
HAL Id: hal-02302740
https://telecom-paris.hal.science/hal-02302740

Submitted on 1 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Knowledge Representation and Rule Mining in
Entity-Centric Knowledge Bases

Fabian Suchanek, Jonathan Lajus, Armand Boschin, Gerhard Weikum

To cite this version:
Fabian Suchanek, Jonathan Lajus, Armand Boschin, Gerhard Weikum. Knowledge Representation
and Rule Mining in Entity-Centric Knowledge Bases. Doctoral. Italy. 2019. �hal-02302740�

https://telecom-paris.hal.science/hal-02302740
https://hal.archives-ouvertes.fr

Knowledge Representation and Rule Mining
in Entity-Centric Knowledge Bases

Fabian M. Suchanek1, Jonathan Lajus1, Armand Boschin1, and Gerhard
Weikum2

1 Telecom Paris, Institut Polytechnique de Paris
2 Max Planck Institute for Informatics

Abstract. Entity-centric knowledge bases are large collections of facts
about entities of public interest, such as countries, politicians, or movies.
They find applications in search engines, chatbots, and semantic data
mining systems. In this paper, we first discuss the knowledge represen-
tation that has emerged as a pragmatic consensus in the research com-
munity of entity-centric knowledge bases. Then, we describe how these
knowledge bases can be mined for logical rules. Finally, we discuss how
entities can be represented alternatively as vectors in a vector space, by
help of neural networks.

1 Introduction

1.1 Knowledge Bases

When we send a query to Google or Bing, we obtain a set of Web pages. However,
in some cases, we also get more information. For example, when we ask “When
was Steve Jobs born?”, the search engine replies directly with “February 24,
1955”. When we ask just for “Steve Jobs”, we obtain a short biography, his birth
date, quotes, and spouse. All of this is possible because the search engine has a
huge repository of knowledge about people of common interest. This knowledge
takes the form of a knowledge base (KB).

The KBs used in such search engines are entity-centric: they know indi-
vidual entities (such as Steve Jobs, the United States, the Kilimanjaro, or the
Max Planck Society), their semantic classes (such as SteveJobs is-a computer-
Pioneer, SteveJobs is-a entrepreneur), relationships between entities (e.g., Steve-
Jobs founded AppleInc, SteveJobs hasInvented iPhone, SteveJobs hasWonPrize
NationalMedalOfTechnology, etc.) as well as their validity times (e.g., SteveJobs
wasCEOof Pixar [1986,2006]).

The idea of such KBs is not new. It goes back to seminal work in Artificial
Intelligence on universal knowledge bases in the 1980s and 1990s, most notably,
the Cyc project [41] at MCC in Austin and the WordNet project [19] at Princeton
University. These knowledge collections were hand-crafted and manually curated.
In the last ten years, in contrast, KBs are often built automatically by extracting
information from the Web or from text documents. Salient projects with publicly
available resources include KnowItAll (UW Seattle, [17]), ConceptNet (MIT,

[44]), DBpedia (FU Berlin, U Mannheim, & U Leipzig, [40]), NELL (CMU,
[9]), BabelNet (La Sapienza, [58]), Wikidata (Wikimedia Foundation, [77]), and
YAGO (Telecom Paris & Max Planck Institute, [70]). Commercial interest in
KBs has been strongly growing, with projects such as the Google Knowledge
Graph [15] (including Freebase [6]), Microsoft’s Satori, Amazon’s Evi, LinkedIn’s
Knowledge Graph, and the IBM Watson KB [20]. These KBs contain many
millions of entities, organized in hundreds to hundred thousands of semantic
classes, and hundred millions of relational facts between entities. Many public
KBs are interlinked, forming the Web of Linked Open Data [5].

1.2 Applications

KBs are used in several applications, including the following:

Semantic Search and Question Answering. Both the Google search en-
gine [15] and Microsoft Bing3 use KBs to give intelligent answers to queries, as
we have seen above. They can answer simple factual questions, provide movie
showtimes, or show a list of “best things to do” at a travel destination. Wolfram
Alpha4 is another prominent example of a question answering system. The IBM
Watson system [20] used knowledge from a KB to win against human champions
in the TV quiz show Jeopardy.

Intelligent Assistants. Chatbots such as Apple’s Siri, Amazon’s Alexa,
Google’s Allo, or Microsoft’s Cortana aim to help a user achieve daily tasks.
The bots can, e.g., suggest restaurants nearby, answer simple factual questions,
or manage calendar events. The background knowledge that the bots need for
this work usually comes from a KB. With embodiments such as Amazon’s Echo
system or Google Home, such assistants will share more and more people’s homes
in the future. Other companies, too, are experimenting with chat bots that treat
customer requests or provide help to users.

Semantic Data Mining. Daily news, social media, scholarly publications, and
other Web contents are the raw inputs for analytics to obtain insights on busi-
ness, politics, health, and more. KBs can help to discover and track entities and
relationships in order to generate opinion maps, informative recommendations,
and other kinds of intelligence towards decision making. For example, we can
mine the gender bias from newspapers, because the KB knows the gender of
people (see [71] for a survey). There is an entire domain of research dedicated
to “predictive analytics”, i.e., the prediction of events based on past events.

1.3 Knowledge Representation and Rule Mining

In this article, we first discuss how the knowledge is usually represented in
entity-centric KBs. The field of knowledge representation has a long history,

3 http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
4 https://wolframalpha.com

http://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing/
https://wolframalpha.com

and goes back to the early days of Artificial Intelligence. It has developed nu-
merous knowledge representation models, from frames and KL-ONE to recent
variants of description logics. The reader is referred to survey works for com-
prehensive overviews of historical and classical models [62,67]. In this article, we
discuss the knowledge representation that has emerged as a pragmatic consensus
in the research community of entity-centric knowledge bases.

In the second part of this article, we discuss logical rules on knowledge bases.
A logical rule can tell us, e.g., that if two people are married, then they (usually)
live in the same city. Such rules can be mined automatically from the knowledge
base, and they can serve to correct the data or fill in missing information. We
discuss first classical Inductive Logic Programming approaches, and then show
how these can be applied to the case of knowledge bases.

In the third part of this article, we discuss an alternative way to represent
entities: as vectors in a vector space. Such so-called embeddings can be learned by
neural networks from a knowledge base. The embeddings can then help deduce
new facts – much like logical rules.

2 Knowledge Representation

2.1 Entities

2.1.1 Entities of Interest

The most basic element of a KB is an entity. An entity is any abstract
or concrete object of fiction or reality, or, as Bertrand Russell puts it in his
Principles of Mathematics [81]:

Definition 1 (Entity): An entity is whatever may be an object of thought.

This definition is completely all-embracing. Steve Jobs, the Declaration of
Independence of the United States, the Theory of Relativity, and a molecule of
water are all entities. Events (such as the French Revolution), are entities, too.
An entity does not even have to exist: Harry Potter, e.g., is a fictional entity.
Phlogiston was presumed to be the substance that makes up heat. It turned out
to not exist – but it is still an entity.

KBs model a part of reality. This means that they choose certain entities
of interest, give them names, and put them into a structure. Thus, a KB is a
structured view on a selected part of the world. KBs typically model only distinct
entities. This cuts out a large portion of the world that consists of variations,
flows and transitions between entities. Drops of rain, for instance, fall down, join
in a puddle and may be splattered by a passing car to form new drops [66]. KBs
will typically not model these phenomena. This choice to model only discrete
entities is a projection of reality; it is a grid through which we see only distinct
things. Many entities consist of several different entities. A car, for example,
consists of wheels, a bodywork, an engine, and many other pieces. The engine
consists of the pistons, the valves, and the spark plug. The valves consist again
of several parts, and so on, until we ultimately arrive at the level of atoms or

below. Each of these components is an entity. However, KBs will typically not be
concerned with the lower levels of granularity. A KB might model a car, possibly
its engine and its wheels, but most likely not its atoms. In all of the following,
we will only be concerned with the entities that a KB models.

Entities in the real world can change gradually. For example, the Greek
philosopher Eubilides asks: If one takes away one molecule of an object, will
there still be the same object? If it is still the same object, this invites one to
take away more molecules until the object disappears. If it is another object, this
forces one to accept that two distinct objects occupy the same spatio-temporal
location: The whole and the whole without the molecule. A related problem is
the question of identity. The ancient philosopher Theseus uses the example of a
ship: Its old planks are constantly being substituted. One day, the whole ship
has been replaced and Theseus asks, “Is it still the same ship?”. To cope with
these problems, KBs typically model only atomic entities. In a KB, entities can
only be created and destroyed as wholes.

2.1.2 Identifiers and Labels

In computer systems (as well as in writing of any form), we refer to entities
by identifiers.

Definition 2 (Identifier): An identifier for an entity is a string of characters
that represents the entity in a computer system.

Typically, these identifiers take a human-readable form, such as ElvisPresley
for the singer Elvis Presley. However, some KBs use abstract identifiers. Wiki-
data, e.g., refers to Elvis Presley by the identifier Q303, and Freebase by
/m/02jq1. This choice was made so as to be language-independent, and so as
to provide an identifier that is stable in time. If, e.g., Elvis Presley reincarnates
in the future, then Q303 will always refer to the original Elvis Presley. It is
typically assumed that there exists exactly one identifier per entity in a KB. For
what follows, we will not distinguish identifiers from entities, and just talk of
entities instead.

Entities have names. For example, the city of New York can be called “city
of New York”, “Big Apple”, or “Nueva York”. As we see, one entity can have
several names. Vice versa, the same name can refer to several entities. “Paris”,
e.g., can refer to the city in France, to a city of that name in Texas, or to a
hero of Greek mythology. Hence, we need to carefully distinguish names – single
words or entire phrases – from their senses – the entities that they denote. This
is done by using labels.

Definition 3 (Label): A label for an entity is a human-readable string that
names the entity.

If an entity has several labels, the labels are called synonymous. If the same
label refers to several entities, the label is polysemous. Not all entities have
labels. For example, your kitchen chair is clearly an entity, but it probably does
not have any particular label. An entity that has a label is called a named entity.

KBs typically model mainly named entities. There is one other type of entities
that appears in KBs: literals.

Definition 4 (Literal): A literal is a fixed value that takes the form of a string
of characters.

Literals can be pieces of text, but also numbers, quantities, or timestamps.
For example, the label “Big Apple” for the city of New York is a literal, as is
the number of its inhabitants (8,175,133).

2.2 Classes

2.2.1 Classes and Instances

KBs model entities of the world. They usually group entities together to form
a class:

Definition 5 (Class): A class (also: concept, type) is a named set of entities
that share a common trait. An element of that set is called an instance of the
class.

Under this definition, the following are classes: The class of singers (i.e., the
set of all people who sing professionally), the class of historical events in Latin
America, and the class of cities in Germany. Some instances of these classes
are, respectively, Elvis Presley, the independence of Argentina, and Berlin. Since
everything is an entity, a class is also an entity. It has (by definition) an identifier
and a label.

Theoretically, KBs can form classes based on arbitrary traits. We can, e.g.,
construct the class of singers whose concerts were the first to be broadcast by
satellite. This class has only one instance (Elvis Presley). We can also construct
the class of left-handed guitar players of Scottish origin, or of pieces of music
that the Queen of England likes. There are several theories as to whether humans
actually build and use classes, too [46]. Points of discussion are whether humans
form crisp concepts, and whether all elements of a concept have the same degree
of membership. For the purpose of KBs, however, classes are just sets of entities.

It is not always easy to decide whether something should be modeled as an
instance or as a class. We could construct, e.g., for every instance a singleton
class that contains just this instance (e.g., the class of all Elvis Presleys). Some
things of the world can be modeled both as instances and as classes. A typical
example is iPhone. If we want to designate the type of smartphone, we can
model it as an instance of the class of smartphone brands. However, if we are
interested in the iPhones owned by different people and want to capture them
individually, then iPhone should be modeled as a class. A similar observation
holds for abstract entities such as love. Love can be modeled as an instance of
the class emotion, where it resides together with the emotions of anger, fear,
and joy. However, when we want to model individual feelings of love, then love
would be a class. Its instances are the different feelings of love that different
people have. It is our choice how we wish to model reality.

A pragmatic test of whether something should be modeled as a class is as
follows: If we are interested in the plural form of a word or phrase, then we
should model it as a class. If we talk, e.g., about “iPhones”, then we model
several instances of iPhones, and hence iPhone should be a class. If we only
talk about “iPhone” along with other brand names (such as “HTC One”), then
iPhone may well be considered an instance. Analogously, if we talk of “love” only
in singular, then we may model it as an instance, along with other emotions. If
we talk of “loves” (as in “Elvis had many loves during his time as a star”), then
love is the set of all love affairs – and thus a class. The reason for this test is
that only countable nouns can be classes, and only countable nouns can be put
into plural. Another method to distinguish classes from instances is to say “An
X”, or “Every X”. If that is possible, then X is best modeled as a class, because
it can have instances. For example, it is possible to say “a CEO”, but not “a
Steve Jobs”. Hence, ceo should be a class, and SteveJobs should not. If we can
say “This is X”, then X is an instance – as in “This is Steve Jobs”. If we can
say “X is a Y”, then X is an instance of Y – as in “Steve Jobs is a CEO”.

