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Asymptotic Normality of Q-ary Linear Codes
Minjia Shi, Member, IEEE, Olivier Rioul Member, IEEE, and Patrick Solé Member, IEEE

Abstract—Sidel’nikov proved in 1971 that the weight
distribution of long binary codes is asymptotically Gaus-
sian. Delsarte sketched in 1975 an extension of this result
to Q-ary codes when Q > 2. In this note, we complete
Delsarte’s proof.

Index Terms—Linear codes, Weight distribution,
Berry’s inequality.

I. INTRODUCTION

AN empirical observation made by many coding
theorists is that the weight distribution of long Q-

ary codes is well approximated by a normal (Gaussian)
law (see Fig. 1). A rigorous result was established by
Sidel’nikov [1] in the binary case (Q = 2), and by
Delsarte [2] for Q > 2. The result is that the weight
distribution of long codes is asymptotically normal
when the dual distance of the code is large enough. A
friendly exposition of Sidel’nikov’s bound for Q = 2
can be found in [3, Chapter 9, § 10], but Delsarte’s
proof [2] contains several unproved bounds. In this
paper, we give a complete proof with sharper bounds.
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Fig. 1. Weight distribution of a [23, 17] BCH code over F3.
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This paper is organized as follows. The next section
collects basic facts and notations needed in the remain-
der of the paper. Section III compares the moments
of the weight distribution with that of a binomial
distribution of parameters (p, q). Section IV builds
on Berry’s inequality that compares the probability
distribution function of an arbitrary law with that of
the normal law. Section V provides a bound on the
centered moments of a binomial law, that is sharper
than that in [2]. Section VI simplifies a bound by
Delsarte using a technique due to Essen. Section VII
derives the main result by combining the bounds of the
previous sections.

II. DEFINITIONS AND NOTATIONS

We are given any [n, k, d] Q-ary linear code with
length n ≥ 2 and dual distance (minimal distance of
its dual code) d′ > 2. For j = 0, 1, . . . , n let Aj and
A′j be the number of codewords of weight j in the
code and its dual code, respectively. The MacWilliams
identities [3] can be written as

n∑
j=0

Ajx
j =

1

Qn−k

n∑
j=0

A′j(1−x)j
(
1+(Q−1)x

)n−j
. (1)

For x = 1 we have
∑n
j=0Aj = 1

Qn−k
A′0Q

n = Qk.
Hence defining aj =

Aj
Qk

for j = 0, 1, . . . , n, we
obtain a discrete distribution a = (a0, a1, . . . , an) of
nonnegative real numbers satisfying

∑n
j=0 aj = 1.

From (1) its generating function is
n∑
j=0

ajx
j =

1

Qn

n∑
j=0

A′j(1− x)j
(
1 + (Q− 1)x

)n−j
. (2)

The mean µ =
∑n
j=0 jaj of the weight distribu-

tion a is given by the derivative of (2) at x = 1:
µ = 1

Qn

(
−A′1Qn−1+A′0n(Q−1)Qn−1

)
= n

(
1− 1

Q

)
,

where we have used that A′0 = 1 and A′1 = 0 (since
d′ > 1). In the remainder of this paper, we use the
notations p = 1 − 1

Q and q = 1
Q which satisfy the

relations p + q = 1 and 0 ≤ q ≤ 1
2 ≤ p ≤ 1. Thus

µ = np and (2) becomes
n∑
j=0

ajx
j =

n∑
j=0

A′jq
j(1− x)j

(
q + px

)n−j
. (3)

III. BINOMIAL MOMENT COMPARISON

For any distribution p = (p0, p1, . . . , pn) of nonneg-
ative real numbers satisfying

∑n
j=0 pj = 1, we define

its kth centered moment as µk(p) =
∑n
j=0 pj(j−µ)k.

