
STAnalyzer: A Simple Static
Analysis Tool for Detecting
Cache-Timing Leakages

Alexander Schaub, Olivier Rioul & Sylvain
Guilley
June 24, 2019



Layout of the Presentation

Cache-Timing Attacks
Introduction
Example Vulnerable Code

Static Code-Analysis
Problem Statement
Semantics
Limitations

Results
Analysis of First Round NIST PQC Standardization Candidates

Conclusion

2/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Layout of the Presentation

Cache-Timing Attacks
Introduction
Example Vulnerable Code

Static Code-Analysis
Problem Statement
Semantics
Limitations

Results
Analysis of First Round NIST PQC Standardization Candidates

Conclusion

3/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



OS Memory Model

0x150 : 0123
0x140 : 4567

...
...

0x110 : ABCD
0x100 : EFFF

...
...

Proc 1

0x150 : ???
0x140 : ???

...
...

0x110 : ???
0x100 : ???

...
...

Proc 2

Figure: Per-process memory isolation.

4/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Memory Sharing

0x150 : 0123
0x140 : 4567

...
...

0x110 : ABCD
0x100 : EFFF

...
...

Proc 1

0x150 : ABCD
0x140 : EFFF

...
...

0x110 : ???
0x100 : ???

...
...

Proc 2

ABCD
EFFF

Physical Memory

Figure: Shared memory (dynamically-linked libraries, page duplication,...)

5/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Cache-Line Sharing

0x150 : 0123
0x140 : 4567

...
...

0x110 : ABCD
0x100 : EFFF

...
...

Proc 1

0x150 : ABCD
0x140 : EFFF

...
...

0x110 : ???
0x100 : ???

...
...

Proc 2

Virtual memory of Proc 1 Virtual memory of Proc 2

ABCD
EFFF

Physical Memory

ABCD
EFFF

? ?

Cache

Figure: Cache-line sharing between processes.
6/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



How to Determine the Presence of Data in
the Cache ?

Several techniques exist, for instance:

PRIME + PROBE1,2

EVICT + TIME 3

FLUSH + RELOAD3

Example to follow...

1D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermeasures:
The case of AES”, , in Cryptographers Track at the RSA Conference, Springer,
2006, pp. 1–20.

2F. Liu, Y. Yarom, Q. Ge, et al., “Last-level cache side-channel attacks are
practical”, in Security and Privacy (SP), 2015 IEEE Symposium on, IEEE, 2015,
pp. 605–622.

3Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low noise, L3
cache side-channel attack.”, in USENIX Security Symposium, 2014, pp. 719–732.

7/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Example: FLUSH+RELOAD

Attacker Victim Remark
clflush addr addr absent from cache

executes code addr might be present
a = rdtsc()

load addr
if the load was fast, the at-
tacker now knows that addr
was accessed

store rdtsc() - a

clflush addr addr absent from cache
executes code

...

8/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Recognizing Vulnerable Code

How
What Data Code

Exploit Sensitive indirections Conditional jump/call
Reason Memory load Code execution

Code vulnerability
Derefencing a
pointer to a secret-
dependent address

Branching on a
secret-dependent
condition

Note: FLUSH + RELOAD only applicable to shared data or code
(static arrays, code in shared dynamic libraries, etc.)

9/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Vulnerable Code
s t a t i c g f _ t [ ] g f _ a n t i l o g = { . . . } ;
s t a t i c g f _ t [ ] g f_ log = { . . . } ;

g f _ t g f_mul t ( g f _ t a , g f _ t b ) {
i f ( a == 0 | | b == 0) return 0;
return g f _ a n t i l o g [
gf_add ( g f_ log [ a ] , g f_ log [ b ] ) ] ;

}

g f _ t gf_exp ( g f _ t b , unsigned d ) {
g f _ t r = gf_one ( ) ;
mask = 1<< f l o o r ( log2 ( d ) ) ;
while (mask > 0) {

r = gf_mul t ( r , r ) ;
i f (mask & d > 0) {

r = gf_mul t ( a , r ) ;
}
mask /= 2 ;

}
}

gf_exp

25 while(mask > 0) {

27 if (mask & d > 0) {

d

gf_mult

gf_example.c:26:9

17 if (a == 0 || b == 0) return (gf_t) 0;

18 return gf_antilog[gf_add(gf_log[a], gf_log[b])];

b

10/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Layout of the Presentation

Cache-Timing Attacks
Introduction
Example Vulnerable Code

Static Code-Analysis
Problem Statement
Semantics
Limitations

Results
Analysis of First Round NIST PQC Standardization Candidates

Conclusion

11/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Problem Definition

Given a C program, with annotations corresponding to
sensitive variables, determine whether the program is
potentially vulnerable to cache-timing side channel leaks.
Solution should be easy to use, as accurate as possible, and
applicable to most cryptographic implementations written in
C.