A particular case are mass nouns like “milk”. The word “milk” (in the sense
of the liquid) does not have a plural form. Therefore, we could model it as an
instance (e.g., as an instance of the class of liquids). However, if we are interested
in individual servings of milk, such as bottles of milk, then we can model it as a
class, servingOfMilk.

Some KBs do not make the distinction between classes and instances (e.g.,
the SKOS vocabulary, [84]). In these KBs, everything is an entity. There is,
however, usually a “is more general than” link between a more special entity and
a more general entity. Such a KB may contain, e.g., the knowledge that iPhone
is more special than smartphone, without worrying whether one of them is a
class. The distinction between classes and instances adds a layer of granularity.
This granularity is used, e.g., to define the domains and ranges of relations, as
we shall see in Section 2.3.

2.2.2 Taxonomies

Definition 6 (Subsumption): Class A is a subclass of class B if A is a subset
of B.

For example, the class of singers is a subclass of the class of persons, because
every singer is a person. We also say that the class of singers is a specialization
of the class of persons, or that singer is subsumed by or included in person. Vice
versa, we say that person is a superclass or a generalization of the class of singers.
Technically speaking, two equivalent classes are subclasses of each other. This
is the way the RDFS standard models subclasses [83]. We say that a class is a
proper subclass of another class, if the second contains more entities than the
first. We use the notion of subclass here to refer to proper subclasses only.

It is important not to confuse class inclusion with the relationship between
parts and wholes. For example, an arm is a part of the human body. That does
not mean, however, that every arm is a human body. Hence, arm is not a subclass

of body. In a similar manner, New York is a part of the US. That does not mean
that New York would be a subclass of the US. Neither New York nor the US are
classes, so they cannot be subclasses of each other.

Class inclusion is transitive: If A is a subclass of B, and B is a subclass of C,
then A is a subclass of C. For example, viper is a subclass of snake, and snake
is a subclass of reptile. Hence, by transitivity, viper is also a subclass of reptile.
We say that a class is a direct subclass of another class, if there is no class in the
KB that is a superclass of the former and a subclass of the latter. When we talk
about subclasses, we usually mean only direct subclasses. The other subclasses
are transitive subclasses. Since classes can be included in other classes, they can
form an inclusion hierarchy – a taxonomy.

Definition 7 (Taxonomy): A taxonomy is a directed graph, where the nodes
are classes and there is an edge from class X to class Y if X is a proper direct
subclass of Y.

The notion of taxonomy is known from biology. Zoological or botanic species
form a taxonomy: tiger is a subclass of cat. cat is a subclass of mammal, and
so on. This principle carries over to all other types of classes. We say, e.g., that
internetCompany is a subclass of company, and that company is a subclass of
organization, etc. Since a taxonomy models proper inclusion, it follows that the
taxonomic graph is acyclic: If a class is the subclass of another class, then the
latter cannot be a subclass of the former. Thus, a taxonomy is a directed acyclic
graph. A taxonomy does not show the transitive subclass edges. If the graph
contains transitive edges, we can always remove them. Given a finite directed
acyclic graph with transitive edges, the set of direct edges is unique [2].

Transitivity is often essential in applications. For example, consider a
question-answering system where a user asks for artists that are married to
actors. If the KB only knew about Elvis Presley and Priscilla Presley being in
the classes rockSinger and americanActress, the question could not be answered.
However, by reasoning that rockSingers are also singers, who in turn are artists
and americanActresses being actresses, it becomes possible to give this correct
answer.

Usually (but not necessarily), taxonomies are connected graphs: Every node
in the graph is, directly or indirectly, linked to every other node. Usually, the
taxonomies have a single root, i.e., a single node that has no outgoing edges. This
node identifies the most general class, of which every other class is a subclass.
In zoological KBs, this may be class animal. In a person database, it may be
the class person. In a general-purpose KB, this class has to be the most general
possible class. In YAGO and Wordnet, the class is entity. In the RDF standard,
it is called resource [82]. In the OWL standard [85], the highest class that does
not include literals is called thing.

Some taxonomies have at most one outgoing edge per node. Then, the tax-
onomy forms a tree. The biological taxonomy, e.g., forms a tree, as does the Java
class hierarchy. However, there can be taxonomies where a class has two distinct
direct superclasses. For example, if we have the class singer and the classes of
woman and man, then the class femaleSinger has two superclasses: singer and

woman. Note that it would be wrong to make singer a subclass of man and
woman (as if to say that singers can be men or women). This would actually
mean that all singers are at the same time men and women.

When a taxonomy includes a “combination class” such as FrenchFe-
maleSingers, then this class can have several superclasses. FrenchFemaleSingers,
e.g., can have as direct superclasses FrenchPeople, Women, and Singers. In a
similar manner, one entity can be an instance of several classes. Albert Einstein,
e.g., is an instance of the classes physicist, vegetarian, and violinPlayer.

When we populate a KB with new instances, we usually try to assign them
to the most specific suitable class. For example, when we want to place Bob
Dylan in our taxonomy, we would put him in the class americanBluesSinger, if
we have such a class, instead of in the class person. However, if we lack more
specific information about the instance, then we might be forced to put it into
a general class. Some named entity recognizers, e.g., distinguish only between
organizations, locations, and people, which means that it is hard to populate
more specific classes. It may also happen that our taxonomy is not specific
enough at the leaf level. For example, we may encounter a musician who plays the
Arabic oud, but our taxonomy does not have any class like oudPlayer. Therefore,
a class may contain more instances than the union of its subclasses. That is,
for a class C with subclasses C1, . . . , Ck, the invariant is ∪i=1..kCk ⊆ C, but
∪i=1..kCk = C is often false.

2.2.3 Special Cases

Some KBs assign literals to classes, too. For example, the literal “Hello” can
be modeled as an instance of the class string. Such literal classes can also form
taxonomies. For example, the class nonNegativeIntegers is a subclass of the class
of integers, which is again a subclass of the more general class numbers.

We already observed that classes are entities. Thus, we can construct classes
that contain other classes as instances. For example, we can construct the class
of all classes class ={car, person, scientist, ...}. This leads to awkward questions
about self-containment, reminiscent of Bertrand Russel’s famous set of sets that
do not include themselves. The way this is usually solved [82] is to distinguish
the class (as an abstract concept) from the extension of the class (the set of its
instances). For example, the class of singers is the abstract concept of people
who sing. Its extension is the set {Elvis, Madonna, ...}. In this way, a class is not
a set, but just an abstract entity. Therefore, the extension of a class can contain
another class. This is, however, a rather theoretical problem, and in what follows,
we will not distinguish classes from their extensions.

To distinguish classes from other entities, we call an entity that is neither a
class nor a literal an instance or a common entity.

2.3 Relations

2.3.1 Relations and Statements

KBs model also relationships between entities:

Definition 8 (Relation): A relationship (also: relation) over the classes
C1, ..., Cn is a named subset of the Cartesian product C1 × ...× Cn.

For example, if we have the classes person, city, and year, we may construct
the birth relationship as a subset of the cartesian product person×city×year.
It will contain tuples of a person, their city of birth, and their year of birth.
For example, 〈ElvisPresley, Tupelo, 1935〉 ∈ birth. In a similar manner, we
can construct tradeAgreement as a subset of country×country×commodity. This
relation can contain tuples of countries that made a trade agreement concerning
a commodity. Such relationships correspond to classical relations in algebra or
databases.

As always in matters of knowledge representation (or, indeed, informatics in
general), the identifier of a relationship is completely arbitrary. We could, e.g.,
call the birth relationship k42, or, for that matter, death. Nothing hinders us to
populate the birth relationship with tuples of a person, and the time and place
where that person ate an ice cream. However, most KBs aim to model reality,
and thus use identifiers and tuples that correspond to real-world relationships.

If 〈x1, ..., xn〉 ∈ R for a relationship R, we also write R(x1, ..., xn). In the
example, we write birth(ElvisPresley, Tupelo, 1935). The classes of R are called
the domains of R. The number of classes n is called the arity of R. 〈x1, ..., xn〉
is a tuple of R. R(x1, ..., xn) is called a statement, fact, or record. The elements
x1, ..., xn are called the arguments of the facts. Finally, a knowledge base, in its
simplest form, is a set of statements. For example, a KB can contain the relations
birth, death and marriage, and thus model some of the aspects of people’s lives.

2.3.2 Binary Relations

Definition 9 (Binary Relation): A binary relation is a relation of arity 2.

Examples of binary relations are birthPlace, friendOf, or marriedTo. The
first argument of a binary fact is called the subject, and the second argument is
called the object of the fact. The relationships are sometimes called properties.
Relationships that have literals as objects, and that have at most one object per
subject are sometimes called attributes. Examples are hasBirthDate or hasISBN.
The domain of a binary relation R ⊂ A×B is A, i.e., the class from which the
subjects are taken. B is called the range of R. For example, the domain of birth-
Place is person, and its range is city. The inverse of a binary relation R is a
relation R−1, such that R−1(x, y) iff R(x, y). For example, the inverse relation
of hasNationality (between a person and a country) is hasNationality− (between
a country and a person) – which we could also call hasCitizen.

Any n-ary relation R with n > 2 can be split into n binary relations. This
works as follows. Assume that there is one argument position i that is a key,

i.e., every fact R(x1, ..., xn) has a different value for xi. In the previously in-
troduced 3-ary birth relationship, which contains the person, the birth place,
and the birth date, the person is the key: every person is born only once at
one place. Without loss of generality, let the key be at position i = 1. We
introduce binary relationships R2, ..., Rn. In the example, we introduce birth-
Place for the relation between the person and the birth place, and birthDate
for the relation between the person and the birth year. Every fact R(x1, ..., xn)
gets rewritten as R2(x1, x2), R3(x1, x3), R4(x1, x4), ..., Rn(x1, xn). In the exam-
ple, the fact birth(Elvis,Tupelo,1935) gets rewritten as birthPlace(Elvis,Tupelo)
and birthDate(Elvis,1935). Now assume that a relationR has no key. As an exam-
ple, consider again the tradeAgreement relationship. Obviously, there is no key in
this relationship, because any country can make any number of trade-agreements
on any commodity. We introduce binary relationships R1, ...Rn for every argu-
ment position of R. For tradeAgreement, these could be country1, country2 and
tradeCommodity. For each fact of R, we introduce a new entity, an event entity.
For example, if the US and Brazil make a trade-agreement on coffee, trade-
Agreement(Brazil,US,Coffee), then we create coffeeAgrBrUs. This entity repre-
sents the fact that these two countries made this agreement. In general, every fact
R(x1, ..., xn) gives rise to an event entity ex1,...,xn. Then, every fact R(x1, ..., xn)
is rewritten as R1(ex1,...,xn, x1), R2(ex1,...,xn, x2), ..., Rn(ex1,...,xn, xn). In the ex-
ample, country1(coffeeAgrBrUs, Brazil), country2(coffeeAgrBrUs, US), trade-
Commodity(coffeeAgrBrUs, Coffee). This way, any n-ary relationship with n > 2
can be represented as binary relationships. For n = 1, we can always invent a
binary relation hasProperty, and use the relation as an additional argument. For
example, instead of male(Elvis), we can say hasProperty(Elvis, male).

The advantage of binary relationships is that they can express facts even if
one of the arguments is missing. If, e.g., we know only the birth year of Steve
Jobs, but not his birth place, then we cannot make a fact with the 3-ary relation
birth ⊂ person×city×year. We have to fill the missing arguments, e.g., with null
values. If the relationship has a large arity, many of its arguments may have to
be null values. In the case of binary relationships, in contrast, we can easily state
birthDate(SteveJobs, 1955), and omit the birthPlace fact. Another disadvantage
of n-ary relationships is that they do not allow adding new pieces of information a
posteriori. If, e.g., we forgot to declare the astrological ascendant as an argument
to the 3-ary relation birth, then we cannot add the ascendant for Steve Job’s birth
without modifying the relationship. In the binary world, in contrast, we can
always add a new relationship birthAscendant. Thus, binary relationships offer
more flexibility. This flexibility can be a disadvantage, because it allows adding
incomplete information (e.g., a birth place without a birth date). However, since
knowledge bases are often inherently incomplete, binary relationships are usually
the method of choice.

2.3.3 Functions

Definition 10 (Function): A function is a binary relation that has for each
subject at most one object.

Typical examples for functions are birthPlace and hasLength: Every person
has at most one birth place and every river has at most one length. The relation
ownsCar, in contrast, is not a function, because a (rich) person can own multiple
cars. In our terminology, we call a relation a function also if it has no objects
for certain subjects, i.e., we include partial functions (such as deathDate).

Some relations are functions in time. This means that the relation can have
several objects, but at each point of time, only one object is valid. A typical
example is isMarriedTo. A person can go through several marriages, but can
only have one spouse at a time (in most systems). Another example is has-
NumberOfInhabitants for cities. A city can grow over time, but at any point of
time, it has only a single number of inhabitants. Every function is a function in
time.

