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_ Ingredients

X1
X2

B random X = | . | € R” with independent components X;
Xn

B 3 linear transformation: X — AX
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B random X = | . | € R” with independent components X;

Xn
B a linear transformation: X — AX

1
m differential entropy: h(X) = /f(x) log ) dx if X has density f,
otherwise h(X) = —oco.

B consider h(AX):
* assume it is nondegenerate: h(AX) > —co
° — A has full row rank
. Ii] is an m x n matrix with m < n (or even m < n)
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_ Ingredients

X1

X2
B random X = | . | € R” with independent components X;

Xn
B a linear transformation: X — AX

1
m differential entropy: h(X) = /f(x) log ) dx if X has density f,
otherwise h(X) = —oco.

B consider h(AX):
* assume it is nondegenerate: h(AX) > —co
° — A has full row rank
. Ii] is an m x n matrix with m < n (or even m < n)

B maxh(AX) or minh(AX)? (attained for Gaussian X)

1/16 sp92017 Olivier Rioul & Ram Zamir Matrix Entropy-Power Inequality via Normal Transport
EEEE



N Max/Min Entropy Principle

Let X be Gaussian with independent components X; of same
variances: Var(X;) = Var(X;).

Theorem (Maximum Entropy Principle)

h(AX) < h(AX)  with equality iff X is Gaussian
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N Max/Min Entropy Principle

Let X be Gaussian with independent components )?,- of same
variances: Var(X;) = Var(X;).

Theorem (Maximum Entropy Principle)

h(AX) < h(AX)  with equality iff X is Gaussian

B Proof: h(AX) — h(AX) = Dx.(AX||AX) > 0[]
B known in the 19th century (Gibbs’ inequality)
(components need not be independent)
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N Max/Min Entropy Principle

Let X be Gaussian with independent components )?,- of same
variances: Var(X;) = Var(X;).

Theorem (Maximum Entropy Principle)

h(AX) < h(AX)  with equality iff X is Gaussian

B Proof: h(AX) — h(AX) = Dx.(AX||AX) > 0[]

B known in the 19th century (Gibbs’ inequality)
(components need not be independent)

B E. T. Jaynes, "Information theory and statistical mechanics,"a
Physical Review 106(4):620—630, 1957. .

m |. P. Burg, "Maximum entropy spectral analysis," Ph.D., ﬂ
Stanford, Dept. of Geophysics, Stanford, CA, USA, 1975.
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N Max/Min Entropy Principle

Let X be Gaussian with independent components )?,- of same
variances: Var(X;) = Var(X;).

Theorem (Maximum Entropy Principle)
h(AX) < h(AX)  with equality iff X is Gaussian

Let X* be Gaussian with independent components X} of same
entropies: h(X;) = h(X;).

Theorem (Minimun Entropy Principle)

h(AX) > h(AX*)  with equality iff X is Gaussian...or ...
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N Max/Min Entropy Principle

Let X* be Gaussian with independent components X7 of same
entropies: h(X;) = h(X;).

Theorem (Minimun Entropy Principle)

h(AX) > h(AX*)  with equality if X is Gaussian. . .
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N Max/Min Entropy Principle

Let X* be Gaussian with independent components X7 of same
entropies: h(X;) = h(X;).

Theorem (Minimun Entropy Principle)

h(AX) > h(AX*)  with equality if X is Gaussian. . .

... or A is “trivial”
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N Max/Min Entropy Principle

Let X* be Gaussian with independent components X7 of same
entropies: h(X;) = h(X;).

Theorem (Minimun Entropy Principle)

h(AX) > h(AX*)  with equality if X is Gaussian. . .
... or A js “trivial”

B Closeness to normality by linear filtering

B D. Donoho, "On minimum entropy deconvolution," in App/iedﬂ
Time Series Analysis Il, Acad. Press, 565--608, 1981. i

B R. Zamir & M. Feder, "A generalization of the entropy
power inequality," IEEE Trans. IT, 39(5):1723, 1993.

