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Ingredients

random X =


X1

X2

...
Xn

 ∈ Rn with independent components Xi

a linear transformation: X 7→ AX

differential entropy: h(X) =

∫
f(x) log

1

f(x)
dx if X has density f ,

otherwise h(X) = −∞.

consider h(AX):
• assume it is nondegenerate: h(AX) > −∞
• =⇒ A has full row rank
• A is an m× n matrix with m ≤ n (or even m < n)

maxh(AX) or minh(AX) ? (attained for Gaussian X)
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Max/Min Entropy Principle

Let X̃ be Gaussian with independent components X̃i of same
variances: Var(X̃i) = Var(Xi).

Theorem (Maximum Entropy Principle)

h(AX) ≤ h(AX̃) with equality iff X is Gaussian

Proof: h(AX̃)− h(AX) = DKL(AX‖AX̃) ≥ 0
known in the 19th century (Gibbs’ inequality)
(components need not be independent)
E. T. Jaynes, "Information theory and statistical mechanics,"
Physical Review 106(4):620—630, 1957.
J. P. Burg, "Maximum entropy spectral analysis," Ph.D.,
Stanford, Dept. of Geophysics, Stanford, CA, USA, 1975.
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Max/Min Entropy Principle

Let X∗ be Gaussian with independent components X∗i of same
entropies: h(X∗i ) = h(Xi).

Theorem (Minimun Entropy Principle)

h(AX) ≥ h(AX∗) with equality if X is Gaussian. . .

... or A is “trivial”

Closeness to normality by linear filtering
D. Donoho, "On minimum entropy deconvolution," in Applied
Time Series Analysis II, Acad. Press, 565-–608, 1981.
R. Zamir & M. Feder, "A generalization of the entropy
power inequality," IEEE Trans. IT, 39(5):1723, 1993.
Application to deconvolution / blind separation
where the equality condition is essential
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Purpose of this Presentation

Previous Proofs

Original proof by double induction over (m,n) [Zamir Feder, 1993]
Advanced proofs integrate (over a continuous path of additive
Gaussian perturbation) either:

• Fisher’s information using de Bruijn’s identity [Zamir Feder, 1993]
• or minimum mean-squared error using the I-MMSE relation

[Guo Shamai Verdú, 2006]

The equality case has not yet been settled in general
(as a necessary condition)

Purpose of this presentation
The aim here is to:

• provide a simple “transportation” proof;
• settle the equality case.
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Simplest Nontrivial Case: (m,n) = (1,2)

Take A =
(
a b

)
with nonzero a, b (nontrivial mixture).

Theorem (MinEnt for (m,n) = (1,2))

For any two independent X, Y, letting X∗, Y∗ independent Gaussian
s.t. h(X∗) = h(X), h(Y) = h(Y∗),

h(aX + bY) ≥ h(aX∗ + bY∗) with equality iff X, Y are Gaussian.

Definition (Entropy Power [Shannon’48])

Entropy Power = Power of a Gaussian noise with the same entropy:

N(X) = Var(X∗) where h(X∗) = h(X)

i.e., since h(X∗) = 1
2 log

(
2πeVar(X∗)

)
,

N(X) = exp
(
2h(X)

)
/2πe

N(X∗) = Var(X∗)
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The Entropy-Power Inequality (EPI)
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The EPI has a Long History

1948 Stated and “proved” by Shannon in his seminal paper

1959 Stam’s proof using Fisher information
1965 Blachman’s exposition of Stam’s proof in IEEE Trans. IT
1978 Lieb’s proof using strengthened Young’s inequality
1991 Dembo-Cover-Thomas’ review of Stam’s & Lieb’s proofs
1991 Carlen-Soffer 1D variation of Stam’s proof
2000 Szarek-Voiculescu variant with Brunn-Minkowski inequality
2006 Guo-Shamai-Verdú proof based on the I-MMSE relation
2007 Rioul’s proof based on Mutual Information
2014 Wang-Madiman strengthening using Rényi entropies
2016 Courtade’s strengthening
2017 O. Rioul, “Yet another proof of the entropy power

inequality,” IEEE Trans IT 63(6):3595–3599, 2017
using normal transport
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A Simple Change of Variables

Lemma (Inverse Function Sampling Method)

If U is uniform in [0,1] and X has c.d.f. F(x) = P(X ≤ x), then
F−1(U) has the same distribution as X.

Proof.

P(F−1(U) ≤ x) = P(U ≤ F(x)) = F(x).

Corollary (Monotonic Increasing Transport T = F−1 ◦ G)

Let F,G be two c.d.f’s. Then X∗ ∼ G =⇒ X = T(X∗) ∼ F.

Proof.