A binary relation is an inverse function, if its inverse is a function. Typical
examples are hasCitizen (if we do not allow double nationality) or hasEmail-
Address (if we talk only about personal email addresses that belong to a single
person). Some relations are both functions and inverse functions. These are iden-
tifiers for objects, such as the social security number. A person has exactly one
social security number, and a social security number belongs to exactly one per-
son. Functions and inverse functions play a crucial role in entity matching: If
two KBs talk about the same entity with different names, then one indication
for this is that both entities share the same object of an inverse function. For
example, if two people share an email address in a KB about customers, then
the two entities must be identical.

Some relations are “nearly functions”, in the sense that very few subjects have
more than one object. For example, most people have only one nationality, but
some may have several. This idea is formalized by the notion of functionality [69].
The functionality of a relation r in a KB is the number of subjects, divided by
the number of facts with that relation:

fun(r) :=
|{x : ∃y : r(x, y)}|
|{x, y : r(x, y)}|

The functionality is always a value between 0 and 1, and it is 1 if r is a function.
It is undefined for an empty relation.

We usually have the choice between using a relation and its inverse rela-
tion. For example, we can either have a relationship isCitizenOf (between a
person and their country) or a relationship hasCitizen (between a country and
its citizens). Both are valid choices. In general, KBs tend to choose the relation
with the higher functionality, i.e., where the subject has fewer objects. In the
example, the choice would probably be isCitizenOf, because people have fewer
citizenships than countries have citizens. The intuition is that the facts should
be “facts about the subject”. For example, the fact that two authors of this

paper are citizens of Germany is clearly an important property of the authors
(it appears on the Wikipedia page of the last author). Vice versa, the fact that
Germany is fortunate enough to count these authors among its citizens is a much
less important property of Germany (it does not appear on the Wikipedia page
of Germany).

2.3.4 Relations with Classes

In Section 2.2.3, we have introduced the class class, which contains all classes.
This allows us to introduce the relationship between an instance and its class:
type⊂entity×class. We can now say type(Elvis, singer).5 We also introduce
subclassOf⊂class×class, which is the relationship between a class and its su-
perclasses. For example, subclassOf(singer, person). In the same way as we have
introduced the class of all classes, we can introduce the class of all relations. We
call this class property. With this, we can define the relationship between a binary
relation and its domain: domain⊂property×class. We can now say domain(birth-
Place, person). Analogously, we introduce range⊂property×class, so that we can
say range(birthPlace, city). This way, an entire KB, with its relations and schema
information, can be written as binary relationships. There is no distinction be-
tween data and meta-data – the KB describes itself.

In some cases, we have the choice whether to model something as a relation-
ship or as a class. For example, to say that Berlin is located in Germany, we
can either say locatedIn(Berlin, Germany) or type(Berlin, germanCity), or both.
There is no definite agreement as to which method is the right way to go, but
there are advantages and disadvantages for each of them. If the entities in ques-
tion can have certain properties that other entities cannot have, then it is useful
to group them into a class. Practically speaking, this means that as soon as there
is a relationship that has these entities as domain or range, the entities should
become a class. For example, if we model Landkreise (the German equivalent of
regions), then we can have inLandkreis⊂germanCity×Landkreis. No city other
than German cities can be in a Landkreis. Thus, it is useful to have the class
germanCity. If, however, German cities behave just like all other cities in our
KB, then a class for them is less useful. In this spirit, it makes sense to have a
class for scientists (who have a graduation university), or digital cameras (which
have a resolution), but less so for male scientists or Sony cameras.

However, if we want to express that an entity stands in a relationship with
another entity, and if that other entity has itself many relationships, then it is
useful to use a relational fact. This allows more precise querying. For example,
German cities stand in a relationship with Germany. Germany is located in
Europe, and it is one of the German speaking countries. Thus, by saying located-
In(Berlin, Germany), we can query for cities located in European countries and
for German-speaking cities, without introducing a class for each of them. In
this spirit, it makes sense to use the relational modeling for German cities or
American actors, but much less so for, say, zoological categories such as mammals

5 We can even say type(class, class), i.e., class is an instance of class.

or reptiles. Sometimes neither choice may have strong arguments in favor, and
sometimes both forms of modeling together may be useful.

2.4 Knowledge Bases

2.4.1 Completeness and Correctness

Knowledge bases model only a part of the world. In order to make this
explicit, one imagines a complete knowledge base K∗ that contains all entities
and facts of the real world in the domain of interest. A given KB K is correct, if
K ⊆ K∗. Usually, KBs aim to be correct. In real life, however, large KBs tend to
contain also erroneous statements. YAGO, e.g., has an accuracy of 95%, meaning
that 95% of its statements are in K∗ (or, rather, in Wikipedia, which is used
as an approximation of K∗). This means that YAGO still contains hundreds of
thousands of wrong statements. For most other KBs, the degree of correctness
is not even known.

A knowledge base is complete, if K∗ ⊆ K (always staying within the domain of
interest). The closed world assumption (CWA) is the assumption that the KB at
hand is complete. Thus, the CWA says that any statement that is not in the KB
is not in K∗ either. In reality, however, KBs are hardly ever complete. Therefore,
KBs typically operate under the open world assumption (OWA), which says that
if a statement is not in the KB, then this statement can be either true or false
in the real world.

KBs usually do not model negative information. They may say that Caltrain
serves the city of San Francisco, but they will not say that this train does not
serve the city of Moscow. While incompleteness tells us that some facts may be
missing, the lack of negative information prevents us from specifying which facts
are missing because they are false. This poses considerable problems, because the
absence of a statement does not allow any conclusion about the real world [60].

2.5 The Semantic Web

The common exchange format for knowledge bases is RDF/RDFS [82]. It spec-
ifies a syntax for writing down statements with binary relations. Most notably,
it prescribes URIs as identifiers, which means that entities can be identified in
a globally unique way. To query such RDF knowledge bases, one can use the
query language SPARQL [86]. SPARQL borrows its syntax from SQL, and al-
lows the user to specify graph patterns, i.e., triples where some components are
replaced by variables. For example, we can ask for the birth date of Elvis by
saying “SELECT ?birthdate WHERE { 〈Elvis〉 〈bornOnDate〉 ?birthdate }”.

To define semantic constraints on the data, RDF is extended by OWL [85].
This language allows specifying constraints such as functions or disjointness of
classes, as well as more complex axioms. The formal semantics of these axioms
is given by Description Logics [3]. These logics distinguish facts about instances

from facts about classes and axioms. The facts about instances are called the A-
Box (“Assertions”), and the class facts and axioms are called the T-Box (“The-
ory”). Sometimes, the term ontology is used to mean roughly the same as T-Box.
Description Logics allow for automated reasoning on the data.

Many KBs are publicly available online. They form what is known as the
Semantic Web. Some of these KBs talk about the same entities – with differ-
ent identifiers. The Linked Open Data project [5] aims to establish links between
equivalent identifiers, thus weaving all public KBs together into one giant knowl-
edge graph.

2.6 Challenges in Knowledge Representation

Knowledge representation is a large field of research, which has received ample
attention in the past, and which still harbors many open questions. Some of
these open issues in the context of knowledge bases are the following.

Negative Information. For some applications (such as question answering or
knowledge curation), it is important to know whether a statement is not true. As
we have seen, KBs usually do not store negative information, and thus the mining
of negative information is an active field of research. In some cases, axioms can
help deducing negative information. For example, if some relation is a function,
and if one object is present, then it follows that all other objects cannot be in the
relation. In other cases, a variant of the closed world assumption can help [55].

Completeness. Today’s KBs do not store the fact that they are complete in
some domains. For example, if the KB knows all children of Barack Obama, then
it would be helpful to store that the KB is complete on the children of Obama.
Different techniques for storing completeness information have been devised (see
[60] for a survey), and completeness can also be determined automatically to
some degree [23,38,65], but these techniques are still in their infancy.

Correctness. Some KBs (e.g., NELL or YAGO) store a probability value with
each statement, indicating the likelihood that the statement is correct. There is
an ample corpus of scientific work on dealing with such probabilistic knowledge
bases, but attaching probabilities to statements is currently not a universally
adopted practice.

Provenance. Some KBs (e.g., Wikidata, NELL and YAGO) attach provenance
information to their statements, i.e., the source where the statement was found,
and the technique that was used to extract it. This information can be used to
debug the KB, to justify the statements, or to optimize the construction process.
Again, there is ample literature on dealing with provenance (see [4] for a survey
of works in artificial intelligence, databases, and the Semantic Web) – although
few KBs actually attach provenance information.

Time and Space. Some KBs (e.g., Wikidata and YAGO) store time and space
information with their facts. Thus, they know where and when a fact happened.
This is often achieved by giving each fact a fact identifier, and by making state-
ments about that fact identifier. Other approaches abound [21,62,80,33,28]. They

include, e.g., the use of 5-ary facts, the introduction of a sub-property for each
temporal statement, or the attachment of time labels.

Facts about Facts. We sometimes wish to store not just the time of a state-
ment, but more facts about that statement. For example, we may want to store
the correctness or provenance of a fact, but also the authority who vouches for
the fact, access rights to the fact, or beliefs or hypotheses (as in “Fabian believes
that Elvis is alive”). RDF provides a mechanism called reification for this pur-
pose, but it is clumsy to use. Named Graphs [10] and annotations [76] have been
proposed as alternatives. Different other alternatives are surveyed in [4]. Newer
approaches attach attributes to statements [37,47].

Textual Extension. The textual source of the facts often contains additional
subtleties that cannot be captured in triples. It can therefore be useful to add
the textual information into the KB, as it is done, e.g., in [87].

NoRDF. For some information (such as complex events, narratives, or larger
contexts), the representation as triples is no longer sufficient. We call this the
realm of NoRDF knowledge (in analogy to NoSQL databases). For example,
it is clumsy, if not impossible, to represent with binary relations the fact that
Leonardo diCaprio was baptized “Leonardo” by his mother, because she visited
a museum in Italy while she was still pregnant, and felt that the baby kicked
while she saw a work of Leonardo DaVinci.

Commonsense Knowledge. Properties of everyday objects (e.g. that spiders
have eight legs) and general concepts are of importance for text understanding,
sentiment analysis, and object recognition in images and videos. This line of
knowledge representation is well covered in classical works [62,41], and is lately
also enjoying attention in the KB community [72,73].

Intensional Knowledge. Commonsense knowledge can also take the form of
rules. For example, if a doctoral student is advised by a professor, then the
university of graduation will be the employer of the professor. Again, this type
of knowledge representation is well covered in classical works [62,41], and recent
approaches have turned to using it for KBs [25,26,11]. This type of intensional
knowledge is what we will now discuss in the next section.

3 Rule Mining

3.1 Rules

Once we have a knowledge base, it is interesting to look out for patterns in the
data. For example, we could notice that if some person A is married to some
person B, then usually B is also married to A (symmetry of marriage). Or we
could notice that, if, in addition, A is the parent of some child, then B is usually
also a parent of that child (although not always).

We usually write such rules using the syntax of first-order logic. For example,
we would write the previous rules as:

marriedTo(x, y)⇒ marriedTo(y, x)

marriedTo(x, y) ∧ hasChild(x, z)⇒ hasChild(y, z)

Such rules have several applications: First, they can help us complete the KB.
If, e.g., we know that Elvis Presley is married to Priscilla Presley, then we can
deduce that Priscilla is also married to Elvis – if the fact was missing. Second,
the rules can help us disambiguate entities and correct errors. For example, if
Elvis has a child Lisa, and Priscilla has a different child Lisa, then our rule
could help find out that the two Lisa’s are actually a single entity. Finally, those
frequent rules give us insight about our data, biases in the data, or biases in the
real world. For example, we may find that European presidents are usually male
or that Ancient Romans are usually dead. These two rules are examples of rules
that have not just variables, but also entities:

type(x,AncientRoman)⇒ dead(x)

We are now interested in discovering such rules automatically in the data. This
process is called Rule Mining. Let us start with some definitions. The components
of a rule are called atoms:

Definition 11 (Atom): An atom is of the form r(t1, . . . , tn), where r is a
relation of arity n (for KBs, usually n = 2) and t1, . . . tn are either variables or
entities.

In our example, marriedTo(x, y) is an atom, as is marriedTo(Elvis, y). We
say that an atom is instantiated, if it contains at least one entity. We say that it
is grounded, if it contains only entities and no variables. A conjunction is a set
of atoms, which we write as A = A1 ∧ ... ∧ An. We are now ready to combine
atoms to rules:

Definition 12 (Rule): A Horn rule (rule, for short) is a formula of the form
B ⇒ h, where B is a conjunction of atoms, and h is an atom. B is called the
body of the rule, and h its head.

For example, marriedTo(x, y) ⇒ marriedTo(y, x) is a rule. Such a rule is
usually read as “If x is married to y, then y is married to x”. In order to apply
such a rule to specific entities, we need the notion of a substitution:

Definition 13 (Substitution): A substitution is a function that maps variables
to entities or to other variables.