B Application to deconvolution / blind separation
where the equality condition is essential
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_ Purpose of this Presentation

Previous Proofs

B Original proof by double induction over (m, n) [Zamir Feder, 1993]
B Advanced proofs integrate (over a continuous path of additive
Gaussian perturbation) either:
* Fisher’s information using de Bruijn’s identity [Zamir Feder, 1993]
° or minimum mean-squared error using the I-MMSE relation
[Guo Shamai Verdu, 2006]
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(as a necessary condition)

4/16 592017 Olivier Rioul & Ram Zamir Matrix Entropy-Power Inequality via Normal Transport
EEEE



_ Purpose of this Presentation

Previous Proofs

B Original proof by double induction over (m, n) [Zamir Feder, 1993]
B Advanced proofs integrate (over a continuous path of additive
Gaussian perturbation) either:
* Fisher’s information using de Bruijn’s identity [Zamir Feder, 1993]
° or minimum mean-squared error using the I-MMSE relation
[Guo Shamai Verdu, 2006]
B The equality case has not yet been settled in general
(as a necessary condition)
Purpose of this presentation
B The aim here is to:

4/16 592017 Olivier Rioul & Ram Zamir Matrix Entropy-Power Inequality via Normal Transport
EEEE



_ Purpose of this Presentation

Previous Proofs

B Original proof by double induction over (m, n) [Zamir Feder, 1993]
B Advanced proofs integrate (over a continuous path of additive
Gaussian perturbation) either:
* Fisher’s information using de Bruijn’s identity [Zamir Feder, 1993]
° or minimum mean-squared error using the I-MMSE relation
[Guo Shamai Verdu, 2006]
B The equality case has not yet been settled in general
(as a necessary condition)

Purpose of this presentation
B The aim here is to:
* provide a simple “transportation” proof;

4/16 592017 Olivier Rioul & Ram Zamir Matrix Entropy-Power Inequality via Normal Transport
EEEE



_ Purpose of this Presentation

Previous Proofs

B Original proof by double induction over (m, n) [Zamir Feder, 1993]
B Advanced proofs integrate (over a continuous path of additive
Gaussian perturbation) either:
* Fisher’s information using de Bruijn’s identity [Zamir Feder, 1993]
° or minimum mean-squared error using the I-MMSE relation
[Guo Shamai Verdd, 2006]
B The equality case has not yet been settled in general
(as a necessary condition)
Purpose of this presentation
B The aim here is to:
* provide a simple “transportation” proof;
° settle the equality case.
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N Simplest Nontrivial Case: (m,n) =(1,2)
Take A= (a b) with nonzero a, b (nontrivial mixture).

Theorem (MinEnt for (m,n) = (1, 2))

For any two independent X, Y, letting X*,Y* independent Gaussian
s.t. h(X*) = h(X), h(Y) = h(Y™),

h(aX + bY) > h(aX* + bY™) |with equality iff X,Y are Gaussian.
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N Simplest Nontrivial Case: (m,n) =(1,2)
Take A= (a b) with nonzero a, b (nontrivial mixture).

Theorem (MinEnt for (m,n) = (1, 2))

For any two independent X, Y, letting X*,Y* independent Gaussian
s.t. h(X*) = h(X), h(Y) = h(Y™),

h(aX + bY) > h(aX* + bY™) |with equality iff X,Y are Gaussian.

Definition (Entropy Power [Shannon’48])

Entropy Power = Power of a Gaussian noise with the same entropy:
N(X) = Var(X*)  where  h(X*) = h(X)

i.e., since h(X*) = J log(2meVar(X*)),

N(X) = exp(2h(X))/2me
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N Simplest Nontrivial Case: (m,n) =(1,2)
Take A= (a b) with nonzero a, b (nontrivial mixture).

Theorem (MinEnt for (m,n) = (1, 2))

For any two independent X, Y,

N( X+ Y)>N( X)+ N( Y)|with equality iff X,Y are Gaussian.

Definition (Entropy Power [Shannon’48])

Entropy Power = Power of a Gaussian noise with the same entropy:
N(X) = Var(X*)  where  N(X*) = N(X)

i.e., since h(X*) = J log(2meVar(X*)),
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N Simplest Nontrivial Case: (m,n) =(1,2)
Take A= (a b) with nonzero a, b (nontrivial mixture).

