χ(ti)χ(tj)µi,j(dχ)

=

n∑

i,j=1

∫

T̂

χ(ti)χ(tj)fi,j(χ) ‖µ‖1(dχ)

=

∫

T̂

n∑

i,j=1

χ(ti)χ(tj)fi,j(χ)

︸ ︷︷ ︸

≥0 ‖µ‖1-a.e.

‖µ‖1(dχ)

≥ 0 .
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6.2 An alternative construction of spectral representation for

functional weakly-stationary processes

In Section 6.1, we saw that Bochner’s theorem can be generalized to operator-valued non-
negative definite functions. This result can be used to get the same results as in Theorem 3.2
but in a different order. Let (Ω,F ,P) be a probability space and (T,+) an l.c.a. group. Let
H0 be a separable Hilbert space and set H = M(Ω,F ,H0,P). Let X := (Xt)t∈T be a cen-
tered weakly stationary H0-valued process. Then it is easy to verify that the autocovariance
operator function ΓX is hermitian non-negative definite and continuous for the w.o.t. Hence,
by Theorem 6.3, there exists a unique regular p.o.v.m. νX of (T̂,B(T̂),H0) which satisfies
(3.2). Since νX(T̂) = Γ(0) ∈ S1(H0), νX is a trace-class p.o.v.m. by Lemma 2.3. Now, call
et : χ 7→ χ(t) for all t ∈ T, then, for all h, t ∈ T, for all Φ,Ψ ∈ Lb(H0),

[ΦXh,ΨXt]H = ΦΓ(h− t)ΨH = Φ

(∫

T̂

χ(h− t)ν(dχ)

)

ΨH = [ehΦ, etΨ]
L2(T̂,B(T̂),O(H0),νX) .

Then, by Proposition 2.5 and Theorem 2.11, there is a unique gramian-isometry

I : L2(T̂,B(T̂),O(H0), νX) → H

which maps etΦ to ΦXt for all t ∈ T,Φ ∈ Lb(H0) and Im(I) = HX . Using Theorem 2.13, we
get that there exists a unique c.a.g.o.s. measure X̂ on (T̂,B(T̂),H) with intensity operator
measure νX such that for IH0

X̂
= I . In particular, Relation (3.1) holds and X̂ is regular

because νX is a regular trace class p.o.v.m.

Remark 6.1. In link with Remark 1.3, it is interesting to note that, in this proof, we use
a milder notion of continuity for ΓX (continuity for the s.o.t.). In fact, the last part of the
proof of Theorem 3.2 shows that, in order to have weak-continuity of ΓX , it is enough to have
Relation (3.2) which can be obtained using only continuity for the s.o.t. We can therefore state
the two following results

1. A hermitian non-negative definite operator-valued function Γ : T → Lb(H0) such that
Γ(0) ∈ S1(H0) is weakly continuous if and only if it is continuous for the s.o.t.

2. An L2, H0-valued process X = (Xt)t∈T is weakly-stationary if and only if for all x ∈ H0,
the L2, complex-valued process (〈Xt, x〉H0

)t∈T is weakly-stationary.

6.3 Comparison with recent approaches

Recently, R1, R2 and the problem of defining filtering in the spectral domain have been
addressed for the case T = Z in [38] under additional assumptions. An attempt at relaxing
these assumption was proposed in [40]. We list here and comment the principal results on
spectral analysis presented in [38], [40].

About R1 : With the additional assumption that
∑

h∈Z
‖ΓX(h)‖ < +∞, [38, Proposition

2.3.5] states that R1 holds with νX(dλ) = fX (λ)dλ where

fX(λ) =
1

2π

∑

t∈Z

e−itλΓX(t) ∈ S+
1 (H0) ,

where the series converges in ‖·‖. This result restricts the whole spectral theory to the case
where the spectral operator measure admits a density with respect to Lebesgue’s measure on
(−π, π] and the existence of such a density is proven under restrictive summability conditions
on the autocovariance operator. With this result, we cannot study processes with seasonal
components (whose spectral measure have atoms and therefore no density with respect to
Lebesgue’s measure) or long-memory processes (for which

∑

h∈Z
‖ΓX(h)‖ = +∞). In [40],

R1 is proved without the summability assumption but the measure νX is constructed via
compactification of L+

b (H0). This compactification makes it possible to define “infinite”
operator measures which is not necessary here because p.o.v.m.’s theory is sufficient and
makes the construction easier as discussed in Section 6.1.