For example, a substitution σ can map σ(x) = Elvis and σ(y) = z – but
not σ(Elvis) = z. A substitution can be generalized straightforwardly to atoms,
sets of atoms, and rules: if σ(x) = Elvis, then σ(marriedTo(Priscilla, x)) =
marriedTo(Priscilla, Elvis). With this, an instantiation of a rule is a variant of
the rule where all variables have been substituted by entities (so that all atoms
are grounded). If we substitute x = Elvis and y = Priscilla in our example rule,
we obtain the following instantiation:

marriedTo(Elvis, Priscilla)⇒ marriedTo(Priscilla, Elvis)

Thus, an instantiation of a rule is an application of the rule to one concrete case.
Let us now see what rules can predict:

Lisa

PriscillaElvis Barack Michelle

Sasha Malia

hasChild hasChild hasChild hasChild

marriedTo marriedTo

Fig. 1. Example KB

Definition 14 (Prediction of a rule): The predictions P of a rule B ⇒ h in
a KB K are the head atoms of all instantiations of the rule where the body atoms
appear in K. We write K ∧ (B ⇒ h) |= P . The predictions of a set of rules are
the union of the predictions of each rule.

For example, consider the KB in Figure 1. The predictions of the rule
marriedTo(x, y) ∧ hasChild(y, z) ⇒ hasChild(x, z) are hasChild(Priscilla,
Lisa), hasChild(Elvis, Lisa), hasChild(Barack, Sasha), hasChild(Barack, Malia),
hasChild(Michelle, Sasha), hasChild(Michelle, Malia). This is useful, because
two of these facts are not yet in the KB.

Logic. From a logical perspective, all variables in a rule are implicitly universally
quantified (over every entity defined in the KB). Thus, our example rule is more
explicitly written as

∀x, y, z : marriedTo(x, y) ∧ hasChild(y, z)⇒ hasChild(x, z)

It can be easily verified that such a rule is equivalent to the following disjunction:

∀x, y, z : ¬marriedTo(x, y) ∨ ¬hasChild(y, z) ∨ hasChild(x, z)

While every Horn rule corresponds to a disjunction with universally quantified
variables, not every such disjunction corresponds to a Horn rule. Only those
disjunctions with exactly one positive atom correspond to Horn rules. In prin-
ciple, we could mine arbitrary disjunctions, and not just those that correspond
to Horn rules. We could even mine arbitrary first-order expressions, such as
∀x : person(x)⇒ ¬(underage(x) ∧ adult(x)). For simplicity, we stay with Horn
rules in what follows, and point out when an approach can be generalized to
disjunctions or arbitrary formulae.

3.2 Rule Mining

3.2.1 Inductive Logic Programming

We now turn to mining rules automatically from a KB. This endeavor is
based on Inductive Reasoning. To reason by induction is to expect that events
that always appeared together in the past will always appear together in the
future. For example, inductive reasoning could tell us: “All life forms we have

seen so far need water. Therefore, all life forms in general need water.”. This is
the fundamental principle of empirical science: the generalization of past experi-
ences to a scientific theory. Of course, inductive reasoning can never deliver the
logical certitude of deductive reasoning. This is illustrated by Bertrand Russel’s
analogy of the turkey [61]: The turkey is fed every day by its owner, and so
it comes to believe that the owner will always feed the turkey – which is true
only until Christmas day. The validity and limitations of modeling the reality
using inductive reasoning are a debated topic in philosophy of science. For more
perspectives on the philosophical discussions, we refer the reader to [29] and
[31]. In the setting of KBs, inductive reasoning is formalized as Inductive Logic
Programming [57,63,51]:

Definition 15 (Inductive Logic Programming): Given a background knowl-
edge B (in general, any first order logic expression; in our case: a KB), a set
of positive example facts E+, and a set of negative example facts E−, Induc-
tive Logic Programming (ILP) is the task of finding an hypothesis h (in gen-
eral, a set of first order logic expressions; in our case: a set of rules) such that
∀e+ ∈ E+ : B ∧ h |= e+ and ∀e− ∈ E− : B ∧ h 6|= e−.

This means that the rules we seek have to predict all positive examples (they
have to be complete), and they may not predict a negative example (they have
to be correct). For example, consider again the KB from Figure 1 as background
knowledge, and let the sets of examples be:

E+ = { isMarriedTo(Elvis, Priscilla), isMarriedTo(Priscilla, Elvis),
isMarriedTo(Barack, Michelle), isMarriedTo(Michelle, Barack)}

E− = { isMarriedTo(Elvis, Michelle), isMarriedTo(Lisa, Barack),
isMarriedTo(Sasha, Malia)}

Now consider the following hypothesis:

h = {isMarriedTo(x, y)⇒ isMarriedTo(y, x)}

This hypothesis is complete, as every positive example is a prediction of the rule,
and it is correct, as no negative example is predicted.

The attentive reader will notice that the difficulty is now to correctly deter-
mine the sets of positive and negative examples. In the ideal case the positive
examples should contain any fact that is true in the real world and the negative
examples contain any other fact. Thus, in a correct KB, every fact is a positive
example.

Definition 16 (Rule Mining): Given a KB, Rule Mining is the ILP task with
the KB as background knowledge, and every single atom of the KB as a positive
example.

This means that the rule mining will find several rules, in order to explain
all facts of the KB. Three problems remain: First, we have to define the set of
negative examples (Section 3.2.2). Second, we have to define what types of rules
we are interested in (Section 3.2.3). Finally, we have to adapt our mining to
cases where the rule does not always hold (Section 3.2.4).

3.2.2 The Set of Negative Examples

Rule mining needs negative examples (also called counter-examples). The
problem is that KBs usually do not contain negative information (Section 2.6).
We can think of different ways to generate negative examples.

Closed World Assumption. The Closed World Assumption (CWA) says that
any statement that is not in the KB is wrong (Section 2.4.1). Thus, under the
Closed-World Assumption, any fact that is not in the KB can serve as a neg-
ative example. The problem is that these may be exactly the facts that we
want to predict. In our example KB from Figure 1, we may want to learn the
rule marriedTo(x, y) ∧ hasChild(y, z) ⇒ hasChild(x, z). For this rule, the fact
hasChild(Barack, Malia) is a counter-example. However, this fact is exactly what
we want to predict, and so it would be a counter-productive counter-example.

Open World Assumption. Under the Open-World Assumption (OWA), any
fact that is not in the KB can be considered either a negative or a positive
example (see again Section 2.4.1). Thus the OWA does not help in establish-
ing counter-examples. Without counter-examples, we can learn any rule. For
example, in our KB, the rule type(x, person) ⇒ marriedTo(x, Barack) has a
single positive example (for x = Michelle), and no counter-examples under the
Open World Assumption. Therefore, we could deduce that everyone is married
to Barack.

Partial Completeness Assumption. Another strategy to generate negative
examples is to assume that entities are complete for the relations they already
have. For example, if we know that Michelle has the children Sasha and Malia,
then we assume (much like Barack) that Michelle has no other children. If, in
contrast, Barack does not have any children in the KB, then we do not conclude
anything. This idea is called the Partial-Completeness Assumption (PCA) or
the Local Closed World Assumption [25]. It holds trivially for functions (such as
hasBirthDate), and usually [26] for relations with a high functionality (such as
hasNationality). The rationale is that if the KB curators took the care to enter
some objects for the relation, then they will most likely have entered all of them,
if there are few of them. In contrast, the assumption does usually not hold for
relations with low functionality (such as starsInMovie). Fortunately, relations
usually have a higher functionality than their inverses (see Section 2.3.3). If that
is not the case, we can apply the PCA to the object of the relation instead.

Random Examples. Another strategy to find counter-examples is to generate
random statements [50]. Such random statements are unlikely to be correct, and
can thus serve as counter-examples. This is one of the methods used by DL-
Learner [30]. As we shall see in Section 4.3.1, it is not easy to generate helpful
random counter-examples. If, e.g., we generate the random negative example
marriedTo(Barack,USA), then it is unlikely that a rule will try to predict this
example. Thus, the example does not actually help in filtering out any rule. The
challenge is hence to choose counter-examples that are false, but still reasonable.
The authors of [55] describe a method to sample negative statements about

semantically connected entities by help of the PCA. We will also revisit the
problem in the context of representation learning (Section 4.3.1).

3.2.3 The Language Bias

After solving the problem of negative examples, the next question is what
kind of rules we should consider. This choice is called the language bias, because
it restricts the “language” of the hypothesis. We have already limited ourselves
to Horn Rules, and in practice we even restrict ourselves to connected and closed
rules.

Definition 17 (Connected rules): Two atoms are connected if they share a
variable, and a rule is connected if every non-ground atom is transitively con-
nected to one another.

For example, the rule presidentOf(x, America) ⇒ hasChild(Elvis, y) is not
connected. It is an uninteresting and most likely wrong rule, because it makes a
prediction about arbitrary y.

Definition 18 (Closed rules): A rule is closed if every variable appears in at
least two atoms.

For example the rule marriedTo(x, y) ∧ worksAt(x, z) ⇒ marriedTo(y, x)
is not closed. It has a “dangling edge” that imposes that x works somewhere.
While such rules are perfectly valid, they are usually less interesting than the
more general rule without the dangling edge.

Finally, one usually imposes a limit on the number of atoms in the rule. Rules
with too many atoms tend to be very convoluted [26]. That said, mining rules
without such restrictions is an interesting field of research, and we will come
back to it in Section 3.5.

3.2.4 Support and Confidence

One problem with classical ILP approaches is that they will find rules that
apply to very few entities, such as marriedTo(x, Elvis) ⇒ hasChild(x, Lisa). To
avoid this type of rules, we define the support of a rule:

Definition 19 (Support): The support of a rule in a KB is the number of
positive examples predicted by the rule.

Usually, we are interested only in rules that have a support higher than a
given threshold (say, 100). Alternatively, we can define a relative version of sup-
port, the head coverage [25], which is the number of positive examples predicted
by the rule divided by the number of all positive examples with the same rela-
tion. Another problem with classical ILP approaches is that they will not find
rules if there is a single counter-example. To mitigate this problem, we define
the confidence:

Definition 20 (Confidence): The confidence of a rule is the number of posi-
tive examples predicted by the rule (i.e., the support of the rule), divided by the
number of examples predicted by the rule.

This notion depends on how we choose our negative examples. For instance,
under the CWA, the rule marriedTo(x, y)∧hasChild(y, z)⇒ hasChild(x, z) has a
confidence of 4/6 in Figure 1. We call this value the standard confidence. Under
the PCA, in contrast, the confidence for the example rule is 4/4. We call this
value the PCA confidence. While the standard confidence tends to “punish” rules
that predict many unknown statements, the PCA confidence will permit more
such rules. We present in Appendix A the exact mathematical formula of these
measures.

In general, the support of a rule quantifies its completeness, and the con-
fidence quantifies its correctness. A rule with low support and high confidence
indicates a conservative hypothesis and may be overfitting, i.e. it will not gener-
alize to new positive examples. A rule with high support and low confidence, in
contrast, indicates a more general hypothesis and may be overgeneralizing, i.e.,
it does not generalize to new negative examples. In order to avoid these effects
we are looking for a trade-off between support and confidence.

Definition 21 (Frequent Rule Mining): Given a KB K, a set of positive
examples (usually K), a set of negative examples (usually according to an as-
sumption above) and a language of rules, Frequent rule mining is the task of
finding all rules in the language with a support and a level of confidence superior
to given thresholds.

3.3 Rule Mining Approaches

Using substitutions (see Definition 13), we can define a syntactical order on rules:

Definition 22 (Rule order): A rule R ≡ (B ⇒ h) subsumes a rule R′ ≡
(B′ ⇒ h′), or R is “more general than” R′, or R′ “is more specific than” R,
if there is a substitution σ such that σ(B) ⊆ B′ and σ(h) = h′. If both rules
subsume each other, the rules are called equivalent.

For example, consider the following rules:

hasChild(x, y)⇒ hasChild(z, y) (R0)
hasChild(Elvis, y)⇒ hasChild(Priscilla, y) (R1)

hasChild(x, y)⇒ hasChild(z, Lisa) (R2)
hasChild(x, y) ∧marriedTo(x, z)⇒ hasChild(z, y) (R3)

marriedTo(v1, v2) ∧ hasChild(v1, v3)⇒ hasChild(v2, v3) (R4)
hasChild(x, y) ∧marriedTo(z, x)⇒ hasChild(z, y) (R5)

The ruleR0 is more general than the ruleR1, because we can rewrite the variables
x and z to Elvis and Priscilla respectively. However R0 and R2 are incompa-
rable as we cannot choose to bind only one y and not the other in R0. The rules
R3, R4 and R5 are more specific than R0. Finally R3 is equivalent to R4 but not
to R5.

Proposition 23 (Prediction inclusion): If a rule R is more general than a
rule R′, then the predictions of R′ on a KB are a subset of the predictions of R.
As a corollary, R′ cannot have a higher support than R.

This observation gives us two families of rule mining algorithms: top-down
rule mining starts from very general rules and specializes them until they become
too specific (i.e., no longer meet the support threshold). Bottom-up rule mining,
in contrast, starts from multiple ground rules and generalizes them until the
rules become too general (i.e., too many negative examples are predicted).