Theorem ( [Shannon’48])

For any two independent X, Y,

N( X+ Y)>N( X)+N( Y)|with equality iff X,Y are Gaussian.

Definition (Entropy Power [Shannon’48])

Entropy Power = Power of a Gaussian noise with the same entropy:
N(X) = Var(X*) where  N(X*) = N(X)

i.e., since h(X*) = 3 log(2reVar(X*)),

N(X) = exp(2h(X))/2me|  N(X*) = Var(X*)
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_ The Entropy-Power Inequality (EPI)

The following result is derived in Appendix 6.

Theorem 15: Let the average power of two ensembles be N,

and N, and let their entropy powers be N. and N,. Then the
entropy power of the sum, Nj, is bounded by

N.+ N, < N,/< N, + N,.

White Gaussian noise has the peculiar property that it can
absorb any other noise or signal ensemble which may be added to
it with a resultant entropy power approximately equal to the sum
of the white noise power and the signal power (measured from
the average signal value, which is normally zero), provided the
signal power is small, in a certain sense, compared to the noise.
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_ The EPI has a Long History
1948 Stated and “proved” by Shannon in his seminal paper
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_ The EPI has a Long History

1948 Stated and “proved” by Shannon in his seminal paper
1959 Stam'’s proof using Fisher information
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_ The EPI has a Long History

1948
1959
1965
1978
1991
1991
2000
2006
2007
2014
2016
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Stated and “proved” by Shannon in his seminal paper
Stam’s proof using Fisher information

Blachman'’s exposition of Stam’s proof in IEEE Trans. IT
Lieb’s proof using strengthened Young’s inequality
Dembo-Cover-Thomas’ review of Stam’s & Lieb’s proofs
Carlen-Soffer 1D variation of Stam’s proof
Szarek-Voiculescu variant with Brunn-Minkowski inequality
Guo-Shamai-Verdu proof based on the I-MMSE relation
Rioul’s proof based on Mutual Information
Wang-Madiman strengthening using Rényi entropies
Courtade’s strengthening
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Stated and “proved” by Shannon in his seminal paper
Stam’s proof using Fisher information

Blachman'’s exposition of Stam’s proof in IEEE Trans. IT
Lieb’s proof using strengthened Young’s inequality
Dembo-Cover-Thomas’ review of Stam’s & Lieb’s proofs
Carlen-Soffer 1D variation of Stam’s proof
Szarek-Voiculescu variant with Brunn-Minkowski inequality
Guo-Shamai-Verdu proof based on the I-MMSE relation
Rioul’s proof based on Mutual Information
Wang-Madiman strengthening using Rényi entropies
Courtade’s strengthening

O. Rioul, “Yet another proof of the entropy power
inequality,” IEEE Trans IT 63(6):3595-3599, 2017

using normal transport




_ A Simple Change of Variables

Lemma (Inverse Function Sampling Method)

If U is uniform in [0, 1] and X has c.d.f. F(x) = P(X < x), then
F~Y(U) has the same distribution as X.

P(F1(U) < x) = P(U < F(x)) = F(x). O
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_ A Simple Change of Variables

Lemma (Inverse Function Sampling Method)

If U is uniform in [0, 1] and X has c.d.f. F(x) = P(X < x), then
F~Y(U) has the same distribution as X.

Proof.
P(F1(U) < x) = P(U < F(x)) = F(x). O

Corollary (Monotonic Increasing Transport T = F~! o G)
Let F,G be two c.d.f’s. Then X* ~G = X =T(X*) ~F.

Proof.
U = G(X*) ~ uniform; T(X*)=F *(G(X*)) = F 1(U) ~F. O
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_ A Simple Change of Variables: Entropy

Lemma (Change of variable [Shannon’48])

For any continuous X, X*, monotonic increasing transport T(X*) ~ X,
h(X) =|h(T(X*)) = h(X*) + Elog T'(X*)

Proof: make the change of variable x = T(x*) in

h(X) = / () log 75 dx = / A (T() T (" )Iogﬁdx*

fX* (X*

® in particular h(aX) = h(X) + log|a] <= N(aX) = a®N(X);
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_ A Proof that Shannon Missed...