About R2 : Assuming νX has a density fX with respect to Lebesgue’s measure on (−π, π],
such that fX ∈ Lp((−π, π],B((−π, π]),S1(H0)) for some p ∈ (1,+∞], [38, Theorem 2.4.3]
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provides the Stieltjes integral representation for all t ∈ Z,

Xt =

∫ π

−π

eitλ dZλ P-a.e., (6.4)

where λ 7→ Zλ has orthogonal increments. This result is provided without assuming exis-
tence of a density with respect to Lebesgue’s measure in [40] and is equivalent to R2 with
X̂((−π, λ]) = Zλ which becomes a c.a.o.s. measure. In [38, Theorem 2.5.1], the author con-
structs a space (denoted by H) similar to L

2((−π, π],B((−π, π]),O(H0), νX) and proves the
isometric property of the spectral representation. The difference with the results we present in
Sections 2 and Section 3 is that, by making the module structure of M(Ω,F ,H0,P) explicit,
we believe that the construction is clearer and that the objects constructed can be fully charac-
terized. For example, we state in Corollary 3.3 that the spectral representation X̂ is a c.a.g.o.s.
measure and not only a c.a.o.s. measure and that it defines a gramian-isometry. Moreover,
the space H of [38] is constructed as the completion of a pre-Hilbert space, that is a quotient
space of Cauchy sequences, which provides little intuition on the space of transfer functions
one can consider for filtering. On the contrary, the space L

2((−π, π],B((−π, π]),O(H0), νX)
is a space of operator-valued functions which is easier to imagine.

6.4 On the completeness of L2(X,X ,Lb(H0,G0), ν)

In Section 2.5, we have defined the normal pre-Hilbert Lb(H0)-module L2(X,X ,Lb(H0,G0), ν)
of square-integrable bounded-operator-valued functions. In the univariate case, this corre-
sponds to L2(X,X , νX) which is a Hilbert space. In the multivariate case, where H0 and G0

have finite dimensions, the completeness of L2(X,X ,Lb(H0,G0), ν) is proven in [33]. However
completeness is not guaranteed in the infinite dimensional case, see [27], where the authors
refer to [25] for a counter-example. We complete this line of thoughts by providing a necessary
and sufficient condition for the completeness of L2(X,X ,Lb(H0,G0), ν) in the general case.

Theorem 6.4. Let H0, G0 be separable Hilbert spaces, (X,X ) a measurable space, ν a trace-
class p.o.v.m. on (X,X ,H0) and f = dν

d‖ν‖1
. Then L

2(X,X ,Lb(H0,G0), ν) is complete for

the gramian defined in Proposition 2.8 if and only if rank(f) is finite ‖ν‖1-a.e. In this case,

rank
(

dν
dµ

)

is finite µ-a.e. for all finite non-negative measure µ which dominates ‖ν‖1.

Proof. The proof of the fact that we can take µ instead of ‖ν‖1 uses the same arguments we
used to prove Relation (2.12) and will be omitted. Now, let us consider that f is a representing
function of the density which is in S+

1 (H0) everywhere and let A := {rankf < +∞} which is in
X by measurability of the rank (see Proposition A.1) and of f . Then by [18, Theorem 3.1.3],
we have A = {Imf1/2 is closed}. We show successively that ‖ν‖1(A

c) = 0 is a necessary
condition for completeness of L2(X,X ,Lb(H0,G0), ν) and then that it is sufficient.
Proof of necessity. Suppose that L2(X,X ,Lb(H0,G0), ν) is complete and that ‖ν‖1(A

c) 6= 0.
Then in order to get a contradiction, we will follow the following two steps.

Step 1 Construct a function Ψ ∈ L2(X,X ,S2(H0,G0), ‖ν‖1) ⊂ L
2(X,X ,Lb(H0,G0), ν) such

that
for all t ∈ Ac, Ψ(t) /∈

{

Φf(t)1/2 : Φ ∈ Lb(H0, G0)
}

. (6.5)

Step 2 Construct a sequence (Φn)n∈N ∈ L
2(X,X ,Lb(H0,G0), ν)

N such that Φnf
1/2 converges

to Ψ in L2(X,X ,S2(H0,G0), ‖ν‖1).

Let us explain why these two steps lead to a contradiction. Step 2 implies that (Φnf
1/2)n∈N

is Cauchy in L2(X,X ,S2(H0,G0), ‖ν‖1) which, by the gramian-isometric property shown in
Proposition 2.8, means that (Φn)n∈N is Cauchy in L

2(X,X ,Lb(H0,G0), ν). Since we as-
sumed completeness, there exists Φ ∈ L

2(X,X ,Lb(H0,G0), ν) such that Φn converges to Φ
in this space, which, again by Proposition 2.8, means that Φnf

1/2 converges to Φf1/2 in
L2(X,X ,S2(H0,G0), ‖ν‖1) and thus Φf1/2 = Ψ ‖ν‖1-a.e. contradicting (6.5).