Thus µ0(p) = 1, µ1(p) = 0 and µ2(p) = σ2 is the
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variance of p. The moment-generating function of p
is then defined as

Mp(t) =
+∞∑
k=0

µk(p)
tk

k!
=

n∑
j=0

pje
(j−µ)t. (4)

Lemma 1 ([2, Lemma 4]). The first d′ centered
moments of the weight distribution a coincide with
those of the binomial (n, p) distribution b:

µk(a) = µk(b) (k = 0, 1, . . . , d′ − 1) (5)

where b = (b0, b1, . . . , bn) is defined by bj =(
n
j

)
pjqn−j , j = 0, 1, . . . , n.

A proof is given in [2]. We provide here a simplified
proof for completeness.

Proof. First we remark that a and b have the same
mean µ = np. Using (3), the moment-generating
function Ma(t) =

∑n
j=0 aj(e

t)je−npt of a is

Ma(t) =
n∑
j=0

A′jq
j(e−pt − eqt)j

(
qe−pt + peqt

)n−j
,

while that of b is

Mb(t) =
n∑
j=0

(
n

j

)
(pet)jqn−je−npt =

(
qe−pt+peqt

)n
.

Therefore,

Ma(t) = Mb(t) ·
n∑
j=0

A′jq
j
( e−pt − eqt

qe−pt + peqt

)j
where e−pt−eqt

qe−pt+peqt = −t+o(t)
1+o(t) = O(t). Since A′0 = 1

and A′1 = A′2 = · · · = A′d′−1 = 0 it follows that
Ma(t) = Mb(t) ·

(
1 +O(td

′
)
)
, which implies (5).

Notice that in particular for k = 2, a and b have
the same variance σ2 = npq, hence the same standard
deviation σ =

√
npq.

IV. BERRY’S INEQUALITY

Any discrete distribution p = (p0, p1, . . . , pn) of
nonnegative real numbers satisfying

∑n
j=0 pj = 1,∑n

j=0 jpj = µ, and
∑n
j=0 pj(j − µ)2 = σ2 can

be seen as a probability distribution of a random
variable X having mean µ and standard deviation σ.
The corresponding normalized variable X−µ

σ has mean
= 0, standard deviation = 1 and normalized centered
moments

mk(p) = E
[(X − µ

σ

)k]
=

n∑
j=0

pj

(j − µ
σ

)k
=
µk(p)

σk
.

Its corresponding characteristic function is noted

p̂(t) = E
(
ei
X−µ
σ t
)

=
n∑
j=0

pje
i j−µσ t = Mp

( it
σ

)
=

+∞∑
k=0

mk(p)
(it)k

k!
,

(6)

while its cumulative distribution function is

P (x) = P
(X − µ

σ
≤ x

)
=

∑
j−µ
σ ≤x

pj =
∑

j≤µ+σx

pj .

The goal of the present paper is to compare the cumula-
tive weight distribution function A(x) =

∑
j≤µ+σx aj

to the cumulative distribution function of the standard

normal N (0, 1): Φ(x) =
∫ x
−∞

e−t
2/2

√
2π

dt. Our starting
point is Berry’s inequality [4, § XVI.3 Eq. (3.13)]:

|A(x)−Φ(x)| ≤ 1

π

∫ T

−T

∣∣∣ â(t)− φ̂(t)

t

∣∣∣dt+
24m

πT
(7)

valid for any x ∈ R and T > 0, where â(t) =∑+∞
k=0mk(a) (it)k

k! is the characteristic function asso-
ciated to the weight distribution a, φ̂(t) = e−t

2/2 is
the characteristic function of the standard normal, and

m = max
t∈R

Φ′(t) = max
t∈R

e−t
2/2

√
2π

=
1√
2π
. (8)

Lemma 2. For any even r < d′,

|A(x)− Φ(x)| ≤ 1

π

∫ T

−T

∣∣∣ b̂(t)− φ̂(t)

t

∣∣∣dt+
4T rmr(b)

πr · r!