3.3.1 Top-Down Rule Mining

The concept of specializing a general rule to more specific rules can be traced
back to [63] in the context of an exact ILP task (under the CWA). Such ap-
proaches usually employ a refinement operator, i.e. a function that takes a rule
(or a set of rules) as input and returns a set of more specific rules. For example,
a refinement operator could take the rule hasChild(y, z) ⇒ hasChild(x, z) and
produce the more specific rule marriedTo(x, y)∧hasChild(y, z)⇒ hasChild(x, z).
This process is iterated, and creates a set of rules that we call the search space
of the rule mining algorithm. On the one hand, the search space should contain
every rule of a given rule mining task, so as to be complete. On the other hand,
the smaller the search space is, the more efficient the algorithm is.

Usually, the search space is pruned, i.e., less promising areas of the search
space are cut away. For example, if a rule does not have enough support, then
any refinement of it will have even lower support (Proposition 23). Hence, there
is no use refining this rule.

AMIE. AMIE [25] is a top-down rule mining algorithm that aims to mine any
connected rule composed of binary atoms for a given support and minimum level
of confidence in a KB. AMIE starts with rules composed of only a head atom
for all possible head atoms (e.g., ⇒ marriedTo(x, y)). It uses three refinement
operators, each of which adds a new atom to the body of the rule.

The first refinement operator, addDanglingAtom, adds an atom composed of
a variable already present in the input rule and a new variable.

Some refinements of: ⇒ hasChild(z, y) (Rh)

are:

 hasChild(x, y)⇒ hasChild(z, y) (R0)
marriedTo(x, z)⇒ hasChild(z, y) (Ra)
marriedTo(z, x)⇒ hasChild(z, y) (Rb)

The second operator, addInstantiatedAtom, adds an atom composed of a vari-
able already present in the input rule and an entity of the KB.

Some refinements of: ⇒ hasChild(Priscilla, y) (R′h)

are:

 hasChild(Elvis, y)⇒ hasChild(Priscilla, y) (R1)
hasChild(Priscilla, y)⇒ hasChild(Priscilla, y) (R>)
marriedTo(Barack, y)⇒ hasChild(Priscilla, y) (R⊥)

The final refinement operator, addClosingAtom, adds an atom composed of two
variables already present in the input rule.

Some refinements of: marriedTo(x, z)⇒ hasChild(z, y) (Ra)

are:

 hasChild(x, y) ∧marriedTo(x, z)⇒ hasChild(z, y) (R3)
marriedTo(z, y) ∧marriedTo(x, z)⇒ hasChild(z, y) (Rα)
marriedTo(x, z) ∧marriedTo(x, z)⇒ hasChild(z, y) (R2

a)

As every new atom added by an operator contains at least a variable present
in the input rule, the generated rules are connected. The last operator is used
to close the rules (for example R3), although it may have to be applied several
times to actually produce a closed rule (cf. Rules Rα or R2

a).
The AMIE algorithm works on a queue of rules. Initially, the queue contains

one rule of a single head atom for each relation in the KB. At each step, AMIE
dequeues the first rule, and applies all three refinement operators. The resulting
rules are then pruned: First, any rule with low support (such as R⊥) is discarded.
Second, different refinements may generate equivalent rules (using the closing
operator on R0 or Ra, e.g., generates among others two equivalent “versions”
of R3). AMIE prunes out these equivalent versions. AMIE+ [26] also detects
equivalent atoms as in R> or R2

a and rewrites or removes those rules. There are
a number of other, more sophisticated pruning strategies that estimate bounds
on the support or confidence. The rules that survive this pruning process are
added to the queue. If one of the rules is a closed rule with a high confidence, it
is also output as a result. In this way, AMIE enumerates the entire search space.

The top-down rule mining method is generic, but its result depends on the
initial rules and on the refinement operators. The operators directly impact the
language of rules we can mine (see Section 3.2.3) and the performance of the
method. We can change the refinement operators to mine a completely different
language of rules. For example, if we don’t use the addInstantiatedAtom oper-
ator, we restrict our search to any rule without instantiated atoms, which also
drastically reduce the size of the search space6.

Apriori Algorithm. There is an analogy between top-down rule mining and
the Apriori algorithm [1]. The Apriori algorithm considers a set of transactions
(sales, products bought in a supermarket), each of which is a set of items (items
bought together, in the supermarket analogy). The goal of the Apriori algorithm
is to find a set of items that are frequently bought together.

These are frequent patterns of the form P ≡ I1(x)∧· · ·∧ In(x), where I(t) is
in our transaction database if the item I has been bought in the transaction t.
Written as the set (called an “itemset”) P ≡ {I1, . . . , In}, any subset of P forms
a “more general” itemset than P , which is at least as frequent as P . The Apriori
algorithm uses the dual view of the support pruning strategy: Necessarily, all
patterns more general than P must be frequent for P to be frequent7. The

6 Let |K| be the number of facts and |r(K)| the number of relations in a KB K. Let d
be the maximal length of a rule. The size of the search space is reduced from O(|K|d)
to O(|r(K)|d) when we remove the addInstantiatedAtom operator.

7 instead of: if a rule is not frequent, none of its refinements can be frequent

refinement operator of the Apriori algorithm takes as input all frequent itemsets
of size n and generate all itemsets of size n+1 such that any subset of size n is a
frequent itemset. Thus, Apriori can be seen as a top-down rule mining algorithm
over a very specific language where all atoms are unary predicates.

The WARMR algorithm [13], an ancestor of AMIE, was the first to adapt
the Apriori algorithm to rule mining over multiple (multidimensional) relations.

3.3.2 Bottom-Up Rule Mining

As the opposite of a refinement operator, one can define a generalization
operator that considers several specific rules, and outputs a rule that is more
general than the input rules. For this purpose, we will make use of the ob-
servation from Section 3.1 that a rule b1 ∧ ... ∧ bn ⇒ h is equivalent to
the disjunction ¬b1 ∨ · · · ∨ ¬bn ∨ h. The disjunction, in turn, can be writ-
ten as a set {¬b1, . . . ,¬bn, h} – which we call a clause. For example, the rule
marriedTo(x, y) ∧ hasChild(y, z) ⇒ hasChild(x, z) can be written as the clause
{¬marriedTo(x, y),¬hasChild(y, z), hasChild(x, z)}. Bottom-up rule mining ap-
proaches work on clauses. Thus, they work on universally quantified disjunctions
– which are more general than Horn rules. Two clauses can be combined to a
more general clause using the “least general generalization” operator [57]:

Definition 24 (Least general generalization): The least general generaliza-
tion (lgg) of two clauses is computed in the following recursive manner:

– The lgg of two terms (i.e., either entities or variables) t and t′ is t if t = t′

and a new variable xt/t′ otherwise.
– The lgg of two negated atoms is the negation of their lgg.
– The lgg of r(t1, . . . , tn) and r(t′1, . . . , t

′
n) is r(lgg(t1, t

′
1), . . . , lgg(tn, t

′
n)).

– The lgg of a negated atom with a positive atom is undefined.
– Likewise, the lgg of two atoms with different relations is undefined.
– The lgg of two clauses R and R′ is the set of defined pair-wise generalizations:

lgg(R,R′) = {lgg(li, l
′
j) : li ∈ R, l′j ∈ R′, and lgg(li, l

′
j) is defined}

For example, let us consider the following two rules:

hasChild(Michelle, Sasha) ∧ marriedTo(Michelle, Barack)
⇒ hasChild(Barack, Sasha) (R)

hasChild(Michelle,Malia) ∧ marriedTo(Michelle, x)
⇒ hasChild(x,Malia) (R′)

In the form of clauses, these are

{¬hasChild(Michelle, Sasha), ¬marriedTo(Michelle, Barack),
hasChild(Barack, Sasha)} (R)

{¬hasChild(Michelle,Malia), ¬marriedTo(Michelle, x),
hasChild(x,Malia)} (R′)

Now, we have to compute the lgg of every atom of the first clause with every
atom of the second clause. As it turns out, there are only 3 pairs where the lgg
is defined:

lgg(¬hasChild(Michelle, Sasha),¬hasChild(Michelle,Malia))
= ¬lgg(hasChild(Michelle, Sasha), hasChild(Michelle,Malia))
= ¬hasChild(lgg(Michelle,Michelle), lgg(Sasha,Malia))
= ¬hasChild(Michelle, xSasha/Malia)

lgg(¬marriedTo(Michelle, Barack),¬marriedTo(Michelle, x))
= ¬marriedTo(Michelle, xBarack/x)

lgg(hasChild(Barack, Sasha), hasChild(x,Malia))
= hasChild(xBarack/x, xSasha/Malia)

This yields the clause

{¬hasChild(Michelle, xSasha/Malia), ¬marriedTo(Michelle, xBarack/x),
hasChild(xBarack/x, xSasha/Malia)}

This clause is equivalent to the rule

hasChild(Michelle, x) ∧ marriedTo(Michelle, y)⇒ hasChild(x, y)

Note that the generalization of two different terms in an atom should result in
the same variable as the generalization of these terms in another atom. In our
example, we obtain only two new variables xSasha/Malia and xBarack/x. In this
way, we have generalized the two initial rules to a more general rule. This can
be done systematically with an algorithm called GOLEM.

GOLEM. The GOLEM/RLGG algorithm [51] creates, for each positive example
e ∈ E+, the rule B ⇒ e, where B is the background knowledge. In our case, B is
the entire KB, and so a very long conjunction of facts. The algorithm will then
generalize these rules to shorter rules. More precisely, the relative lgg (rlgg) of a
tuple of ground atoms (e1, . . . , en) is the rule obtained by computing the lgg of
the rules B ⇒ e1, ..., B ⇒ en. We will call a rlgg valid if it is defined and does
not predict any negative example.

The algorithm starts with a randomly sampled pair of positive examples
(e1, e2) and selects the pair for which the rlgg is valid and predicts (“covers”)
the most positive examples. It will then greedily add positive examples, chosen
among a sample of “not yet covered positive examples”, to the tuple – as long as
the corresponding rlgg is valid and covers more positive examples. The resulting
rule will still contain ground atoms from B. These are removed, and the rule is
output. Then the process starts over to find other rules for uncovered positive
examples.

Progol and others. More recent ILP algorithms such as Progol [49], HAIL [59],
Imparo [36] and others [88,34] use inverse entailment to compute the hypothesis

more efficiently. This idea is based on the observation that a hypothesis h that
satisfies B ∧ h |= E+ should equivalently satisfy B ∧ ¬E+ |= ¬h (by logical
contraposition). The algorithms work in two steps: they will first construct an
intermediate theory F such that B ∧¬E+ |= F and then generalize its negation
¬F to the hypothesis h using inverse entailment.

3.4 Related Approaches

This article cannot give a full review of the field of rule mining. However, it is
interesting to point out some other approaches in other domains that deal with
similar problems:

OWL. OWL is a Description logic language designed to define rules and con-
straints on the KB. For example, an OWL rule can say that every person must
have a single birth date. Such constraints are usually defined upfront by domain
experts and KB architects when they design the KB. They are then used for au-
tomatic reasoning and consistency checks. Thus, constraints prescribe the shape
of the data, while the rules we mine describe the shape of the data. In other
words, constraints are used deductively – instead of being found inductively. As
such, they should suffer no exception. However, rule mining can provide candi-
date constraints to experts when they want to augment their theory [30].

Probabilistic ILP. As an extension of the classic ILP problem, Probabilistic
ILP [12] aims to find the logical hypothesis h that, given probabilistic background
knowledge, maximizes the probability to observe a positive example, and mini-
mizes the probability to observe a negative example. In our case, it would require
a probabilistic model of the real world. Such models have been proposed for some
specific use cases [38,90], but they remain an ongoing subject of research.

Graph Mining and Subgraph Discovery. Subgraph discovery is a well stud-
ied problem in the graph database community (see [27] Part 8 for a quick
overview). Given a set of graphs, the task is to mine a subgraph that appears in
most of them. Rule mining, in contrast, is looking for patterns that are frequent
in the same graph. This difference may look marginal, but the state-of-the-art
algorithms are very different and further work would be needed to determine
how to translate one problem to the other.

Link Prediction. Rules can be used for link prediction, i.e., to predict whether
a relation links two entities. This task can also be seen as a classification problem
([27] Part 7): given two entities, predict whether there is a relation between them.
A notable work that unites both views [39] uses every conjunction of atoms (a
possible body for a rule, which they call a “path”) as a feature dimension for
this classification problem. We will extensively present a more recent approach
to this problem in Section 4.

3.5 Challenges in Rule Mining

Today, Horn rules can be mined efficiently on large KBs [68]. However, many
challenges remain.

Negation. KBs usually do not contain negative information. Therefore, it is
difficult to mine rules that have a negated atom in the body or in the head, such
as marriedTo(x, y)∧ y 6= z ⇒ ¬marriedTo(x, z). Newer approaches use a variant
of the PCA [55], class information [22], or new types of confidence measures [16].

External Information. Since KBs are both incomplete and lacking negative
information, it is tempting to add in data from other sources to guide the rule
mining. One can e.g., add in information about cardinalities [56], or embeddings
computed on text [32].