We now provide the constructions previously described.
Step 1 By Proposition A.1 and composition of measurable functions, we know that the func-
tions t 7→ λi(t) are measurable where λi(t) is the i-th eigenvalue of f(t)1/2 (in decreasing order
with the convention of Appendix A.1). Moreover, Proposition A.1 (and again composition
of measurable functions) also gives that there exists a family of measurable functions (ψi)i∈N
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from X to H0 such that for all t ∈ X, (ψi(t))i∈N is an orthonormal sequence of eigenvectors
associated to the eigenvalues (λi)i∈N. Define

y : t 7→
∑

n∈N

ℓn(t)ψn(t)

with ℓn(t) = C(t)−1λn(t) where C(t) =
(∑

n∈N
λn(t)

2
)1/2

so that ‖y(t)‖H0
= 1. And let

Ψ : t 7→ u⊗ y(t)

where u ∈ G0 with ‖u‖G0
= 1. Then Ψ ∈ L2(X,X ,S2(H0,G0), ‖ν‖1) because for all t ∈ X,

‖Ψ(t)‖2 = 1.
We conclude by reasoning by contradiction. Suppose that (6.5) does not hold and take

t ∈ Ac and Φ ∈ Lb(H0,G0) such that Ψ(t) = Φf(t)1/2. Then we have that y(t)⊗u = Ψ(t)H =
f(t)1/2ΦH and thus

y(t) = (y(t)⊗ u) (u) = f(t)1/2ΦHu ∈ Im(f(t)1/2) .

This means that there exists x ∈ H0 such that y(t) = f(t)1/2x and we get for all n ∈ N,

C(t)−1λn(t) = ℓn(t) =
〈

f(t)1/2x, ψn(t)
〉

H0

=
〈

x, f(t)1/2ψn(t)
〉

H0

= λn(t) 〈x,ψn(t)〉H0
.

In particular λn(t) > 0 implies 〈x,ψn(t)〉H0
= C(t)−1. Since rankf(t) = +∞, we know that

λn(t) > 0 for all n ∈ N and thus get that ‖x‖H0
= +∞, which is impossible.

Step 2 Define

Φn : t 7→ C(t)−1u⊗
n∑

k=0

ψk(t) .

Then Φn ∈ L2(X,X ,Lb(H0,G0), ‖ν‖1) and Φn(t)f
1/2(t) = u⊗

∑n
k=0 ℓk(t)ψk(t). Then for all

t ∈ X,
∥
∥
∥Ψ(t)−Φn(t)f

1/2(t)
∥
∥
∥

2

2
=

+∞∑

k=n+1

ℓk(t)
2 ,

which tends to 0 as n→ +∞ and is bounded by 1. Hence by Lebesgue’s dominated converge
theorem ∫ ∥

∥
∥Ψ− Φnf

1/2
∥
∥
∥

2

2
d‖ν‖1 −−−−−→

n→+∞
0 .

Proof of sufficiency. Suppose that ‖ν‖1(A
c) = 0, i.e. that Imf1/2 is closed ‖ν‖1-a.e. and

consider that f1/2 is a representing function of the density which has closed range everywhere.
Let (Φn)n∈N be a Cauchy sequence in L

2(X,X ,Lb(H0,G0), ν) and define for all n ∈ N, Ψn =
Φnf

1/2. Then, by Proposition 2.8, (Ψn)n∈N is a Cauchy sequence in L2(X,X ,S2(H0,G0), ‖ν‖1)
which is complete, hence Ψ = limn→+∞ Ψn exists in L2(X,X ,S2(H0,G0), ‖ν‖1). This implies
that there exists a subsequence (Ψφ(n))n∈N of (Ψn)n∈N which converges ‖ν‖1-a.e. to Ψ. More
explicitly, there exists B ∈ X , with ‖ν‖1(B

c) = 0 such that Ψφ(n)(t) −−−−−→
n→+∞

Ψ(t) for all

t ∈ B. Let t ∈ B, then for all x ∈ G0,

Ψ(t)Hx = lim
n→+∞

f(t)1/2ΦH

nx ∈ Imf(t)1/2 = Imf(t)1/2 .

Hence ImΨ(t)H ⊂ Imf(t)1/2 ⊂ D
(

f(t)1/2
)−

where
(

f(t)1/2
)−

is the generalized inverse of

f(t)1/2 (see Appendix A.3). This means that we can define

Θ(t) :=
(

f(t)1/2
)−

Ψ(t)H ∈ Lb(G0,H0) .

Defining Θ(t) = 0 for t ∈ Bc, we get that Θ ∈ Fs (X,X ,G0,H0). This implies that the function
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Φ : t 7→ Θ(t)H is in Fs (X,X ,H0,G0) and we have
∫ ∥
∥
∥Φ(t)f(t)

1/2
∥
∥
∥

2

2
‖ν‖1(dt) =

∫ ∥
∥
∥f(t)

1/2Θ(t)
∥
∥
∥

2

2
‖ν‖1(dt)

=

∫

A

∥
∥
∥
∥
f(t)1/2

(

f(t)1/2
)−

Ψ(t)

∥
∥
∥
∥

2

2

‖ν‖1(dt)

=

∫

A

∥
∥
∥PImf(t)1/2Ψ(t)

∥
∥
∥

2

2
‖ν‖1(dt)

=

∫

A

‖Ψ(t)‖22 ‖ν‖1(dt)

< +∞ .