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*, Y* are indep. Gaussian s.t. h(X*) = h(X), h(Y) = h(Y*)
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_ A Proof that Shannon Missed...

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y).
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_ A Proof that Shannon Missed...

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.
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_ A Proof that Shannon Missed...

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.

So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.
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_ A Proof that Shannon Missed...

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.

So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.

2. We may always normalize: .
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_ A Proof that Shannon Missed...

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.

So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.

2. We may always normalize: . Otherwise:
* divide a,b by A = +v/a? + b?;
* the log A terms cancel.
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_ A Proof that Shannon Missed...

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.

So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.

2. We may always normalize: . Otherwise:
* divide a,b by A = vaZ + b2;
* the log A terms cancel.

3. Make the changes of variables X = T(X*), Y = U(Y*):
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_ A Proof that Shannon Missed...

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.
So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.

2. We may always normalize: . Otherwise:
* divide a,b by A = vaZ + b2;
* the log A terms cancel.

3. Make the changes of variables X = T(X*), Y = U(Y*):

One is led to prove ‘ h(aT(X*) +bU(Y")) > h(aX™ + bY™)
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_ A Proof that Shannon Missed...

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.

So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.

2. We may always normalize: . Otherwise:
* divide a,b by A = vaZ + b2;
* the log A terms cancel.
3. Make the changes of variables X = T(X*), Y = U(Y*):
One is led to prove ‘ h(aT(X*) +bU(Y")) > h(aX™ + bY™)

4. Define X = ax* + bY™,
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_ A Proof that Shannon Missed...

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘
where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"") so that h(cX) = h(dY);
* apply the above to cX and dY.
So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.

2. We may always normalize: . Otherwise:
* divide a,b by A = vaZ + b2;
* the log A terms cancel.
3. Make the changes of variables X = T(X*), Y = U(Y*):
One is led to prove ‘ h(aT(X*) +bU(Y")) > h(aX™ + bY™)

4. Define X = aX* + bY*. Complete the rotation: Y = —bX* + aY*

so that | X,Y are i.i.d.|Gaussian
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_ A Proof that Shannon Missed...

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY*)‘

where X*,Y* are indep. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y™)
1. We may assume h(X) = h(Y). Otherwise:
* setc=e "™ and d = e~"" so that h(cX) = h(dY);

* apply the above to cX and dY.

So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.

2. We may always normalize: . Otherwise:

* divide a,b by A = +v/a? + b?;
* the log A terms cancel.

3. Make the changes of variables X = T(X*), Y = U(Y*):

One is led to prove ‘ h(aT(X*) +bU(Y")) > h(aX™ + bY™)

4. Define X = aX* + bY*. Complete the rotation: Y = —bX* + aY*

so that|X, Y are i.i.d.| Gaussian and

10/16 spr07 Olivier Rioul & Ram Zamir Matrix Entropy-Power Inequality via Normal Transport [l

X* = aX — bY

’

Y* = bX + aY|.




I A rroof that Shannon Missed
One is led to prove ‘ h(aT(X*) 4+ bU(Y™*)) > h(aX* + bY™)

X,Y are i.i.d.|Gaussian and ‘X* —aX — bY ‘ ‘ Y* = bX + a?‘.
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_ A Proof that Shannon Missed

One is led to prove ‘ h(aT(X*) 4+ bU(Y™*)) > h(aX* + bY™)

)?,Vare i.i.d.

Gaussian and ‘X* = aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces entropy:
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))
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_ A Proof that Shannon Missed

One is led to prove ‘ h(aT(X*) 4+ bU(Y™*)) > h(aX* + bY™)

)?,Vare i.i.d.

Gaussian and ‘X* = aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces entropy:
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))
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_ A Proof that Shannon Missed

One is led to prove ‘ h(aT(X*) 4+ bU(Y™*)) > h(aX* + bY™)

)?,Vare i.i.d.