Numerical Rules. We can imagine rules that detect numerical correlations
(say, between the population of a city and the size of its area), bounds on nu-
merical values (say, on the death year of Ancient Romans), or even complex
numerical formulae (say, that the ratio of inhabitants of the capital is larger in
city states) [24,48,18].

Scaling. While today’s algorithms work well on large KBs, they do less well
once we consider rules that do not just contain variables, but also entities. Fur-
thermore, KBs grow larger and larger. Thus, scalability remains a permanent
problem. It can be addressed, e.g., by smarter pruning strategies, paralleliza-
tion, or by precomputing cliques in the graph of the KB.

4 Representation Learning

After having discussed symbolic representations of entities and rules, we now
turn to subsymbolic representations. In this setting, entities are represented not
as identifiers with relations, but as numerical vectors. Facts are predicted not by
logical rules, but by computing a score for fact candidates.

4.1 Embedding

The simplest way to represent an entity as a vector is by a one-hot encoding :

Definition 25 (One-hot encoding): Given an ordered set of objects S =
{o1, ...on}, the one-hot encoding of the object oi is the vector h(oi) ∈ Rn that
contains only zeros, and a single one at position i.

For example, in our KB in Figure 1, we have 7 entities. We can easily order
them, say alphabetically. Then, Barack is the first entity, and hence his one-hot

encoding is
(
1 0 0 0 0 0 0

)T
(where the T just means that we wrote the vector

horizontally instead of vertically). Such representations are not particularly use-
ful, because they do not reflect any semantic similarity: The vector of Barack
has the same distance to the vector of Michelle as to the vector of Lisa.

Definition 26 (Embedding): An n-dimensional embedding for a group of ob-
jects (e.g. words, entities) is an injective function that maps each object to a
vector in Rn, so that the intrinsic relations between the objects are maintained.

For example, we want to embed the entity Barack in such a way that his
vector is close to the vector of Michelle, or maybe to the vectors of other politi-
cians. Embeddings can also be used for words of natural language. In that case,
the goal is to find an embedding where the vectors of related words are close.
For example, the vector of the word “queen” and the vector of “king” should
be close to each other. An ideal word embedding would even permit arithmetic
relations such as v(king) - v(man) + v(woman) = v(queen) (where v(·) is the em-
bedding function). This means that removing the vector for “man” from “king”,
and adding “woman” should yield the vector for “queen”. Vectors are usually
denoted with bold letters.

Embeddings are interesting mainly for two reasons: first they lower the di-
mensions of object representations. For example, there may be millions of entities
in a KB, but they can be embedded in vectors of a few hundred dimensions. It is
typically easier for down-stream tasks to deal with vectors than with sets of this
size. Second, the structure of the embedding space makes it possible to compare
objects that were incomparable in their original forms (e.g. it is now easy to
define a distance between entities or between words by measuring the euclidean
distance between their embeddings).

There are many ways to compute embeddings. A very common one is to use
neural networks, as we shall discuss next.

4.2 Neural networks

4.2.1 Architecture

We start our introduction to neural networks with the notion of an activation
function:

Definition 27 (Activation Function): An activation function is a non-linear
real function.

Typical examples of activation functions are the hyperbolic tangent, the sig-
moid function σ : x 7→ (1 + e−x)−1 and the rectified linear unit function ReLU:
x 7→ max(0, x). Although these functions are defined on a single real value, they
are usually applied point-wise on a vector of real values. For example, we write
σ(〈x1, ..., xn〉) to mean 〈σ(x1), ..., σ(xn)〉. Neural networks consist of several lay-
ers with such activation functions:

Definition 28 (Layer): In the context of neural networks, a layer is a function
` : Ri → Rj that is either linear or the composition of a linear function and an
activation function (i and j are non-zero naturals).

Thus, a layer is a function that takes as input a vector v ∈ Ri, and does two
things with it. First, it applies a linear function to v, i.e., it multiplies v with
a matrix W ∈ Ri × Rj (the weight matrix). This yields W · v ∈ Rj . Then, it
applies the activation function to this vector, which yields again a vector of size
j. We can now compose the layers to neural networks:

Definition 29 (Neural Network): In its simplest form (that of a Multilayer
perceptron), a neural network is a function g : Rn → Rp, such that g is a com-
position of layers. The parameters p, n and the intermediate dimensions of the
layers are non-zero naturals.

x1

x2

x3

x4

y1

y2

z

Fig. 2. Example of a one-hidden-layer network.

Figure 2 shows a one-hidden-layer network that takes as input vectors x ∈ R4

and outputs real values z ∈ R1. The function g of the network can be decomposed
as g = `2 ◦ `1 where `1 : R4 → R2 is the hidden layer and `2 : R2 → R1 is the
output layer. Let us now see how such a network computes its output. Let us
assume that the weight matrix of the first layer is A, that the weight matrix of
the second layer is B and that the input is x:

x =

0
1
0
0

 , A =

(
0.4 0.5 −0.3 0.1
0.8 −0.6 0.4 0.2

)
, B =

(
0.5 −0.6

)
(1)

If both layers use the sigmoid activation function σ, we can compute the result
of the first layer as y = `1(x) = σ(A · x), and the result of the second layer (and
thus of the entire network) as z = `2(y) = σ(B · y):

y = σ

(0.2 0.5 −0.3 0.1
0.8 −0.6 0.4 0.2

)
.

0
1
0
0

 = σ

((
0.5
−0.6

))
=

(
σ(0.5)
σ(−0.6)

)
≈
(

0.62
0.35

)
(2)

z = σ

((
0.5 −0.7

)
.

(
0.62
0.35

))
= σ

((
0.063

))
=
(
σ(0.063)

)
≈
(
0.51

)
(3)

Figure 3 shows this computation graphically. The function computed by the
network is g = `2 ◦ `1 = σ ◦ b ◦ σ ◦ a, where a and b are linear functions defined
by the matrices A and B.

σ

σ

σ

0

1

0

0

0.5

−0.6

0.62

0.35

0.5

−0.7

0.063 0.51

0.2

0.8

0.5

−0.6

−0.3
0.4

0.2
0.1

x

y

z

Fig. 3. Example of a one-hidden-layer network with computations.

4.2.2 Training

We want the neural network to compute an embedding of KB entities and
relations. For this, we first have to understand how neural networks can perform
supervised learning tasks. In supervised learning, we are interested in approx-
imating some function f : Rp 7→ Rk. We do not know f . We only know some
datapoints of f : {(xi, αi) ∈ Rp × Rk|i = 0, . . . , n}, with f(xi) = αi for any i.
The goal is to find the best estimation of f . With our notations, we would like
to find the neural network whose function f̂ approximates f .

We first decide on an architecture of the neural network. We already know
how many input nodes it has (namely p), and how many output nodes it has
(namely k). We just have to decide how many hidden layers it has (typically a
single one for simple tasks), and what the activation functions are (the sigmoid
function is a popular choice). Then, we initialize the weight matrices of the layers
randomly. Training the network model now means adapting the weight matrices
for each layer so that f̂(xi) = αi for all datapoints (or at least for as many
as possible). This is achieved using gradient descent: for each sample xi of the

dataset, a loss is computed (comparing the output f̂(xi) to the true value αi)
and the weights are updated in the opposite direction of the gradient of the sum
of the losses with respect to the weights of the network.

Interestingly, neural networks can be trained for many functions between
vectors. It has been proven that the range of functions neural networks can
approximate is very large and grows very rapidly with the depth (number of
layers) of the network [74]. This is a big strength of these models.

4.2.3 Embeddings

Let us now see how we can use neural networks to compute an m-dimensional
embedding function for a set of objects S = {o1, ..., on}. The input to the net-
work will be the one-hot encoding of the object, i.e., we need n input nodes.
In the ideal case, the neural network would directly output a vector of size m
(the embedding). Then, however, we would not know how to train the network,

because we have no given embeddings to compare to. Therefore, we use a trick:
We do not let the network compute the embedding directly, but a function whose
output we know. For example, suppose the objects are people, and suppose we
know the gender of the people (1 for female, 0 for male, or anything in between).
We build a network with a single hidden layer of size m and an output layer of
size 1 (because we want to predict a single value, the gender). Figure 2 shows
such a network for n = 4 and m = 2.

Then we train the network to predict the gender of each person (i.e., we find

the weights so that f̂(oi) = 1 if oi is female, etc.). In our example from Figure 3,
we have trained the network so that the object o2 has a gender value of 0.51.
Interestingly, after training, the first layer of the network is often a very good

embedding function. In our example, the embedding of x =
(
0 1 0 0

)T
would be

y =
(
0.62 0.35

)T
.

Why is that a good choice? We first observe that the embedding function
has the right dimensions: it maps a one-hot encoded vector of dimension n to
a vector of dimension m, as desired (v : Rn 7→ Rm). Then, we observe that the
second layer (which computes the gender) bases its computation purely on the
outputs of the first layer (the sigmoid of the embedding). Therefore, the out-
put of the hidden layer provided enough information to reconstitute the gender,
i.e., our embedding maintains the crucial information. Selecting a hidden layer
as embedding comes down to dividing the network in two parts: the first layer
computes features (the components of y) that should capture the information
relevant for the application it is trained on; the second layer computes the value
f̂(x) using only those extracted features contained in y. This division makes it
intuitive that if the training task is well-chosen, the computed features should
capture interesting aspects of the data and constitute a good embedding candi-
date. Note that even if we are interested only in y it is still necessary to train
the entire network as we can only evaluate the performance of the embedding
by comparing f̂ to f .

The method that creates an embedding (in our case: a neural network) is
often called a model. We will now see how to create models for facts in KBs.

4.3 Knowledge Base Embeddings

If we want to embed a KB, we can either embed entities, relations, or facts. Most
models in the literature embed entities and relations together. These models
take as input a fact of a subject s, a relation r and an object o as one-hot
encoded vectors, which are concatenated together to one long vector with three
1s. Let’s take as example the knowledge base from Figure 1. This KB has 7
entities (Barack, Michelle, Sasha, Malia, Elvis, Priscilla Lisa) and 2 relations
(marriedTo, hasChild). To feed the fact marriedTo(Barack, Michelle) into the
model, we create the one-hot encoded vectors and concatenate them to one long
vector: (

(
1 0 0 0 0 0 0

)
,
(
1 0
)
,
(
0 1 0 0 0 0 0

)
)T . The output of the model will be

a scoring function:

Definition 30 (Scoring Function): In the context of knowledge base embed-
dings, a scoring function maps a fact r(s, o) to a real-valued score.

The score of a fact is an estimate of the true theoretical and unknown function
deciding whether the fact is true. Obviously, the score should be high for the
facts in a correct KB (Section 2.4.1). In certain probabilistic contexts, the score
can be interpreted as the likelihood of the fact to be true. We denote the scoring
function of the fact r(s, o) by fr(s,o).

As for the embeddings we already saw, models are divided in two parts: the
first one which links the one-hot encoded vectors to the embeddings r, s and o
and the second part which computes fr(s,o). We now have to train the model
to predict whether an input fact is true (has a high score) or not (has a low
score). Once the model is trained, we will be able to read off the embeddings
from the weight matrix of one of the hidden layers.

Let us now see where we can find training data. For the true facts, the KB
obviously provides lots of datapoints. However, if we just train the model on
positive facts, it will just learn to always predict a high score. This is the same
problem we already saw in Section 3.2.2. Therefore, we also need to provide
negative facts:

Definition 31 (Negative fact): Given a fact r(s, o) from a KB, a negative
fact is a statement r(s′, o′) that is not in the KB.

The process of generating negative fact is called negative sampling and is
detailed in Section 4.3.1. For now, let us just assume that we have such negative
facts at our disposal. To train the network, we use a loss function:

Definition 32 (Loss function): A loss function ` is a function from R2 to R.

We will apply the loss function to the score fr(s,o) that the network com-
puted for a true fact r(s, o) and the score fr(s′,o′) that the network computed
for a negative fact r(s′, o′). Naturally, the two scores should be very different:
the first score should be high, and the second one should be low. If the two scores
are close, the network is not trained well. Therefore, the loss function `(x1, x2)
should be larger the closer x1 and x2 are. The logistic loss or the margin loss
are usual examples. They are defined respectively in Equation 4 and Equation 5,
where γ is a parameter, and ηz = 1 if z is the score for a positive example and
ηz = −1 if z is the score for a negative example:

(x, y) 7→ log(1 + exp(−ηx × x)) + log(1 + exp(−ηy × y)) (4)

(x, y) 7→ max(0, γ + ηx × x+ ηy × y) (5)

Definition 33 (Training): Training a knowledge base embedding model is find-
ing the best parameters of the model (and then the best embeddings) so that the
scoring function fr(s,o) is maximized for true facts and minimized for negative
ones.

