STAnalyzer: A Simple Static
Analysis Tool for Detecting
Cache-Timing Leakages

I 1 ayout of the Presentation

Cache-Timing Attacks
Introduction
Example Vulnerable Code

Static Code-Analysis
Problem Statement
Semantics
Limitations

Results
Analysis of First Round NIST PQC Standardization Candidates

Conclusion

TELEFDM
2aris

2/25 Institut Mines-Télécom Alexander Schaub June 24, 2019 =¥
I WA

I 1 ayout of the Presentation

Cache-Timing Attacks
Introduction
Example Vulnerable Code

TELEFDM
aris

3/25 Institut Mines-Télécom Alexander Schaub June 24, 2019 =¥
o | WA

I 0S Memory Model

02150 : 0123 0x150 : 777
02140 : 4567 0x140: 777
0x110: ABCD 0x110: 777
02100 : EFFF 0x100: 777
Proc 1 Proc 2

Figure: Per-process memory isolation.

4/25 Institut Mines-Télécom Alexander Schaub

June 24, 2019

TELEFDM
2aris

mEEE

N Memory Sharing

Physical Memory

ABCD
EFFF
02150 : 0123 02150 : ABCD
02140 : 4567 0x140: EFFF
02110 : ABCD 02110 : 77
02100 : EFFF 02100 : 777
[Proc 1] [Proc 2|

Figure: Shared memory (dynamically-linked libraries, page duplication,...

5/25 Institut Mines-Télécom Alexander Schaub June 24, 2019 =¥
525 | WA

I Cache-Line Sharing

Physical Memory

Virtual memory of Proc 2

ABCD
EFFF
Virtual memory of Proc 1
02150 : 0123 02150 : ABCD
02140 : 4567 02140 : EFFF
0x110: ABCD 02110 = 77

02100 :

EFFF

02100 =

Figure: Cache-line sharing between processes.

6/25 Institut Mines-Télécom Alexander Schaub June 24, 2019

EFFF

Cache

TELEFDM
2aris

mEEE

N B How to Determine the Presence of Data in
the Cache ?

Several techniques exist, for instance:

= PRIME + PROBE":2
® EVICT + TIME 3
® FLUSH + RELOAD?

Exampile to follow...

'D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures:
The case of AES”, , in Cryptographers Track at the RSA Conference, Springer,
2006, pp. 1-20.

2F Liu, Y. Yarom, Q. Ge, et al., “Last-level cache side-channel attacks are
practical”, in Security and Privacy (SP), 2015 IEEE Symposium on, |IEEE, 2015,
pp. 605-622.

3Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low noise, L3
cache side-channel attack.”, in USENIX Security Symposium, 2014, pp. 719-732.

TELEFDM
aris

7/25 Institut Mines-Télécom Alexander Schaub June 24, 2019 =¥
s | WA

I Example: FLUSH+RELOAD

Attacker Victim Remark
clflush addr addr absent from cache

executes code addr might be present
a = rdtsc()

if the load was fast, the at-
load adadr tacker now knows that addr

was accessed
store rdtsc() - a

clflush adadr addr absent from cache
executes code

TELEFDM
2aris

8/25 Institut Mines-Télécom Alexander Schaub June 24, 2019 =¥
o5 | WA

I Rccognizing Vulnerable Code

What Data Code
How
Exploit Sensitive indirections | Conditional jump/call
Reason Memory load Code execution

Derefencing a | Branching on a
Code vulnerability | pointer to a secret- | secret-dependent

dependent address condition

Note: FLUSH + RELOAD only applicable to shared data or code
(static arrays, code in shared dynamic libraries, etc.)

TELEFOM
aris

24,2019 =¥
June 24, 2019 lﬁﬁml

9/25 Institut Mines-Télécom Alexander Schaub

I \Vuinerable Code

static gf_t[] gf_antilog = {...};
static gf_t[] gf_log = {...};

gf _t gf_mult(gf_t a, gf_t b) {
if (a == [== 0) return O0;
return gf_antilog|[
gf_add(gf_log[a], gf_log[b])];
}

A 25 |while(mask > 0) {
gfgtf ?f?eipé?f&:e%;unmgned d) { 27[if (mask & d > 0) {
mask = 1<<floor(log2(d));
while (mask > 0) {
r = gf_mult(r, r);
if (mask & d > 0) {
r = gf_mult(a, r);