+
24

π
√

2πT
, (9)

where φ̂(t) = e−t
2/2 and

b̂(t) = Mb

( it
σ

)
=
(
qe−ipt/σ + peiqt/σ

)n
(10)

is the characteristic function of the normalized bino-
mial (n, p).

Proof. By Taylor’s theorem with Lagrange form of the
remainder, for any t ∈ R,

∣∣eit − r−1∑
k=0

(it)k

k

∣∣ ≤ |t|r
r
.

Thus the characteristic function (6) satisfies

∣∣∣E(eiX−µσ t)−r−1∑
k=0

E
[(X − µ

σ

)k] (it)k
k!

∣∣∣ ≤ E
[∣∣∣X − µ

σ

∣∣∣r]|t|r
r!
.

This is∣∣∣p̂(t)− r−1∑
k=0

mk(p)
(it)k

k!

∣∣∣ ≤ m′r(p)
|t|r

r!
(11)

where m′r(p) = E
[∣∣X−µ

σ

∣∣r] denotes the absolute
moment which equals mr(p) when r is even.
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Now, by Lemma 1, for any r < d′, mk(a) = mk(b)
for all k = 0, 1, . . . , r. Therefore, using (11) for
distributions a and b, for any even r < d′,

|â(t)− b̂(t)| ≤
∣∣∣â(t)−

r−1∑
k=0

mk(a)
(it)k

k!

∣∣∣
+
∣∣∣b̂(t)− r−1∑

k=0

mk(b)
(it)k

k!

∣∣∣
≤ m′r(a)

|t|r

r!
+m′r(b)

|t|r

r!
= 2mr(b)

|t|r

r!
.

It follows that
1

π

∫ T

−T

∣∣∣ â(t)− φ̂(t)
t

∣∣∣ dt ≤ 1

π

∫ T

−T

∣∣∣ b̂(t)− φ̂(t)
t

∣∣∣ dt
+

1

π

∫ T

−T
2mr(b)

|t|r

|t|r! dt,
(12)

where

1

π

∫ T

−T
2mr(b)

|t|r

|t|r!
dt =

4

π
mr(b)

∫ T

0

tr−1

r!
dt

=
4T rmr(b)

πr · r!
.

(13)

Combining (7), (8), (12), and (13) gives (9).

V. A BOUND ON THE BINOMIAL MOMENT

In his proof [2], Delsarte mentions the bound

mr(b) ≤
(epr

2q

)r/2√ r

4π

for even r, without any justification. This bounds seems
ad hoc, as it is not symmetric in the variables p and q.
In this section, we give a detailed proof of a different,
more symmetric, and sharper bound.

Lemma 3. For any even r ≥ 0, we have

mr(b) ≤
( 2

pq

)r/2 r!

(r/2)!
.

Proof. Let X1, . . . , Xn be independent Bernoulli(p)
random variables. Then X =

∑n
j=1Xj follows the

binomial (n, p) distribution so that

mr(b) = E
[(X − µ

σ

)k]
= σ−r E

[( n∑
j=1

(Xj−p)
)r]

.

We now symmetrize this expression using n ad-
ditional independent Bernoulli(p) random variables
X ′1, . . . , X

′
n, independent of the Xj’s. We have

E
[( n∑
j=1

(Xj − p)
)r]

= E
[( n∑

j=1

(Xj − E(X ′j))
)r]

= EX
[(

EX′
( n∑
j=1

(Xj −X ′j)
))r]

≤ E
[( n∑
j=1

(Xj −X ′j)
)r]

by Jensen’s inequality applied to the function x 7→ xr,
which is convex for even r.