Training is done by minimizing the sum of loss functions by gradient descent
over a training set of facts. The sum is usually computed as follows, where r(s, o)

is a fact, r(s′, o′) is a negative fact generated from r(s, o) (c.f. Section 4.3.1), and
` a loss function:

L =
∑

(s,r,o)∈K

` (fr(s,o), fr(s′,o′)) (6)

4.3.1 Negative sampling

Let us now see how we can generate the negative facts for our model. Feeding
negative samples to the model is vital during training. If the model was only
trained on true samples, then it could minimize any loss by trivially returning a
large score for any fact it is fed with. This is the same problem that we already
saw in Section 3.2.2, and in principle the same considerations and methods apply
here as well. In the context of knowledge base embeddings, the generation of
negative facts is usually done by negative sampling. Negative sampling is the
process of corrupting a true fact’s subject or object in order to create a wrong
statement. This is very related to the Partial Completeness Assumption that
we already saw in Section 3.2.2: If we have a fact hasChild(Michelle, Sasha),
then any variant of this fact with a different object is assumed to be a wrong
statement – unless it is already in the KB. For example, we would generate the
negative facts hasChild(Michelle, Elvis) and hasChild(Michelle, Barack).

It has been observed that the quality of the resulting embedding highly de-
pends on the quality of the negative sampling. Thus, we have to choose wisely
which facts to generate. Intuitively, negative samples introduce repulsive forces
in the embedding space so that entities that are not interchangeable in a fact
should have embeddings far away from each other. It is of course easy to generate
negative facts, simply by violating type constraints. For example, we can gener-
ate hasChild(Michelle, USA), which is certain to be a false statement (due to the
domain and range constraints, see Section 2.3.2). Then, however, we run into the
zero loss problem [78]: The model learns to compute a low score for statements
that are so unrealistic that they are not of interest anyway. It will not learn to
compute a low score for statements such as hasChild(Michelle, Lisa), which is
the type of statements that we are interested in.

We thus have to choose negative facts that are as realistic as possible. As
training goes on, we will provide the model with negative samples that are closer
and closer to true facts, in order to adjust in a finer way the embeddings. To this
end, various methods have been presented. One of them uses rules on the types
of entities in order to avoid impossible negative facts such as hasChild(Michelle,
USA) [42]. Another more complex method is adversarial negative sampling [78].

4.3.2 Shallow Models

Shallow models rely on the intuition that for a given fact r(s, o), we would like
the vectors s+r and o to be close in the embedding space. For example, we would
like the vectors Barack + marriedTo and Michelle to be close. There are

two ways to define “close”: The vectors can have a small vector difference (which
is what translational models aim at) or they can have a small angle between them
(which is what semantic-matching models do). The simplest translational model
is TransE [8]. Its scoring function is simply the opposite of the distance between
s + r and o: fr(s,o) = −||s + r − o|| (where || · || is either the 1-norm or
the 2-norm). Maximizing this scoring function for true facts and minimizing it
for negative facts leads to embeddings that should verify the simple arithmetic
equation s + r ≈ o.

Let us now see how a network can be made to compute this score. As an
example, let us embed in R3 the KB of Figure 1 with TransE and the 2-norm.
The network to this end is shown in Figure 4.

0

0

0

0

1

0

0

e1,1

e2,1

e3,1

0

0

0

0

0

e1,2

e2,2

e3,2

1

0

r1,1

r2,1

r3,1

e1,1 + r1,1 − e1,2

e2,1 + r2,1 − e2,2

e3,1 + r3,1 − e3,2

f2
r (s, o) fr(s, o)

s

r

o

fe(s)

fe(o)

fr(r)

Legend

η : x 7→ x2

ρ : x 7→ −
√
x

First layer:
Getting the embeddings

Rest of the network:
Computing the scoring function

0

1

+ −

(e1,1 + r1,1 − e1,2)2

(e2,1 + r2,1 − e2,2)2

(e3,1 + r3,1 − e3,2)2

+

Fig. 4. Graphical representation of the TransE Model (with 2-norm) applied to the fact
marriedTo(Barack,Michelle) for Figure 1, with s = (1 0 0 0 0 0 0)T , o = (0 1 0 0 0 0 0)T

and r = (1 0)T .

The network takes as input a fact r(s, o), i.e., the concatenation of the one-
hot encodings of s, r, and o. The first layer computes the embeddings of these
items. The trick is that we will use not a single weight matrix for the first layer,

but two: One weight matrix E ∈ R3×7 to compute the embedding of entities s
and o and one weight matrix R ∈ R3×2 to compute the embedding of relations r.
Thus, when we train the network, we will learn the same matrix (and thus the
same embeddings) for entities independently of their roles (as subject or object
of the facts). We use no activation function in the first layer (or the identity
function but it is not really an activation function as it is linear). Thus, the first
layer computes simply, for a given fact r(s, o), the embeddings E · h(s), R · h(r)
and E · h(o) where h is the one-hot encoding function.

The next layer of the network will add the embeddings of s and r, i.e., it
will take as input two 3-dimensional vectors, and produce as output a single
3-dimensional vector. This can be done by a simple matrix multiplication of the
concatenated vectors with a fixed matrix, as shown here:

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 .

a1
a2
a3
b1
b2
b3

 =

a1 + b1
a2 + b2
a3 + b3

 (7)

Thus, this hidden layer of the network has no parameter to be trained – it just
performs a sum operation with a fixed weight matrix. Therefore, Figure 4 just
shows a

⊕
. We use the same trick again to compute the difference between the

sum of the embeddings of s and r (which is a vector in R3), and the embedding
of o (also a vector in R3).

The next layer receives as input the 3-dimensional vector s+r−o, and it has
to produce the value fr(s,o) = −||s + r − o||2. For this purpose, we first have
to square every component of the vector. This can be done by a hidden layer
with 3 input nodes and 3 output nodes. The weight matrix is just the identity
matrix: It has only zeroes, and one’s in the diagonal, i.e., it just passes every
value from an input node to the corresponding output node. This matrix also
remains constant during the training. The activation function η just squares the
value for each node. The next hidden layer receives a vector of size 3, and adds
up the components (as we have done before). The final layer just applies the
activation function ρ : x 7→ −

√
x.

Thus, the model computes, for an input fact r(s, o), the score fr(s,o) =
−||s + r − o||2. It suffices to train this model on positive and negative facts
to adjust the weights so that this score is high for positive facts, and low for
negative ones.

Limitations of the TransE Model. Although TransE yields promising re-
sults, it does not work well for one-to-many, many-to-one or many-to-many
relations. As an example, consider the relation wrote. This is a one-to-many
relation because one author can write several books: the facts wrote(Albert Ca-
mus, La Peste) and (wrote(Albert Camus, L’étranger) are both true. The TransE
approach tends to return the same embeddings for the books of an author (i.e.,

La Peste and L’étranger), because they are almost interchangeable for the loss
function, they have very few facts to distinguish them.

This limitation has been overcome by adding a relation-specific projection
step. Entities should be projected into a relation-specific subspace before the
translation happens. Let pr be a relation-specific projection, i.e., a linear function
from entity embeddings to vectors of possibly smaller size (projecting into a sub-
space). Then we want pr(s)+r and pr(o) to be close (in distance or in similarity).
Since a projection is a linear operation, it just adds another layer in the network
after the first one (which returns the embeddings) and before the computation
of the scoring function starts.

If, in our previous example, all entities are projected into a subspace that
is specific to wrote, the projections of the books could all be the same. We can
thus arrive at the desired arithmetic relations between the projected entities
without forcing all books to have the same embedding. This idea has given
rise to various refinements of the TransE model, depending on the projections
considered. Here are a couple of the methods that followed TransE: TransH
(projections on hyperplanes), TransR (projections on any type of subspace),
TransD (projections with dynamic mapping matrices built both from entities
and relations) [79,43,35].

We mainly presented translational models because they are the most intuitive
ones, but semantic models achieve good results as well. The first such model
(RESCAL [54]) lacks some representation capacity (as TransE) and was later
refined to more complex models such as DistMul, HolE, ComplEx, ANALOGY
[89,53,75,45].

4.3.3 Deep Models

Deeper architectures have also been introduced with the hope that hidden
layers can capture more complex interaction patterns between entities and rela-
tions (and then estimate more complex scoring functions). In such models, the
first part of the network (which, in shallow networks, just maps facts to their
embeddings or their projections) now adds additional layers (possibly numerous)
that receive as inputs the embeddings, and produce as outputs some extracted
features. The second part of the network now computes the scoring function
from the features extracted by the first part of the network and not directly
from the embedding (or its projection) as in shallow models. The scoring func-
tion also becomes a parameter of the model (to be trained) and is not defined
a priori anymore (in TransE for example it was only a distance between s + r
and o). Note that we often loose the interpretability of the scoring function in
this process. Examples of such methods are SME, NTN, and MLP [7,64,15] and
more recent ones that include convolutional structures ConvE, ConvKB [14,52].

4.3.4 Fact Prediction

Commonly, authors compare the performance of their embedding methods
on two tasks: fact checking and link prediction. Fact checking is simply deciding
whether a given fact is true or false. To see how the embedding performs on
this task, we train the network on a portion of the KB (i.e., on a subset of the
facts) in which all entities and relations appear at least once. Then, we check for
each fact from the KB that the network has not seen during training whether
the network computes a score that is higher than a threshold (i.e., whether the
network correctly assumes the fact to be true). The thresholds are determined
on a validation set extracted from the training set.

Link prediction is a bit more complex. Again, we train the network on a
portion of the KB. For a given fact r(s, o) that the network did not see during
training, the value of the scoring function fr(s, e) (resp. fr(e, o)) is computed
with the model for all entities e. This allows ranking candidate entities by de-
creasing order of scoring function. Then we count the share of unseen facts that
the model manages to recover when the object (resp. subject) is hidden. Such
evaluations are usually done under the Closed World Assumption (Section 2.4.1):
If the network predicts a fact that is not in the KB, this is counted against the
network – although the fact may be true but just unknown to the KB.

Thus, link prediction amounts to predicting facts – much like rules predict
facts (Section 3.1). The difference is that rules are explicit: they tell us which
circumstances lead to a prediction. Networks are not: they deduce new facts from
the overall similarity of the facts. Another difference is that a rule does not know
about the other rules: The confidence of a prediction does not increase if another
rule makes the same prediction. Networks, in contrast, combine evidence from
all types of correlations, and may thus assign a higher score to a fact for which
is has more evidence.

4.4 Challenges in Representation Learning

While representation learning for knowledge graphs has made big advances these
recent years, some challenges remain to be tackled:

Generalization of Performances. Current models tend to have performances
that do not generalize well from one dataset to the other. Most methods are
heuristics executing a more or less intuitive approach. A theory that could ex-
plain the variation of performance is missing.

Negative Sampling. Finding realistic negative facts remains a challenge in
knowledge base embedding – much like in rule mining (Section 3.5). Here, we
could use logical constraints. For example, if we know that Lisa cannot have more
than two parents, then we could use hasChild(Michelle, Lisa) as a negative fact.

Dealing with Literals. Most current methods consider literals as monolithic
entities. Thus, they are unable to see, e.g., that the date “2019-01-01” is close
to the date “2018-12-31”, or that the number “99” is close to the number “100”.
Such knowledge could lead to more accurate fact scoring functions.

Scalability. The development of massive KBs such as Wikidata requires algo-
rithms to be able to scale. There is still room for improvement here: Embedding
methods are usually tested on the FB15k dataset, which counts only 500 thou-
sand facts – while Wikidata counts more than 700 million.

5 Conclusion

In this article, we have investigated how entities, relations, and facts in a knowl-
edge base can be represented. We have seen the standard knowledge represen-
tation model of instances and classes. We have also seen an alternative repre-
sentation of entities, as embeddings in a vector space. We have then used these
representations to predict new facts – either through logical rules (by the help
of rule mining), or through link prediction (with the help of neural networks).

Many challenges remain: the knowledge representation of today’s KBs re-
mains limited to subject-relation-object triples (Section 2.6). In Rule Mining,
we have only just started looking beyond Horn Rules (Section 3.5). In Knowl-
edge Base Embeddings, we have to learn how to generate more realistic negative
examples (Section 4.4). This is one of the areas where the Semantic Web com-
munity and the Machine Learning community can have fruitful interchanges.

References

1. Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining associ-
ation rules. In VLDB, volume 1215, 1994.

2. Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. The transitive reduction
of a directed graph. SIAM Journal on Computing, 1(2), 1972.

3. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors. The Description Logic Handbook. Springer, 2003.

4. Meghyn Bienvenu, Fabian M. Suchanek, and Daniel Deutch. Provenance for web
2.0 data. In SDM workshop, 2012.

5. Christian Bizer, Tom Heath, Kingsley Idehen, and Tim Berners-Lee. Linked data
on the Web. In WWW, 2008.

6. Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
Freebase: a collaboratively created graph database for structuring human knowl-
edge. In SIGMOD, 2008.

7. Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. A semantic
matching energy function for learning with multi-relational data. Machine Learn-
ing, 94(2), Feb 2014.

8. Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. Translating Embeddings for Modeling Multi-relational Data. In
NIPS, 2013.

9. A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. Hruschka Jr., and T. Mitchell.
Toward an architecture for never-ending language learning. In AAAI, 2010.

10. Jeremy J Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named graphs,
provenance and trust. In WWW, 2005.

11. Yang Chen, Daisy Zhe Wang, and Sean Goldberg. Scalekb: Scalable learning and
inference over large knowledge bases. In VLDBJ, 2016.