17|if (a == 0 || b == 0) return (gf _t) 0;
mask /= 2; 18

return gf_antilog[gf_add(gf_log[al, gf_log[b])];

}

}

TELEFDM
2aris

10/25 Institut Mines-Télécom Alexander Schaub June 24, 2019 ﬁﬁiﬁﬂl

I 1 ayout of the Presentation

Static Code-Analysis
Problem Statement
Semantics
Limitations

TELEFDM
aris

11/25 Institut Mines-Télécom Alexander Schaub June 24, 2019 =¥
s | WA

I Problem Definition

® Given a C program, with annotations corresponding to
sensitive variables, determine whether the program is
potentially vulnerable to cache-timing side channel leaks.

® Solution should be easy to use, as accurate as possible, and

applicable to most cryptographic implementations written in
C.

TELEFOM
aris

24,2019 =¥
June 24, 2019 lﬁﬁml

12/25 Institut Mines-Télécom Alexander Schaub

I General Approach

® General idea: perform value dependency propagation, and
record table accesses / branching operations depending on
sensitive data.

B Values tracked for dependency analysis are sensitive values and
initial values of function arguments
B Algorithm consist in tracking the state of three objects during the
exploration of the AST:
e Dependencies between variables and values, as a bipartite graph
G
e List of leaking variables, with corresponding code instruction, call
graph and dependency chain, L
e "Additional" dependencies, to take branching behavior into
account, as a set of values /

TELE[COM
aris

24,2019 =¥
June 24, 2019 lﬁﬁml

13/25 Institut Mines-Télécom Alexander Schaub

I Scmantics for Simple Operations

inst G' = ¢g(G, I;inst) L'= ¢, (L, G;inst) [

var = expr G U {var — G((expr)) U I} L /

var op,= expr GU {var — G((expr)) U [} L /

var[expry] = expr, GU {xvar — G((expry)) U I} LU G((expry)) /
if(expr){inst} o6(G, I';inst) G((expr))Ue.(L, G;inst) U G((expr))

return expr GU{\RET — G({expr)) U/} L /

Note: analyzing loops consists in computing a fixed point, and a
function call in applying a previously determined dependency graph,
after translating variable names.

TELEFOM
aris

24,2019 =¥
June 24, 2019 -ﬁiml

14/25 Institut Mines-Télécom Alexander Schaub

I rointer Handling

®m C pointers make the value analysis more complicated - values
can be aliased, for instance

B Solution: for each pointer, build a set of memory locations it
might point-to

B On every pointer assignment, update this set according to the
set of the assignee.

® Formalized by Andersen?, known as "points-to" analysis.

B Might overestimate the set of possible memory locations, but this
is necessary in order to avoid false positives.

L. O. Andersen, Program analysis and specialization for the C programming
language, 1994.

TELEFOM
aris

15/25 Institut Mines-Télécom Alexander Schaub June 24, 2019 =¥
N WA

I rointer Handling Example

void foo(int a) {
int xp = malloc(8); // &p: {p}
int xqg = malloc(8); // &p: {p}, &q: {q}

if (a > 0) {
} q=p; // &: {p}, &q: {p}
else |

} p=aq; // &: {q}, &p: {p}

// &p: {p, q}, &q: {p, q}

TELEFDM
2aris

16/25 Institut Mines-Télécom Alexander Schaub June 24, 2019 =¥
ezs | WA

I Limnitations

B Recursive functions not supported
B Complex goto operations not supported (but fixable)

B Casts between different structures, or between different pointer
indirections are not correctly handled, e.g. *(int #**)p when
chasing pointers

B |ncorrect or "risky" code could in theory lead to missed leakages,
because of buffer overflows, array out-of-bound accesses, or
obfuscated pointer arithmetic.

TELEFOM
aris

24,2019 =¥
June 24, 2019 lﬁﬁml

17/25 Institut Mines-Télécom Alexander Schaub

I ralse Positives

False positives can arise in some situations, for instance when:

® the result of an operation involving sensitive values, is not
sensitive itself (the value of s-s does not depend on s, or the
hash of a sensitive value might not be sensitive)

B dead code is into account, e.g.
if (condition_that_never_happens) {
leak_sensitive_value(s);} will still count as a leakage