Now the independent random variables Yj =
Xj−X′j

2
(j = 1, . . . , n) equal 1 or −1 with probability pq,
and equal 0 otherwise. Therefore, their moments are
E(Y kj ) = 2pq ≤ 1

2 for even k, E(Y kj ) = 0 otherwise.
Let Z1, . . . , Zn be independent standard normal

variables. Their moments are E(Zkj ) = (k − 1)!! > 1
2

for even k, E(Zkj ) = 0 otherwise. If we expand the
rth power in E

[(∑n
j=1 Yj

)r]
to a sum of monomials,

any monomial with odd exponents vanishes because
E(Y kj ) = 0 = E(Zkj ) for odd k. The other monomials
are nonnegative with moments E(Y ki ) ≤ 1

2 < E(Zkj )

for even k. Therefore, E
[(∑n

j=1 Yj
)r]

is term-by-
term dominated by E

[(∑n
j=1 Zj

)r]
, where

∑n
j=1 Zj

follows a normal N (0, n) distribution:

E
[( n∑

j=1

Yj

)r]
≤ E

[( n∑
j=1

Zj

)r]
= (r − 1)!!(

√
n)r,

where (r−1)!! = 1 ·3 · · · (r−3) · (r−1) = r!
2r/2(r/2)!

.
Combining the above inequalities gives

mr(b) ≤ σ−r2r r!

2r/2(r/2)!
(
√
n)r (14)

where σ =
√
npq.

VI. ESSEN’S SIMPLIFIED DERIVATION

To conclude on a bound of (7) it remains to bound
the integral term 1

π

∫ T
−T

∣∣∣ b̂(t)−e−t2/2t

∣∣∣dt in (9). The
derivation is similar to derivations by Essen [5] but
can be simplified by exploiting the closed-form ex-
pression (10). Delsarte mentions the bound

√
3pπ
nq for

T < σ
p2+q2 “without giving details” [2]. In this section,

we provide a detailed proof of a simplified derivation
of an improved bound.

Lemma 4. For any T ≤ σ
p2+q2 , we have

1

π

∫ T

−T

∣∣∣ b̂(t)− φ̂(t)

t

∣∣∣ dt <√ 3p

nq
.

Proof. From (10) we have

1

π

∫ T

−T

∣∣∣ b̂(t)− φ̂(t)
t

∣∣∣dt
=

1

π

∫ T

−T

∣∣∣ (qe−ipt/σ + peiqt/σ
)n − e−t2/2

t

∣∣∣dt
=

1

π

∫ T/σ

−T/σ

∣∣∣(qe−ipt + peiqt
)n − (e−pqt

2/2)n
∣∣∣ dt|t|

(15)

by the change of variable t← t/σ, where σ2 = npq.
Here qe−ipt + peiqt is the characteristic function of a

centered Bernoulli(p) with mean 0 and variance pq, and
e−pqt

2/2 is the characteristic function of a normal distribu-
tion with the same mean 0 and variance pq. From (11) with
r = 3 we have∣∣qe−ipt + peiqt − 1 + pq

t2

2

∣∣ ≤ (qp3 + pq3)
|t|3

6
. (16)
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Similarly for the centered normal we have∣∣e−pqt2/2 − 1 + pq
t2

2

∣∣ ≤ (pq)2
t4

8
. (17)

Now from the factorization bn−an = (b−a)(bn−1+bn−2a+
· · ·+ ban−2 + an−1) we have, for any a, b ∈ C,

|bn − an| ≤ ncn−1|b− a| (18)

for any constant c ≥ max(|a|, |b|). We apply this inequality
to a = e−pqt

2/2 and b = qe−ipt+peiqt. First from (16), we
have

|qe−ipt + peiqt|

≤ |1− pq t
2

2
|+ pq(p2 + q2)|t| t

2

6

≤ 1− pq t
2

2
+ pq

t2

6
= 1− pq t

2

3
≤ e−pqt

2/3

(19)

provided that 1 − pq t
2

2
≥ 0, that is, |t| ≤

√
2
pq

and that

|t| ≤ 1
p2+q2

. It is easily seen that p2 + q2 ≥ 1
2

and pq
2
≤ 1

8

so that 1
p2+q2

≤ 2 ≤ 2
√
2 ≤

√
2
pq

. Thus (19) holds for any

|t| ≤ T
σ

in (15) provided that we choose T ≤ σ
p2+q2

. Thus

we can take c = e−pqt
2/3 ≥ max(|a|, |b|) in (18). Next,

from (16) and (17) we have

|b− a| = |qe−ipt + peiqt − e−pqt
2/2|

≤ pq(p2 + q2)
|t|3

6
+ (pq)2

t4

8
.