Hence Φ ∈ L
2(X,X ,Lb(H0,G0), ν). Finally

‖Φ− Φn‖
2
L2(X,X ,Lb(H0,G0),ν)

=

∫ ∥
∥
∥Φf

1/2 − Φnf
1/2
∥
∥
∥

2

2
d‖ν‖1

=

∫ ∥
∥
∥f

1/2Θ− f1/2ΦH

n

∥
∥
∥

2

2
d‖ν‖1

=

∫

A

∥
∥
∥Ψ

H −ΨH

n

∥
∥
∥

2

2
d‖ν‖1

=

∫

A

‖Ψ−Ψn‖
2
2 d‖ν‖1

−−−−−→
n→+∞

0

that is, (Φn)n∈N converges to Φ in L
2(X,X ,Lb(H0,G0), ν) thus concluding the proof of com-

pleteness of L2(X,X ,Lb(H0,G0), ν).

A Useful functional analysis results

A.1 Diagonalization of compact positive operators and mea-

surability results

Let H0 be a separable Hilbert space and Φ ∈ Lb(H0). Then λ ∈ C is said to be an eigenvalue
of Φ if ker(Φ−λId) 6= {0}. If λ is an eigenvalue of Φ, we say that ker(Φ−λId) is the associated
eigensubspace and its dimension is called the multiplicity of λ. We denote by specp(Φ) the set
of eigenvalues of Φ (called the point spectrum of Φ). Φ is said to be diagonalizable if H0 has a
Hilbert-basis of eigenvectors of Φ. If Φ ∈ K(H0) and is auto-adjoint, then it is diagonalizable
and specp(Φ) is at most discrete, every non-zero eigenvalue has finite dimension and eigensub-
space associated to different eigenvalues are orthogonal. We denote by Nsp(Φ) the cardinal
of specp(Φ) which is finite if and only if rank(Φ) < +∞ and if not, then specp(Φ) admits 0
as its unique accumulation point (equivalently, this means that any way of representing the
elements of specp(Φ) gives a sequence converging to 0).

In order to have a representation which takes into account both cases we add zeros at the
end of the sequence in the case where Nsp(Φ) < +∞. This way, we can always represent the
eigenvalues of Φ as a sequence converging to 0. When Φ ∈ K+(H0) all its eigenvalues are
non-negative and it is convenient to represent them in decreasing order which, in the case
where Nsp(Φ) = +∞, gives a sequence of strictly positive numbers decreasing to 0 even if
0 ∈ specp(Φ). We will denote by (λi(Φ))i∈N such a sequence of distinct eigenvalues, that is if
Nsp(Φ) < +∞, then λ0(Φ) > λ1(Φ) > · · · > λNsp(Φ)(Φ) > 0 and λi(Φ) = 0 for all i > Nsp(Φ)
and if Nsp(Φ) = +∞, then λ0(Φ) > λ1(Φ) > · · · > 0. In the latter case, one need to keep
in mind the fact that 0 can be an eigenvalue even if it is not represented in the sequence.
Using this representation (λi(Φ))i∈N, we will also denote by mi(Φ) the multiplicity of λi(Φ)
and by Πi(Φ) the orthogonal projection onto ker(Φ−λi(Φ)Id) for all i ∈ N. Finally we define
(αi(Φ))i∈N the piecewise constant sequence obtained by repeating the values of (λi(Φ))i∈N as
often as their multiplicities. With these notations we can write

Φ =
∑

i∈N

λi(Φ)Πi(Φ) (A.1)
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where the series converges in operator norm, and if Φ 6= 0,

Id = Pker(Φ) + PIm(Φ) = Pker(Φ) +
∑

0≤i<Nsp(Φ)

Πi (A.2)

where, if Nsp(Φ) = +∞, the series converges in s.o.t. (If Φ = 0 we have Id =
Pker(Φ) = Πi for all i ∈ N). Moreover the following measurability properties hold (re-
call that the notion of simple measurability is defined in Section 2.1 and B(K+(H0)) =
{
A ∩ K+(H0) : A ∈ B(K(H0))

}
).

Proposition A.1. The following assertions hold for all i ∈ N.

(i) αi : Φ 7→ αi(Φ) is measurable from (K+(H0),B(K
+(H0))) to (R+,B(R+)).