Gaussian and ‘X* = aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces entropy:
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))

> h(aT(aX — bY) + bU(bX + aY) |Y)

6. By the change of variable: Ty(X)
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_ A Proof that Shannon Missed

One is led to prove ‘ h(aT(X*) 4+ bU(Y™*)) > h(aX* + bY™)

)?,Vare i.i.d.

Gaussian and ‘X* = aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces entropy:
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))

> h(aT(aX — bY) + bU(bX + aY) |Y)

6. By the change of variable: Ty(X)
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_ A Proof that Shannon Missed

One is led to prove ‘ h(aT(X*) 4+ bU(Y™*)) > h(aX* + bY™)

)?,Vare i.i.d.

Gaussian and ‘X* = aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces entropy:
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))

> h(aT(aX — bY) + bU(bX + aY) |Y)

6. By the change of variable: Ty(X)

11/16 s/92017 Olivier Rioul & Ram Zamir Matrix Entropy-Power Inequality via Normal Transport

= h(X) + Elog T5(X)
= h(X) + Elog(aT'(aX — bY) + b2U'(bX + aY))




I A rroof that Shannon Missed
One is led to prove ‘ h(aT(X*) 4+ bU(Y™*)) > h(aX* + bY™)

X,Y are i.i.d.|Gaussian and ‘X* —aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces entropy:
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))
> h(aT(aX — bY) + bU(bX + aY) |Y)
6. By the change of variable: Ty(X)
= h(X) + Elog T5(X)
= h(X) + Elog(aT'(aX — bY) + b2U'(bX + aY))
= h(aX* + bY*) + Elog(aT'(X*) + b2U'(Y*))
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I A rroof that Shannon Missed
One is led to prove ‘ h(aT(X*) + bU(Y")) > h(aX™ + bY™)

X,Y are i.i.d.|Gaussian and ‘X* —aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces eDtropxz B _
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))
> h(aT(aX — bY) + bU(bX + aY) |Y)
6. By the change of variable: Ty(X)
= h(X) +Elog T’y()N()
X) + Elog(a®T'(aX — bY) + b?U'(bX + aY))

= h(
= h(aX* + bY*) + Elog(a®T'(X*) + b*U'(Y*))

7. By concavity of the log:
> h(aX* + bY*) + a’Elog T'(X*)+b*Elog U'(Y*)

11/16 spp07 Olivier Rioul & Ram Zamir Matrix Entropy-Power Inequality via Normal Transport [l




I A rroof that Shannon Missed
One is led to prove ‘ h(aT(X*) + bU(Y")) > h(aX™ + bY™)

X,Y are i.i.d.|Gaussian and ‘X* —aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces eDtropxz B _
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))

> h(aT(aX — bY) + bU(bX + aY) |Y)

6. By the change of variable: T3(X)
= h(X) +Elog T’y()N()
= h(X) + Elog(aT’(aX — bY) + b2U'(bX + aY))
= h(aX* + bY*) + Elog(a®T'(X*) + b*U'(Y*))

7. By concavity of the log:
> h(aX* + bY*) + a*Elog T'(X*)+b’E log U'(Y*)

~~ ~~

h(X)=h(X*)=0  h(Y)—h(Y*)=0
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I A rroof that Shannon Missed
One is led to prove ‘ h(aT(X*) + bU(Y")) > h(aX™ + bY™)

X,Y are i.i.d.|Gaussian and ‘X* —aX — bY ‘ ‘ Y* = bX + a?‘.

5. Since conditioning reduces eDtropxz B _
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY))
> h(aT(aX — bY) + bU(bX + aY) |Y)
6. By the change of variable: Ty(X)
= h(X) +Elog T’y()N()
X) + Elog(a®T'(aX — bY) + b?U'(bX + aY))

= h(
= h(aX* + bY*) + Elog(a®T'(X*) + b*U'(Y*))
7. By concavity of the log:

> h(aX* 4+ bY*) + a’Elog T'(X*)+b*Elog U'(Y*)
> h(aX* +bY*) O
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_ Equality Case

For nonzero a, b:

B in log concavity inequality:
Elog(a®T'(X*) + b?U'(Y*)) = a’Elog T'(X*) + b°Elog U'(Y*)