12/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



General Approach

General idea: perform value dependency propagation, and
record table accesses / branching operations depending on
sensitive data.
Values tracked for dependency analysis are sensitive values and
initial values of function arguments
Algorithm consist in tracking the state of three objects during the
exploration of the AST:
• Dependencies between variables and values, as a bipartite graph

G
• List of leaking variables, with corresponding code instruction, call

graph and dependency chain, L
• "Additional" dependencies, to take branching behavior into

account, as a set of values I

13/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Semantics for Simple Operations

inst G′ = φG(G, I; inst) L′ = φL(L,G; inst) I′

var = expr G t {var→ G(〈expr〉) ∪ I} L I
var op2= expr G ∪ {var→ G(〈expr〉) ∪ I} L I

var[expr1] = expr2 G ∪ {∗ var→ G(〈expr2〉) ∪ I} L ∪G(〈expr1〉) I
if (expr){inst} φG(G, I′; inst) G(〈expr〉)∪φL(L,G; inst) I ∪G(〈expr〉)

return expr G ∪ {\RET→ G(〈expr〉) ∪ I} L I

Note: analyzing loops consists in computing a fixed point, and a
function call in applying a previously determined dependency graph,
after translating variable names.

14/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Pointer Handling

C pointers make the value analysis more complicated - values
can be aliased, for instance
Solution: for each pointer, build a set of memory locations it
might point-to
On every pointer assignment, update this set according to the
set of the assignee.
Formalized by Andersen4, known as "points-to" analysis.
Might overestimate the set of possible memory locations, but this
is necessary in order to avoid false positives.

4L. O. Andersen, Program analysis and specialization for the C programming
language, 1994.

15/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Pointer Handling Example

void foo ( i n t a ) {
i n t ∗p = mal loc ( 8 ) ; / / &p : { p }
i n t ∗q = mal loc ( 8 ) ; / / &p : { p } , &q : { q }

i f ( a > 0) {
q = p ; / / &p : { p } , &q : { p }

}
else {

p = q ; / / &p : { q } , &p : { p }
}
/ / &p : { p , q } , &q : { p , q }

. . .
}

16/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Limitations

Recursive functions not supported
Complex goto operations not supported (but fixable)
Casts between different structures, or between different pointer
indirections are not correctly handled, e.g. *(int **)p when
chasing pointers
Incorrect or "risky" code could in theory lead to missed leakages,
because of buffer overflows, array out-of-bound accesses, or
obfuscated pointer arithmetic.

17/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



False Positives

False positives can arise in some situations, for instance when:
the result of an operation involving sensitive values, is not
sensitive itself (the value of s-s does not depend on s, or the
hash of a sensitive value might not be sensitive)
dead code is into account, e.g.
if (condition_that_never_happens) {

leak_sensitive_value(s);} will still count as a leakage
conditional code is turned into constant-time code by the
compiler

18/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Layout of the Presentation

Cache-Timing Attacks
Introduction
Example Vulnerable Code

Static Code-Analysis
Problem Statement
Semantics
Limitations

Results
Analysis of First Round NIST PQC Standardization Candidates

Conclusion

19/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



NIST Post-Quantum Cryptography Contest
- Overview

Quantum computers will break asymmetric cryptography
Alternatives to RSA and ECC need to be developed and vetted
for security, evaluated for performance
69 algorithms submitted to NIST, mostly lattice-based,
code-based and multivariate cryptography
Selection for the second round announced in January 2019

20/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Results
Vulnerable Implementations

Figure: Total number of potential vulnerabilities found for each analyzed
candidate

Note: 52 out of the 69 submissions were analyzed.

21/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Results
Vulnerable Implementations

Out of 52 analyzed candidates:

Potential vulnerabilities in 42 submissions (80.8%)
• More than 100 reported vulnerabilities in 17 submissions
• More than 1000 reported vulnerabilities in 3 submissions

4 submissions with easily fixable / probably not exploitable
vulnerabilites (EMBLEM, Lima, Giophantus, OKCN-AKCN in the
MLWE variant)
10 Submissions without detected vulnerabilites (Frodo, Rainbow,
Hila5, Saber, CRYSTALS-Kyber, LOTUS, NewHope, ntruprime,
ThreeBears and Titanium)

22/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Results
Types of Vulnerabilities

We noticed some repeating patterns in the detected vulnerabilities.
Gaussian sampling leak
Other sampling leaks
GMP library use (at least the standalone implementation)
Operations in finite fields
Other: AES re-implementation, matrix operations, error-decoding
...

23/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Layout of the Presentation

Cache-Timing Attacks
Introduction
Example Vulnerable Code

Static Code-Analysis
Problem Statement
Semantics
Limitations

Results
Analysis of First Round NIST PQC Standardization Candidates

Conclusion

24/25 Institut Mines-Télécom Alexander Schaub June 24, 2019



Conclusion

We presented STAnalyzer, an algorithm and a tool to detect
potential side-channel leakages in C implementations
Our program is able to analyze even large, unmodified programs,
as shown by our analysis of most post-quantum proposals
submitted to NIST
There are no missed leaks with this approach, at the cost of a
few false positives
Not all leakages are exploitable, but assessing their exploitability
automatically is a hard problem.
Perspective: combining static analysis techniques with a
dynamic analysis could allow us to assess the exploitability of
the detected vulnerabilities and provide more information of
practical importance.

25/25 Institut Mines-Télécom Alexander Schaub June 24, 2019


	Cache-Timing Attacks
	Introduction
	Example Vulnerable Code

	Static Code-Analysis
	Problem Statement
	Semantics
	Limitations

	Results
	Analysis of First Round NIST PQC Standardization Candidates

	Conclusion