(ii) mi : Φ 7→ mi(Φ) is measurable from (K+(H0),B(K
+(H0))) to (N,P(N)).

(iii) λi : Φ 7→ λi(Φ) is measurable from (K+(H0),B(K
+(H0))) to (R+,B(R+)).

(iv) rank : Φ 7→ rank(Φ) is measurable from (K+(H0),B(K
+(H0))) to (N,P(N)).

(v) Nsp : Φ 7→ Nsp(Φ) is measurable from (K+(H0),B(K
+(H0))) to (N,P(N)).

(vi) Πi : Φ 7→ Πi(Φ) is simply measurable from (K+(H0),B(K
+(H0))) to Lb(H0).

(vii) Φ 7→ Pker(Φ) is simply measurable from (K+(H0),B(K
+(H0))) to Lb(H0).

(viii) There exists a family (ψi)i∈N of functions ψi : Φ 7→ ψi(Φ) which are measurable from
(K+(H0),B(K

+(H0))) to (H0,B(H0)) such that ∀Φ ∈ K+(H0), (ψi(Φ))i∈N is orthonor-
mal and ∀i ∈ N, ψi(Φ) ∈ ker(Φ− λi(Φ)Id).

Proof. We follow the ideas of the proofs of [27, Theorem 2.10] and [20, Lemma 3.4.7].
Proof of (i). By [20, Lemma 3.4.6], for all n ∈ N and all Φ ∈ K+(H0),

n∑

i=0

αi(Φ) = max

{
n∑

i=0

〈Φxi, xi〉H0
: (x0, · · · , xn) is orthonormal

}

and therefore
∑n
i=0 αi is measurable from (K+(H0),B(K

+(H0))) to (R,B(R)). Then using

αi =
∑i
j=1 αj −

∑i−1
j=1 αj we get measurability of αi for all i ∈ N.

Proof of (ii). By definition, for all Φ ∈ K+(H0), m0(Φ) = inf {j ∈ N : αj(Φ) 6= αj+1(Φ)}
with the convention inf ∅ = +∞ and for all i ∈ N

∗,

mi(Φ) =

{

inf {j > mi−1(Φ) : αj(Φ) 6= αj+1(Φ)} −mi−1(Φ) if mi−1(Φ) < +∞

+∞ otherwise
.

Measurability of the mi’s is then proven by induction.
Proof of (iii). For all i ∈ N, for all Φ ∈ K+(H0), λi(Φ) = αmi(Φ)(Φ)1{mi(Φ) 6=0} hence λi is
measurable.
Proof of (iv). For all Φ ∈ K+(H0), rank(Φ) =

∑

i∈N
1{αi(Φ) 6=0} hence rank is measurable.

Proof of (v). For all Φ ∈ K+(H0), Nsp(Φ) =
∑

i∈N
1{λi(Φ) 6=0} hence Nsp is measurable.

Proof of (vi). Let Φ ∈ K+(H0), then from (A.1) one can show that for all n ∈ N,

(
Φ

λ0(Φ)

)n

=
∑

k∈N

(
λk(Φ)

λ0(Φ)

)n

Πk(Φ) in s.o.t.

and for all 1 ≤ i < Nsp(Φ),

(

Φ−
∑i−1
k=0 λkΠk

λi

)n

=
∑

k∈N

(
λk(Φ)

λi(Φ)

)n

Πk in s.o.t.

From these two relations and (A.2) we easily get

Π0(Φ) = lim
n→+∞

(
Φ

λ0(Φ)

)n

1{λ0(Φ) 6=0} + Id1{λ0(Φ)=0}
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and for all i ≥ 1,

Πi(Φ) = Id1{λ0(Φ)=0}

+ 1{λ0(Φ) 6=0}1{i<Nsp(Φ)} lim
n→+∞

(

Φ−
∑i−1
k=0 λk(Φ)Πk(Φ)

λi(Φ)

)n

+ 1{λ0(Φ) 6=0}1{i≥Nsp(Φ)}



Id−
∑

0≤k<Nsp(Φ)

Πk(Φ)





where the convergences are in s.o.t. Hence by measurability of the λi’s and of Nsp we get
by induction than the Πi’s are simply measurable as limit in s.o.t. of simply measurable
functions.
Proof of (vii). Simple measurability of Φ 7→ Pker(Φ) comes from (A.2), simple measurability
of the Πi’s and measurability of Nsp.
Proof of (viii). Let (φn)n∈N be a Hilbert-basis of H0, then define for all

τi : Φ 7→

{

min {n ∈ N : Πi(Φ)φn 6= 0} 0 ≤ i < Nsp(Φ)

min
{
n > τi−1(Φ) : Pker(Φ)φn 6= 0

}
i ≥ Nsp(Φ)

.