12. Luc De Raedt and Kristian Kersting. Probabilistic inductive logic programming.
In Probabilistic Inductive Logic Programming. Springer, 2008.

13. Luc Dehaspe and Luc De Raedt. Mining association rules in multiple relations. In
International Conference on Inductive Logic Programming, 1997.

14. Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Con-
volutional 2d Knowledge Graph Embeddings. In AAAI, 2018.

15. X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang. Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In SIGKDD, 2014.

16. Minh Duc Tran, Claudia d’Amato, Binh Thanh Nguyen, and Andrea G. B. Tetta-
manzi. Comparing rule evaluation metrics for the evolutionary discovery of multi-
relational association rules in the semantic web. In Genetic Programming, 2018.

17. Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria Popescu,
Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates. Web-scale
information extraction in knowitall:. In WWW, 2004.

18. Nicola Fanizzi, Claudia d’Amato, Floriana Esposito, and Pasquale Minervini. Nu-
meric prediction on owl knowledge bases through terminological regression trees.
International Journal of Semantic Computing, 6(04), 2012.

19. C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press, 1998.
20. David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek,

Aditya A Kalyanpur, Adam Lally, J William Murdock, Eric Nyberg, John Prager,
et al. Building watson: An overview of the deepqa project. AI magazine, 31(3),
2010.

21. Michael David Fisher, Dov M Gabbay, and Lluis Vila. Handbook of temporal
reasoning in artificial intelligence. Elsevier, 2005.

22. Mohamed H. Gad-Elrab, Daria Stepanova, Jacopo Urbani, and Gerhard Weikum.
Exception-enriched rule learning from knowledge graphs. In ISWC, 2016.

23. Luis Galárraga, Simon Razniewski, Antoine Amarilli, and Fabian M. Suchanek.
Predicting completeness in knowledge bases. In WSDM, 2017.

24. Luis Galárraga and Fabian M. Suchanek. Towards a numerical rule mining lan-
guage. In AKBC workshop, 2014.

25. Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Amie:
Association rule mining under incomplete evidence in ontological knowledge bases.
In WWW, 2013.

26. Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast
rule mining in ontological knowledge bases with amie+. In VLDBJ, 2015.

27. Lise Getoor and Christopher P Diehl. Link mining: a survey. ACM SIGKDD
Explorations Newsletter, 7(2), 2005.

28. Claudio Gutierrez, Carlos A Hurtado, and Alejandro Vaisman. Introducing time
into rdf. IEEE Transactions on Knowledge and Data Engineering, 19(2), 2007.

29. James Hawthorne. Inductive logic. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, 2018.

30. Sebastian Hellmann, Jens Lehmann, and Sören Auer. Learning of owl class de-
scriptions on very large knowledge bases. J. on Semantic Web and Information
Systems, 5(2), 2009.

31. Leah Henderson. The problem of induction. In Edward N. Zalta, editor, The Stan-
ford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
2019.

32. Vinh Thinh Ho, Daria Stepanova, Mohamed H. Gad-Elrab, Evgeny Kharlamov,
and Gerhard Weikum. Rule learning from knowledge graphs guided by embedding
models. In ISWC, 2018.

33. Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.
Yago2: A spatially and temporally enhanced knowledge base from wikipedia. In
Artificial Intelligence , 2013.

34. Katsumi Inoue. Induction as consequence finding. Machine Learning, 55(2), 2004.
35. Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. Knowledge Graph

Embedding via Dynamic Mapping Matrix. In ACL, Beijing, China, 2015.
36. Tim Kimber, Krysia Broda, and Alessandra Russo. Induction on failure: Learning

connected horn theories. In International Conference on Logic Programming and
Nonmonotonic Reasoning. Springer, 2009.

37. Markus Krötzsch, Maximilian Marx, Ana Ozaki, and Veronika Thost. Attributed
description logics: Reasoning on knowledge graphs. In IJCAI, 2018.

38. Jonathan Lajus and Fabian M. Suchanek. Are all people married? determining
obligatory attributes in knowledge bases. In WWW, 2018.

39. Ni Lao, Tom Mitchell, and William W Cohen. Random walk inference and learning
in a large scale knowledge base. In EMNLP, 2011.

40. Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören
Auer, and Christian Bizer. DBpedia - a large-scale, multilingual knowledge base
extracted from wikipedia. Semantic Web Journal, 6(2), 2015.

41. Douglas B Lenat and Ramanathan V Guha. Building large knowledge-based sys-
tems; representation and inference in the Cyc project. Addison-Wesley Longman
Publishing Co., Inc., 1989.

42. Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. PyTorch-BigGraph: A Large-scale Graph Embed-
ding System. In Conference on Systems and Machine Learning, 2019.

43. Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning Entity
and Relation Embeddings for Knowledge Graph Completion. In AAAI, 2015.

44. H. Liu and P. Singh. Conceptnet. BT Technology Journal, 22(4), October 2004.
45. Hanxiao Liu, Yuexin Wu, and Yiming Yang. Analogical inference for multi-

relational embeddings. In ICML, 2017.
46. Eric Margolis and Stephen Laurence. Concepts. In Edward N. Zalta, editor, The

Stanford Encyclopedia of Philosophy. Stanford, 2014.
47. Maximilian Marx, Markus Krötzsch, and Veronika Thost. Logic on mars: Ontolo-

gies for generalised property graphs. In IJCAI, 2017.
48. André Melo, Martin Theobald, and Johanna Völker. Correlation-based refinement

of rules with numerical attributes. In FLAIRS, 2014.
49. Stephen Muggleton. Inverse entailment and progol. New generation computing,

13(3-4), 1995.
50. Stephen Muggleton and Luc De Raedt. Inductive logic programming: Theory and

methods. The Journal of Logic Programming, 19, 1994.
51. Stephen Muggleton and Cao Feng. Efficient induction of logic programs. 1990.
52. Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc Nguyen, and Dinh Phung. A Novel

Embedding Model for Knowledge Base Completion Based on Convolutional Neural
Network. In NAACL, 2018.

53. Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic Embeddings
of Knowledge Graphs. In AAAI, 2016.

54. Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A Three-way Model for
Collective Learning on Multi-relational Data. In ICML, 2011.

55. Stefano Ortona, Venkata Vamsikrishna Meduri, and Paolo Papotti. Robust dis-
covery of positive and negative rules in knowledge bases. In ICDE, 2018.

56. Thomas Pellissier Tanon, Daria Stepanova, Simon Razniewski, Paramita Mirza,
and Gerhard Weikum. Completeness-aware rule learning from knowledge graphs.
In ISWC, 2017.

57. Gordon Plotkin. Automatic methods of inductive inference. 1972.
58. S. Ponzetto R. Navigli. BabelNet: The automatic construction, evaluation and ap-

plication of a wide-coverage multilingual semantic network. Artificial Intelligence,
193, 2012.

59. Oliver Ray, Krysia Broda, and Alessandra Russo. Hybrid abductive inductive
learning: A generalisation of progol. In International Conference on Inductive
Logic Programming. Springer, 2003.

60. Simon Razniewski, Fabian M. Suchanek, and Werner Nutt. But what do we actu-
ally know? In AKBC workshop, 2016.

61. Bertrand Russell. The Problems of Philosophy. Barnes & Noble, 1912.
62. S. Russell and P. Norvig. Artificial Intelligence: a Modern Approach. Prentice Hall,

2002.
63. Ehud Y Shapiro. Inductive inference of theories from facts. Yale University, De-

partment of Computer Science, 1981.
64. Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning

With Neural Tensor Networks for Knowledge Base Completion. In NIPS. 2013.
65. Arnaud Soulet, Arnaud Giacometti, Beatrice Markhoff, and Fabian M. Suchanek.

Representativeness of Knowledge Bases with the Generalized Benford’s Law. In
ISWC, 2018.

66. J. F. Sowa. Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks/Cole, 2000.

67. Steffen Staab and Rudi Studer, editors. Handbook on Ontologies. International
Handbooks on Information Systems. Springer, 2004.

68. Daria Stepanova, Mohamed H Gad-Elrab, and Vinh Thinh Ho. Rule induction
and reasoning over knowledge graphs. In Reasoning Web International Summer
School. Springer, 2018.

69. Fabian M. Suchanek, Serge Abiteboul, and Pierre Senellart. Paris: Probabilistic
alignment of relations, instances, and schema. In VLDB, 2012.

70. Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago – a core of
semantic knowledge. In WWW, 2007.

71. Fabian M. Suchanek and Nicoleta Preda. Semantic Culturomics . In VLDB short
paper track, 2014.

72. Niket Tandon, Gerard de Melo, Abir De, and Gerhard Weikum. Knowlywood:
Mining Activity Knowledge From Hollywood Narratives. In CIKM, 2015.

73. Niket Tandon, Gerard de Melo, Fabian M. Suchanek, and Gerhard Weikum. We-
bChild: Harvesting and Organizing Commonsense Knowledge from the Web . In
WSDM, 2014.

74. Matus Telgarsky. Representation Benefits of Deep Feedforward Networks. arXiv
[cs], September 2015.

75. Théo Trouillon and Maximilian Nickel. Complex and Holographic Embeddings of
Knowledge Graphs: A Comparison. arXiv [cs, stat], 2017.

76. Octavian Udrea, Diego Reforgiato Recupero, and VS Subrahmanian. Annotated
rdf. ACM Transactions on Computational Logic, 11(2), 2010.

77. Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledge-
base. Communications of the ACM, 57(10), 2014.

78. Peifeng Wang, Shuangyin Li, and Rong Pan. Incorporating GAN for Negative
Sampling in Knowledge Representation Learning. In AAAI, 2018.

79. Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge Graph
Embedding by Translating on Hyperplanes. In AAAI, 2014.

80. Chris Welty, Richard Fikes, and Selene Makarios. A reusable ontology for fluents
in owl. In FOIS, 2006.

81. Alfred North Whitehead and Bertrand Russell. Principia mathematica. 1913.
82. Word Wide Web Consortium. RDF Primer, 2004.
83. Word Wide Web Consortium. RDF Vocabulary Description Language 1.0: RDF

Schema, 2004.
84. Word Wide Web Consortium. SKOS Simple Knowledge Organization System,

2009.
85. Word Wide Web Consortium. OWL 2 Web Ontology Language, 2012.
86. Word Wide Web Consortium. SPARQL 1.1 Query Language, 2013.
87. Mohamed Yahya, Denilson Barbosa, Klaus Berberich, Qiuyue Wang, and Gerhard

Weikum. Relationship Queries on Extended Knowledge Graphs. In WSDM, 2016.
88. Akihiro Yamamoto. Hypothesis finding based on upward refinement of residue

hypotheses. Theoretical Computer Science, 298(1), 2003.
89. Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding

Entities and Relations for Learning and Inference in Knowledge Bases. In ICLR,
2014.

90. Kaja Zupanc and Jesse Davis. Estimating rule quality for knowledge base comple-
tion with the relationship between coverage assumption. In WWW, 2018.

A Computation of Support and Confidence

Notation. Given a logical formula φ with some free variables x1, . . . , xn, all
other variables being by default existentially quantified, we define:

#(x1, . . . , xn) : φ := |{(x1, . . . , xn) : φ(x1, . . . , xn) is true}|

We remind the reader of the two following definitions:

Definition 14 (Prediction of a rule): The predictions P of a rule B ⇒ h
in a KB K are the head atoms of all instantiations of the rule where the body
atoms appear in K. We write K ∧ (B ⇒ h) |= P .

Definition 19 (Support): The support of a rule in a KB is the number of
positive examples predicted by the rule.

A prediction of a rule is a positive example if and only if it is in the KB. This
observation gives rise to the following property:

Proposition 34 (Support in practice): The support of a rule B ⇒ h is the
number of instantiations of the head variables that satisfy the query B ∧h. This
value can be written as:

support(B ⇒ h(x, y)) = #(x, y) : B ∧ h(x, y)

Definition 20 (Confidence): The confidence of a rule is the number of positive
examples predicted by the rule (the support of the rule), divided by the number
of examples predicted by the rule.

Under the CWA, all the predicted examples are either positive examples or
negative examples. Thus, the standard confidence of a rule is the support of the
rule divided by the number of prediction of the rule, written:

std-conf(B ⇒ h(x, y)) =
#(x, y) : B ∧ h(x, y)

#(x, y) : B

Assume h is more functional than inverse functional. Under the PCA, a
predicted negative example is a prediction h(x, y) that is not in the KB, such
that, for this x there exists another entity y′ such that h(x, y′) is in the KB.
When we add the predicted positive examples, the denominator of the PCA
confidence becomes:

#(x, y) : (B ∧ h(x, y)) ∨ (B ∧ ¬h(x, y) ∧ ∃y′.h(x, y′))

We can simplify this logical formula to deduce the following formula for
computing the PCA confidence:

pca-conf(B ⇒ h(x, y)) =
#(x, y) : B ∧ h(x, y)

#(x, y) : B ∧ ∃y′.h(x, y′)

	Knowledge Representation and Rule Mining in Entity-Centric Knowledge Bases

