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Abstract
We experiment relative merits of information-theoretic metrics such as guessing entropy, conditional
Shannon or Rényi entropies vs. success probability, in the problem of guessing a cryptographic key form
a leakage in some practical cryptosystems, with Hamming weight leakage model in additive (Gaussian)
measurement noise.
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Figure 1: Leakage model: secret X , noise Z and leakage Y

Let X be a discrete random variable with probability distribution p(x). Without loss of generality we may
suppose that X ∈ {1, 2, . . . , n, . . .} with respective probabilities p1, p2, . . . , pn, . . .. Let Y = f (X) + Z be
additional information (leakage) about X . If noise Z is present, Y is a continuous r.v. with density p(y), while
in the noiseless case (Z = 0), Y is discrete with distribution p(y). The attacker knows Y and guesses X . We
have the following metrics:
• (Conditional) Guessing entropy: letting pk = p(x = k), k = 1, 2, . . . , n, . . ., we have the (conditional)

guessing entropies G(X) and G(X|Y ) as:

G(X) =
∑
k

kp(k), G(X|Y ) =
∑∫
p(y)G(X|Y = y) (1)

where the probabilities are arranged in decreasing order p(1) ≥ p(2) ≥ · · · ≥ p(n) ≥ · · · .
• (Conditional) Shannon Entropies:

H(X) =
∑
x∈X

p(x) log2
1

p(x)

H(X|Y ) =
∑∫
y∈Y

p(y)
∑
x∈X

p(x|y) log
1

p(x|y)

(2)

• (Conditional) Arimoto-Rényi Entropies:

Hα(X) =
α

1− α
log
(∑
x

p(x)α
)1/α

Hα(X|Y ) =
α

1− α
log
∑∫
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(∑
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p(x|y)α
)1/α

(3)

• (Conditional) Success probability:

Ps(X) = max
x
p(x), Ps(X|Y ) =

∑∫
y∈Y

p(y) max
x
p(x|y) ≥ Ps(X) (4)

Guessing X with Noiseless Hamming Weight Leakages
Hamming weight leakage model f = wH is one of the most general leakage model used in side-channel
analysis. Particularly, hardware implementations leak bits in parallel, hence the leakage is the sum of the
registers state bits, that is the Hamming weight of the register contents.

Let Y = wH(X) where wH is the Hamming weight function, in the noiseless case (Z = 0). We choose
|X | = M = 2n for the sake of calculation.

p(x) =
1

2n
, p(y) =

(n
y

)
2n
, p(x|y) =

1y=wH(x)(n
y

) (5)

We focus on quantifying the reduction of uncertainty of X knowing Y . Thus,
• (Conditional) Guessing entropy:

G(X) =
∑
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2n∑
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=

2n + 1
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∑
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• (Conditional) Shannon Entropies:

H(X) =
∑
x

p(x) log
1
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= log 2n = n

H(X|Y ) = −
∑
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∑
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∑
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•Conditional Rényi Entropies:
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log
∑
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) 1
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•Conditional Success probability:

Ps(X|Y ) = EY max
x
p(x|Y ) =

M ′

M
=
n + 1

2n
=
n + 1

2n
=
n + 1

2n
(9)

Numerical Results on Noiseless Leakages
By upper bound from Fano’s inequality and lower bound H(X|Y ) ≥ ϕ∗(Ps(X|Y )) where ϕ∗(s) =

b1sc
(
sd1se − 1

)
logb1sc +

(
1− b1sc

(
sd1se − 1

))
logd1se and Hα(X|Y ) ≥ α

1−α log φ∗α(Ps(X|Y )), where φ∗α(s) =(⌈1
s

⌉
s − 1

)⌊1
s

⌋1/α
+

(
1 −

⌊1
s

⌋(⌈1
s

⌉
s − 1

))⌈1
s

⌉1−α
α (by Sason et al. [1]), we numerically show the condi-

tional Shannon and Rényi entropies of X as Fig. 2. Specifically, the upper bound of Rényi entropy is highly
dependent on the α. With α much larger than 1.0, the marked region is much smaller than the region with
α < 1.0.
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Figure 2: Conditional Shannon and Rényi Entropies of X with Hamming weight leakages

Guessing X with Noisy Hamming Weight Leakages
In fact, noise is the intrinsic part in the side-channel leakages, like power consumption and electromagnetic
radiations. Thus we consider the noisy leakages in a classic way by assuming the noise is the additive white
Gaussian noise (AWGN), which is a basic noise model to mimic the effect of many random processes.

We assume that Z ∼ N (0, σ2) of standard normal density ϕ(z) which is a nonincreasing function of |z|.
Thus we have:

p(x) =
1

M
, p(y) =

∑
x

p(x)p(y|x) =
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(10)

In addition, maximum conditional probability of success is computed as follows.

Ps(X|Y ) = Emax
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∫  1

M

∑
x′
ϕ(y − f (x′))
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Numerical Comparison with Lower and Upper Bounds of G(X|Y )

We present here six upper and lower bounds of guessing entropy of X by knowing its Hamming weight leak-
ages. Interestingly, Bostas’s upper bound is the best one which is identical to guessing entropy, which in the
Hamming weight leakage scenarios.
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Figure 3: Comparison of six upper and lower bounds of G(X)

Preliminary Conclusions
We present two scenarios of guessing a secret X with Hamming weight leakages. Specifically, with small
M = 2n, this type of leakage has much more impact on the conditional entropies, which are the common
cases in embedded systems. This explains why the Divide-and-Conquer attacks work in side-channel analy-
sis. However, with large M , such as M = 2128 for the AES-128 cryptographic key, the Hamming weight of
whole key is of very little help for the attacker.
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