Note that τi never takes the value +∞ because for all i ∈ N, Πi(Φ) 6= 0 and if Nsp(Φ) <
+∞, then ker(Φ) has infinite dimension and therefore there are infinitely many n ∈ N such
that Pker(Φ)φn 6= 0. Then measurability of Nsp and simple measurability of the Πi’s give
that the τi’s are measurable from (K+(H0),B(K

+(H0))) to (N,P(N)). Now define for all
i ∈ N, ϕi : Φ 7→ Πi(Φ)φτi(Φ) and the sequence (ψ̃i)i∈N obtained by applying the Gram-

Schmidt algorithm to the ϕi’s, that is ψ̃0 : Φ 7→ ϕ0(Φ) and for all i ≥ 1, ψ̃i : Φ 7→ ϕi(Φ) −
∑i−1
k=0

〈ϕi(Φ),ψ̃k(Φ)〉
‖ψ̃k(Φ)‖2

H0

ψ̃k(Φ). Finally, define for all i ∈ N, ψi : Φ 7→ ψ̃i(Φ)/
∥
∥
∥ψ̃i(Φ)

∥
∥
∥
H0

. Then,

measurability of the ϕi’s implies measurability of the ψi’s and, by construction for all Φ ∈
K+(H0), the family (ψi(Φ))i∈N is orthonormal.

A.2 Singular values decomposition

Let H0, G0 be two separable Hilbert spaces and Φ ∈ K(H0,G0), then ΦHΦ ∈ K+(H0) and
ΦΦH ∈ K+(G0) and these two operators have the same non-zero eigenvalues with the same
(finite) multiplicities.

Define the set sing(Φ) of singular values of Φ ∈ K(H0,G0) as

sing(Φ) =
{

λ1/2 : λ ∈ specp(Φ
HΦ) \ {0}

}

=
{

λ1/2 : λ ∈ specp(ΦΦ
H ) \ {0}

}

and for all σ ∈ sing(Φ) we call multiplicity of σ the multiplicity of σ2 as an eigenvalue of
ΦHΦ or ΦHΦ (which are the same). The well-known singular value decomposition theorem
can then be stated as follows.

Theorem A.2 (Singular value decomposition). Let H0 and G0 be two separable Hilbert spaces
and Φ ∈ K(H0,G0) then there exist two Hilbert basis (φn)0≤n<rank(Φ) and (ψn)0≤n<rank(Φ)

of Im(ΦH) and Im(Φ) respectively and (σn)0≤n<rank(Φ) representing the elements of sing(Φ)
repeated as often as their multiplicity such that

Φ =
∑

0≤n<rank(Φ)

σnψn ⊗ φn (A.3)

where the series converges in operator norm. Moreover, limn→+∞ σn = 0.

Similarly to the eigendecomposition, the singular values are usually written as a decreasing
sequence (σi(Φ))0≤i<rank(Φ).
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A.3 Generalized inverse of an operator

Let H0,G0 be separable Hilbert spaces and Φ ∈ Lb(H0,H0), then the mapping

Φ| ker(Φ)⊥→Im(Φ) :
ker(Φ)⊥ → Im(Φ)
x 7→ Φx

is an isomorphism and we define Φ− ∈ O(G0,H0) (called the generalized inverse of Φ) as the

linear extension of
(
Φ| ker(Φ)⊥→Im(Φ)

)−1
to D(Φ−) := Im(Φ) ⊕ Im(Φ)⊥ such that ker(Φ−) =

Im(Φ)⊥. In other words, for all x ∈ D(Φ−), there exists (x1, x2) ∈ Im(Φ)× Im(Φ)⊥ such that

x = x1 + x2, then Φ−x =
(
Φ| ker(Φ)⊥→Im(Φ)

)−1
x1.

The subspace D(Φ) is dense in G0 and is equal to G0 if and only if Im(Φ) is closed, in
which case Φ− ∈ Lb(G0,H0). The operators Φ and Φ− are linked by the relation

Φ−Φ = Pker(Φ)⊥ (A.4)

and it is easy to show that, if Ψ ∈ O(G0,H0), then Ψ = Φ− if and only if ΨΦ = Pker(Φ)⊥ and
Ψ| ker(Φ)⊥ = 0.

The identity (A.4), along with the fact that a projection is compact if and only if it has
finite rank, gives (see [18, Theorem 3.1.3]) that a compact operator has closed range if and
only if it has finite rank. The operator ΦΦ− is not as easy to characterize but when Im(Φ)
is closed, we have ΦΦ− = PIm(Φ). Finally, in the case where Φ ∈ K+(H0), the generalized
inverse can be diagonalized as follows.