— T'(X*) = U'(X*) = c > 0 constant a.e.
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_ Equality Case

For nonzero a, b:

B in log concavity inequality:
Elog(a®T'(X*) + b?U'(Y*)) = a’Elog T'(X*) + b°Elog U'(Y*)

— T'(X*) = U'(X*) = c > 0 constant a.e.
= T,Uarelinear: X = T(X*) = cX*, Y = U(Y*) = cY* Gaussian.
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_ Equality Case

For nonzero a, b:

B in log concavity inequality:
Elog(a®T'(X*) + b?U'(Y*)) = a’Elog T'(X*) + b°Elog U'(Y*)
— T'(X*) = U'(X*) = c > 0 constant a.e.

= T,Uarelinear: X = T(X*) = cX*, Y = U(Y*) = cY* Gaussian.
— ¢ = 1since h(X) = h(X*), h(Y) = h(Y™).
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_ Equality Case

For nonzero a, b:

B in log concavity inequality:
Elog(a®T'(X*) + b?U'(Y*)) = a’Elog T'(X*) + b°Elog U'(Y*)

— T'(X*) = U'(X*) = c > 0 constant a.e.
= T,Uarelinear: X = T(X*) = cX*, Y = U(Y*) = cY* Gaussian.
— ¢ = 1since h(X) = h(X*), h(Y) = h(Y™).

B in information inequality:

h(aT(aX — bY) +bU(bX + aY)) = h(aT(aX — bY) +bU(bX + aY)|Y)

comes for free since a(aX — bY) + b(bX + aY) = X is indep of Y.
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_ Extension to Linear Transformations

Proceed to prove h(AX) > h(AX*).
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_ Extension to Linear Transformations

Proceed to prove h(AX) > h(AX*).
B We may assume all X; have the same entropy: Otherwise,
introduce ¢; = e "X) and apply the result to the ¢;X;.
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_ Extension to Linear Transformations

Proceed to prove h(AX) > h(AX*).
B We may assume all X; have the same entropy: Otherwise,
introduce ¢; = e "X) and apply the result to the ¢;X;.

B Since h(X;) = h(X;), all X; have the same variance, hence are
i.i.d.
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_ Extension to Linear Transformations

Proceed to prove h(AX) > h(AX*).
B We may assume all X; have the same entropy: Otherwise,
introduce ¢; = e "X) and apply the result to the ¢;X;.
B Since h(X;) = h(X;), all X; have the same variance, hence are
i.i.d.
B We may assume that A has rank = m < n (otherwise the result is
trivial): h(AX) = h(AX*) = —ooc.
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_ Extension to Linear Transformations

Proceed to prove h(AX) > h(AX*).

B We may assume all X; have the same entropy: Otherwise,
introduce ¢; = e "X) and apply the result to the ¢;X;.

B Since h(X;) = h(X;), all X; have the same variance, hence are
i.i.d.

B We may assume that A has rank = m < n (otherwise the result is
trivial): h(AX) = h(AX*) = —ooc.

B The difference h(AX) — h(AX*) is invariant by elementary row
operations. By the Gram-Schmidt procedure, we may assume
that the rows of A are orthonormal: AA! = I.
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_ Extension to Linear Transformations

Proceed to prove h(AX) > h(AX*).

B We may assume all X; have the same entropy: Otherwise,
introduce ¢; = e "X) and apply the result to the ¢;X;.

B Since h(X;) = h(X;), all X; have the same variance, hence are
i.i.d.

B We may assume that A has rank = m < n (otherwise the result is
trivial): h(AX) = h(AX*) = —ooc.

B The difference h(AX) — h(AX*) is invariant by elementary row
operations. By the Gram-Schmidt procedure, we may assume
that the rows of A are orthonormal: AA! = I.