Combining the above inequalities we obtain

1

π

∫ T

−T

∣∣∣ b̂(t)− φ̂(t)
t

∣∣∣ dt
≤ n

π

∫ T
σ

−T
σ

(
pq(p2 + q2)

|t|3

6
+(pq)2

t4

8

)
e−(n−1)pq t

2

3
dt

|t|

≤ n

π

∫ +∞

−∞

(
p2q

t2

6
+ (pq)2

|t|3

8

)
e−npqt

2/6 dt,

where we have used that p2+q2 ≤ p2+pq = p since q ≤ p
and n− 1 ≥ n

2
since n ≥ 2.

Let T be a centered normal variable of variance V =
E(T 2) = 3

npq
and of absolute third moment E(|T |3) =

4V 2
√
2πV

. We obtain

1

π

∫ T

−T

∣∣∣ b̂(t)− φ̂(t)
t

∣∣∣ dt
≤ n

π

√
2πV

(
p2q

E(T 2)

6
+ (pq)2

E(|T |3)
8

)
=
n

π

√
2πV p2q

V

6
+
n

π
(pq)2

V 2

2

=
n

π

√
6π

npq
p2q

3

6npq
+
n

π
(pq)2

9

2(npq)2

=

√
3p

2qπn
+

9

2πn
<

5

2

√
3p

2qπn

=

√
75p

8qπn
<

√
3p

qn
,

because

9

2πn
≤ 3

√
3√

2πn

√
3

2πn
≤ 3
√
3

2
√
π

√
3p

2qπn
<

3

2

√
3p

2qπn

(since n ≥ 2, p ≥ q and π> 25
8
>3).

VII. MAIN RESULTS

Theorem 1. There exists a constant c that depends
only on Q such that for all x ∈ R,

|A(x)− Φ(x)| < c√
d′
. (20)

Proof. Combining Lemmas 2, 3 and 4 yields, for any
T ≤

√
npq

p2+q2 and even r < d′

|A(x)− Φ(x)| <
√

3p
nq + 4T r

πr·r!

(
2
pq

)r/2
r!

(r/2)! + 24
π
√
2πT

≤ p
√
3

qT + 4T r

πr
√
πr

(
4e
pqr

)r/2
+ 24

π
√
2πT

,

where we have used
√
npq ≥ T (p2 + q2) ≥ T (pq +

q2) = Tq as well as Stirlling’s approximation (r/2)! ≥√
πr(r/2)r/2e−r/2.
Let T =

√
α qpr where α ≤ 1. Snce r ≤ n, we

check that T ≤
√

q
pn =

√
npq

p ≤
√
npq

p2+q2 . Therefore,
we have

|A(x)− Φ(x)|

<

(√
3p3

αq3
+

4

πr
√
π

(4eα

p2

)r/2
+

24

π
√

2π

√
p

αq

)
1√
r
.

The (r/2)th power disappears by setting α = p2

4e < 1.
Since d′ > 2 we can take r ≥ 2 such that r ≥ d′/2.
We obtain

|A(x)− Φ(x)| <
(√

24ep
q3 + 2

√
2

π
√
π

+ 24
π
√
π

√
4e
pq

)
1√
d′

=

(√
24e(Q−1)Q+ 2

√
2

π
√
π

+ 24Q
π
√
π

√
4e
Q−1

)
1√
d′

which ends the proof.

VIII. CONCLUSION

We have established rigorously the asymptotic nor-
mality of the weight distribution of Q-ary codes.
Casting the topic into the framework of translation
invariant association schemes might lead to interesting
generalizations like Lee metric codes, rank metric
codes, and block designs.
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