Proposition A.3. Let H0 be a separable Hilbert space and Φ ∈ K+(H0), then, defining for
all i ∈ N, λ−

i (Φ) = 1/λi(Φ) if λi(Φ) 6= 0 and 0 otherwise, we get

D(Φ−) =

{

x ∈ H0 :
∑

i∈N

(
λ−
i (Φ)

)2
‖Πi(Φ)x‖

2
H0

< +∞

}

(A.5)

and for all x ∈ D(Φ−),

Φ−x =
∑

i∈N

λ−
i (Φ)Πi(Φ)x (A.6)

Proof. The inclusion (⊂) in (A.5) is straightforward. To show the converse inclusion, let

x ∈ H0 such that
∑

i∈N

(
λ−
i (Φ)

)2
‖Πi(Φ)x‖

2
H0

< +∞, then y :=
∑

i∈N
λi(Φ)

−Πi(Φ)x exists
because the series converges in H0. Now, we write x = PIm(Φ)x+ PIm(Φ)⊥x with

PIm(Φ)x =
∑

0≤i<Nsp(Φ)

Πi(Φ)x =
∑

0≤i<Nsp(Φ)

λi(Φ)λi(Φ)
−Πi(Φ)x = Φy ∈ Im(Φ) ,

and therefore x ∈ D(Φ−) which concludes the proof of (A.5).
To show (A.6), let x ∈ D(Φ−) and define the operator

Ψ :
D(Φ−) → H0

x 7→
∑

i∈N
λ−
i (Φ)Πi(Φ)x

Then, it is easy to verify that ΨΦ = PIm(Φ) = Pker(Φ)⊥ and that Ψ|Im(Φ)⊥ = 0 which imply

that Ψ = Φ−.

Using this result, we can show the useful measurability property.

Corollary A.4. Let H0 be a separable Hilbert space. Then the mapping Φ 7→ Φ− is O-
measurable (see Section 2.1 for the definition) from (K+(H0),B(K

+(H0)) to O(H0)

Proof. Measurability of the λi’s and simple measurability of the Πi’s shown in Proposition A.1
give Condition (i) of the definition of O-measurability using (A.5) and Condition (ii) using
(A.6).
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B Locally compact Abelian groups

A topological group is a group (T,+) (with null element 0) endowed with a topology for
which the addition and the inversion maps are continuous in T × T and T respectively. If
T is Abelian (i.e. commutative) and is locally compact, Hausdorff for its topology, then it
is called a Locally compact Abelian (l.c.a.) group. The dual group T̂ of an l.c.a. group T
is the set of continuous characters of T. A character χ of T is a group homomorphism from
T to the unit circle group U := {z ∈ C : |z| = 1} that is χ : T → U and for all s, t ∈ T,
χ(s+ t) = χ(s)χ(t). In particular, χ(0) = 1 and χ(t) = χ(t)−1 = χ(−t) for all t ∈ T. T̂ is a
multiplicative Abelian group if we define the product of χ1, χ2 ∈ T̂, as χ1χ2 : t 7→ χ1(t)χ2(t),
the identity element as ê : t 7→ 1 and the inverse of χ ∈ T̂ as χ−1 : t 7→ χ(t)−1 = χ(t). T̂
becomes an l.c.a. group when endowed with the compact-open topology, that is the topology
for which χn → χ in T̂ if and only if for every compact K ⊂ T, χn → χ uniformly on K i.e.
supt∈K |χn(t)− χ(t)| −−−−−→

n→+∞
0.

A result known as the Pontryagin Duality Theorem (see [34, Theorem 1.7.2]) states that

T and
ˆ̂
T are isomorphic via the evaluation map T → ˆ̂

T
t 7→ et

where et : χ 7→ χ(t) in the

sense that this map is a bijective continuous homomorphisms with continuous inverse. In

particular, this means that {et : t ∈ T} is the set of characters of T̂ (i.e.
ˆ̂
T). The following

theorem will be very useful.

Theorem B.1. Let T be an l.c.a. group and µ a regular finite non-negative measure on
(T,B(T)). Then for all Banach space E,

L2(T,B(T), E, µ) = Span
L2(T,B(T),E,µ)

(

t 7→ χ(t)x : χ ∈ T̂x ∈ E
)

Proof. The space Span
(

T̂
)

satisfies the conditions of the Stone-Weierstrass theorem

(see [10]) and therefore is uniformly dense in C0(T) ⊃ Cc(T). This implies that

Span
(

t 7→ χ(t)x : χ ∈ T̂, x ∈ E
)

is uniformly dense in Span (t 7→ f(t)x : f ∈ Cc(T), x ∈ E)

which is itself uniformly dense in Cc(T, E) by [39, Proposition 44.2]. Since µ is fi-
nite, uniform density implies density in L2-norm and therefore we have shown that

Span
(

t 7→ χ(t)x : χ ∈ T̂, x ∈ E
)

is dense in Cc(T, E) in L2-norm. The result follows be-

cause, since µ is regular, Cc(T, E) is dense in L2(T,B(T), E, µ) for the L2-norm.