A
B Extend A to an orthogonal matrix A = (I.\C)
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_ Extension to Linear Transformations

- - - X
B Then let X = AX* et X¢ = A°X* so that X' = )~(C> = AX* has

i.i.d. components. Inverting yields X* = A X'.
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_ Extension to Linear Transformations

- - - X
B Then let X = AX* et X¢ = A°X* so that X' = )~(C> = AX* has

i.i.d. components. Inverting yields X* = A X'.
® By the changes of variables X; = T;(X}), since conditioning
reduces entropy:

h(AX)

h(AT(X*))
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_ Extension to Linear Transformations

- - - X
B Then let X = AX* et X¢ = A°X* so that X' = )~(C> = AX* has

i.i.d. components. Inverting yields X* = A X'.
® By the changes of variables X; = T;(X}), since conditioning
reduces entropy:

h(AX) = h(AT(X"))
(AT(A"X"))

(AT(A" X')| X°)

h
h

v

B But the Jacobian matrix of
T (X) = AT(K* X') = AT(A X + (A)E X°) for fixed X€ is
T}(C(X) = AT’(Nt X’)At = AT’(X*)At where T'(X*) = diag(T{(X;"))
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_ Extension to Linear Transformations

B The change of variables in the entropy yields
h(AX) > h(AT(K" X')| X°)
= h(X|X°) + Elog det(AT'(X*)A!)
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_ Extension to Linear Transformations

B The change of variables in the entropy yields
h(AX) > h(AT(K" X')| X°)
= h(X|X°) + Elog det(AT'(X*)A!)
B By the concavity of the logarithm: [Zamir-Feder’'s Lemma, 1993]
log det(AT'(X*)A) > tr(A - log T'(x*) - A"

thus
h(AX) > h(X|X°) + tr(A - Elog T'(X) - A}

15/16 s/912017 Olivier Rioul & Ram Zamir Matrix Entropy-Power Inequality via Normal Transport




_ Extension to Linear Transformations

B The change of variables in the entropy yields
h(AX) > h(AT(K" X')| X°)
= h(X|X°) + E log det(AT’'(X*)A")
B By the concavity of the logarithm: [Zamir-Feder’'s Lemma, 1993]
log det(AT'(X*)A) > tr(A - log T'(x*) - A"

thus
h(AX) > h(X|X°) + tr(A - Elog T'(X) - A}
m But h(X|X<) = h(X) = h(AX*) and
Elog T/(X;) = h(Ti(X;)) — h(X;) = h(X;) — h(X;) = 0; s0
| h(AX) > h(AX") O
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_ Extension to Linear Transformations

B The change of variables in the entropy yields
h(AX) > h(AT(K" X')| X°)
= h(X|X°) + E log det(AT’'(X*)A")
B By the concavity of the logarithm: [Zamir-Feder’'s Lemma, 1993]
log det(AT'(X*)A) > tr(A - log T'(x*) - A"

thus
h(AX) > h(X|X°) + tr(A - Elog T'(X) - A}
m But h(X|X<) = h(X) = h(AX*) and
Elog T/(X;) = h(Ti(X;)) — h(X;) = h(X;) — h(X;) = 0; s0
| h(AX) > h(AX") O

B Equality case?
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_ Equality Case

A component X; of X is

B present in the linear mixture AX if AX depends on X; (the jth
column of A is non zero).

B recoverable from the the linear mixture AX if there exists a
linear transformation (line vector ¢) such that X; = ¢(AX) a.e.
(ie., ¥ st. /AA=(0---0 1 0---0)).

~
J
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_ Equality Case

A component X; of X is

B present in the linear mixture AX if AX depends on X; (the jth
column of A is non zero).

B recoverable from the the linear mixture AX if there exists a
linear transformation (line vector ¢) such that X; = ¢(AX) a.e.

(i.e., I s.t. EA:(O---O\II/O---O)).

j
Theorem

Equality h(AX) = h(AX*) holds iff all unrecoverable components
present in the mixture are Gaussian.
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_ Equality Case

A component X; of X is

B present in the linear mixture AX if AX depends on X; (the jth
column of A is non zero).

B recoverable from the the linear mixture AX if there exists a
linear transformation (line vector ¢) such that X; = ¢(AX) a.e.

(i.e., I s.t. EA:(O---O\II/O---O)).

j
Theorem

Equality h(AX) = h(AX*) holds iff all unrecoverable components
present in the mixture are Gaussian.
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Thank you for your attention!
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