B conditional code is turned into constant-time code by the
compiler

TELEFOM
aris

18/25 Institut Mines-Télécom Alexander Schaub June 24, 2019 =¥
ez | WA

I 1 ayout of the Presentation

Results
Analysis of First Round NIST PQC Standardization Candidates

TELEFDM
aris

19/25 Institut Mines-Télécom Alexander Schaub June 24, 2019 =¥
oz | WA

N B NIST Pc_)st-Quantum Cryptography Contest
- Overview

® Quantum computers will break asymmetric cryptography

B Alternatives to RSA and ECC need to be developed and vetted
for security, evaluated for performance

B 69 algorithms submitted to NIST, mostly lattice-based,
code-based and multivariate cryptography

B Selection for the second round announced in January 2019

TELEFDM
2aris

20/25 Institut Mines-Télécom Alexander Schaub June 24, 2019 =¥
I WA

N B Results

Vulnerable Implementations

Total Potential Vulnerabilities (52 implementations)

10°

h“ll ! .|‘

I

102 =]

(a|eos hoj|

Jaquiny

10!

WNINYLIL
Suy3E3TWHL
14145
SN1dSONIHAS
w3avs

zaNnoy

397

PAYLSWYY
MOSNIvY

5500WH

WIS3L0

WX DdaW-D0
Wy9ISOd
NOISMYLNOd
JINDId
NYLLYHNYIW Qa0
$TZTLTOZ-IWIEdNEIN
LdAHININHIN
WIN-SSYH-NYLN
3dOHMIN

SSaow

66895 INNISHIN
3INDW

Aom

SNLOT

auvzn

VM

NOLdT

DidvaIl

W3AvaT

o

1aND

ha

LT3H

£-OWH

SYTH

no

NIYOYSSIND
SONIHAS-ALIAVED
Y SNLNYHAOIO
00w
TYNISNODTVH
W33 Y w383
MNoa3

sua

3wa

sova
HIGAN-STYLSAYD
WNIHLTIG-STYLSAED
3D31130W DISSY DD
W40

DIVNO 018

Figure: Total number of potential vulnerabilities found for each analyzed

candidate

Note: 52 out of the 69 submissions were analyzed.

21/25 Institut Mines-Télécom Alexander Schaub

TELEFDM
i
.3 i |

N B Results

Vulnerable Implementations

Out of 52 analyzed candidates:

B Potential vulnerabilities in 42 submissions (80.8%)
e More than 100 reported vulnerabilities in 17 submissions
e More than 1000 reported vulnerabilities in 3 submissions
B 4 submissions with easily fixable / probably not exploitable
vulnerabilites (EMBLEM, Lima, Giophantus, OKCN-AKCN in the
MLWE variant)
® 10 Submissions without detected vulnerabilites (Frodo, Rainbow,

Hila5, Saber, CRYSTALS-Kyber, LOTUS, NewHope, ntruprime,
ThreeBears and Titanium)

TELE[COM
aris

4,2019 =¥
June 24, 2019 lﬁﬁml

22/25 Institut Mines-Télécom Alexander Schaub

N B Results

Types of Vulnerabilities

We noticed some repeating patterns in the detected vulnerabilities.
B Gaussian sampling leak
B Other sampling leaks
® GMP library use (at least the standalone implementation)
B QOperations in finite fields
®m Other: AES re-implementation, matrix operations, error-decoding

TELEFOM
aris

24,2019 =¥
June 019 -ﬁiml

23/25 Institut Mines-Télécom Alexander Schaub

I 1 ayout of the Presentation

Conclusion

TELEFDM
aris

24/25 Institut Mines-Télécom Alexander Schaub June 24, 2019 =¥
I WA

I Conclusion

® We presented STAnalyzer, an algorithm and a tool to detect
potential side-channel leakages in C implementations

® Qur program is able to analyze even large, unmodified programs,
as shown by our analysis of most post-quantum proposals
submitted to NIST

B There are no missed leaks with this approach, at the cost of a
few false positives

® Not all leakages are exploitable, but assessing their exploitability
automatically is a hard problem.

B Perspective: combining static analysis techniques with a
dynamic analysis could allow us to assess the exploitability of
the detected vulnerabilities and provide more information of
practical importance.

TELE[COM
aris

24,2019 =¥
June 24, 2019 -ggm|

25/25 Institut Mines-Télécom Alexander Schaub

	Cache-Timing Attacks
	Introduction
	Example Vulnerable Code

	Static Code-Analysis
	Problem Statement
	Semantics
	Limitations

	Results
	Analysis of First Round NIST PQC Standardization Candidates

	Conclusion