It is straightforward to verify that Z is an l.c.a. group for the addition and discrete topology
(the open sets are the subsets of Z, in this case every mapping from Z to any topological space
is continuous). Then χ ∈ Ẑ if and only if for all t, s ∈ Z, χ(t + s) = χ(t)χ(s) and therefore

Ẑ =

{
Z → U

t 7→ zt
: z ∈ U

}

. Since the compact sets of Z are the finite subsets of Z, the

compact-open topology on Ẑ is the same as the one induced by pointwise convergence. It is
then easy to show that Ẑ, U and T = R/(2πZ) are isomorphic (from Ẑ to U take χ 7→ χ(1) and
from T to U take λ 7→ eiλ). In this case we identify Ẑ and T which is in general represented by
(−π, π]. The other classical example of l.c.a. group is R for the addition and usual topology.

It can be shown that R̂ =

{
R → U

t 7→ eitλ
: λ ∈ R

}

(see for example [9, Theorem 9.11.]

where the idea is to show that the fact that χ ∈ R̂ satisfies χ(t+ s) = χ(t)χ(s) implies that
χ must be differentiable and satisfies a first order differential equation leading to the result).
Then R̂ and R are isomorphic via the mapping λ 7→ (t 7→ eitλ). In this case we identify R̂ and
R.
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C Some particular operator and vector valued mea-

sures

C.1 Projection-valued and gramian-projection-valued mea-

sures

Let (X,X ) be a measurable space and H0 a separable Hilbert space. A projection-valued
measure (p.v.m.) ξ on (X,X ,H0) is a p.o.v.m. valued in the space of orthogonal projections
on H0. If in addition ξ(X) = Id, we say that ξ is normalized. This notion appears in
diagonalization of non-compact operators and in Stone’s theorem where such measures are
often mentioned as “spectral measures” or “spectral operator measures” (see e.g. [9, Chapter
IX]) but it must not be mistaken with what we defined as “spectral operator measures” for
weakly stationary stochastic process. When working with modules, the notion of p.v.m.’s can
be extended to gramian-projection-valued measures (g.p.v.m.) which play the same role as
p.v.m.’s for the extension of Stone’s theorem on modules. If H is a normal Hilbert Lb(H0)-
module, then a p.v.m. ξ on (X,X ,H) is said to be a g.p.v.m. if for all A ∈ X , ξ(A) is
a gramian-projection. The notion of regularity used for p.v.m.’s and g.p.v.m.’s is the one
defined in Section 2.2 for p.o.v.m.’s.

C.2 Countably additive orthogonally scattered measures

Let H0 be a Hilbert space and (X,X ) a measurable space. A countably additive orthogonally
scattered (c.a.o.s.) measure W on (X,X ,H0) is an H0-valued measure which satisfies for all
A,B ∈ X such that A ∩B = ∅, 〈W (A),W (B)〉H0

= 0. The proofs of the following assertions
are straightforward.

(i) If W is a c.a.o.s. measure on (X,X ,H0), then ηW : A 7→ ‖W (A)‖2H0
is a finite, non-

negative measure on (X,X ) called the intensity measure of W . It satisfies for all A,B ∈
X ,

ηW (A ∩B) = 〈W (A),W (B)〉H0
.

(ii) Conversely, if W : X → H0 is such that there exists a finite, non-negative measure η
on (X,X ) satisfying ∀A,B ∈ X , 〈W (A),W (B)〉H0

= η(A ∩ B). Then W is a c.a.o.s.
measure on (X,X ,H0) with intensity measure η.

When X is a locally-compact topological space then, by definition of the intensity mea-
sure, we get that a c.a.o.s. measure W is regular (in the sense recalled in Section 2) if and
only if its intensity measure is regular. Since we do not assume that a c.a.o.s. measure has
finite variation, we cannot use Bochner’s integration theory recalled in Section 2.1. However,
Assertion (i) implies that we can linearly, continuously and isometrically extend the mapping
1A 7→W (A) to

Span (1A , A ∈ X ) = L2 (X,X , ηW ) .

That is, there exists a unique isometric operator IW : L2(X,X , ηW ) → H0 such that ∀A ∈ X ,

IW (1A) = W (A). Moreover, IW is unitary from L2(X,X , ηW ) to Span
H0 (W (A),A ∈ X )

and we define integration of L2(X,X , ηW ) functions with respect to W by setting, for all
f ∈ L2(X,X , ηW ),

∫

fdW := IW (f) .

Conversely, if η is a finite, non-negative measure on (X,X ) and I is an isometry from
L2(X,X , η) to H0, then there exists a unique c.a.o.s. measure W on (X,X ,H0) with intensity
measure η such that, for all f ∈ L2(X,X , η),

w(f) =

∫

f dW .
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