U = G(X∗) ∼ uniform; T(X∗) = F−1
(
G(X∗)

)
= F−1(U) ∼ F.
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A Simple Change of Variables: Entropy

Lemma (Change of variable [Shannon’48])

For any continuous X,X∗, monotonic increasing transport T(X∗) ∼ X,

h(X) = h
(
T(X∗)

)
= h(X∗) + E log T′(X∗)

Proof.

Proof: make the change of variable x = T(x∗) in

h(X) =

∫
fX(x) log

1

fX(x)
dx =

∫
fX
(
T(x∗)

)
T′(x∗)︸ ︷︷ ︸

fX∗ (x∗)

log
1

fX
(
T(x∗)

) dx∗
in particular h(aX) = h(X) + log |a| ⇐⇒ N(aX) = a2N(X);
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A Proof that Shannon Missed. . .

Proceed to prove the inequality h(aX + bY) ≥ h(aX∗ + bY∗)

where X∗, Y∗ are indep. Gaussian s.t. h(X∗) = h(X), h(Y) = h(Y∗)

1. We may assume h(X) = h(Y). Otherwise:
• set c = e−h(X) and d = e−h(Y) so that h(cX) = h(dY);
• apply the above to cX and dY.

So w.l.o.g. X∗, Y∗ are i.i.d. Gaussian.

2. We may always normalize: a2 + b2 = 1 . Otherwise:
• divide a,b by ∆ =

√
a2 + b2;

• the log ∆ terms cancel.

3. Make the changes of variables X = T(X∗), Y = U(Y∗):

One is led to prove h(aT(X∗) + bU(Y∗)) ≥ h(aX∗ + bY∗)

4. Define X̃ = aX∗ + bY∗. Complete the rotation: Ỹ = −bX∗ + aY∗

so that X̃, Ỹ are i.i.d. Gaussian and X∗ = aX̃ − bỸ , Y∗ = bX̃ + aỸ .
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10 / 16 5/9/2017 Olivier Rioul & Ram Zamir Matrix Entropy-Power Inequality via Normal Transport



A Proof that Shannon Missed. . .

Proceed to prove the inequality h(aX + bY) ≥ h(aX∗ + bY∗)

where X∗, Y∗ are indep. Gaussian s.t. h(X∗) = h(X) = h(Y) = h(Y∗)

1. We may assume h(X) = h(Y). Otherwise:
• set c = e−h(X) and d = e−h(Y) so that h(cX) = h(dY);
• apply the above to cX and dY.

So w.l.o.g. X∗, Y∗ are i.i.d. Gaussian.

2. We may always normalize: a2 + b2 = 1 . Otherwise:
• divide a,b by ∆ =

√
a2 + b2;

• the log ∆ terms cancel.

3. Make the changes of variables X = T(X∗), Y = U(Y∗):

One is led to prove h(aT(X∗) + bU(Y∗)) ≥ h(aX∗ + bY∗)

4. Define X̃ = aX∗ + bY∗. Complete the rotation: Ỹ = −bX∗ + aY∗
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A Proof that Shannon Missed

One is led to prove h(aT(X∗) + bU(Y∗)) ≥ h(aX∗ + bY∗)

X̃, Ỹ are i.i.d. Gaussian and X∗ = aX̃ − bỸ , Y∗ = bX̃ + aỸ .

5. Since conditioning reduces entropy:

h(aT(X∗) + bU(Y∗)) = h(aT(aX̃ − bỸ) + bU(bX̃ + aỸ))

≥ h(aT(aX̃ − bỸ) + bU(bX̃ + aỸ)|Ỹ)
6. By the change of variable:

= h(X̃) + E log T′
Ỹ

(X̃)

= h(X̃) + E log
(
a2T′(aX̃ − bỸ) + b2U′(bX̃ + aỸ)

)
= h(aX∗ + bY∗) + E log

(
a2T′(X∗) + b2U′(Y∗)

)
7. By concavity of the log:
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TỸ(X̃)

|Ỹ)
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5. Since conditioning reduces entropy:

h(aT(X∗) + bU(Y∗)) = h(aT(aX̃ − bỸ) + bU(bX̃ + aỸ))
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)
= h(aX∗ + bY∗) + E log

(
a2T′(X∗) + b2U′(Y∗)

)
7. By concavity of the log:

≥ h(aX∗ + bY∗) + a2E log T′(X∗)︸ ︷︷ ︸
h(X)−h(X∗)=0

+b2E logU′(Y∗)︸ ︷︷ ︸
h(Y)−h(Y∗)=0
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Equality Case

For nonzero a,b:

in log concavity inequality:

E log
(
a2T′(X∗) + b2U′(Y∗)

)
= a2E log T′(X∗) + b2E logU′(Y∗)

=⇒ T′(X∗) = U′(X∗) = c > 0 constant a.e.

=⇒ T,U are linear: X = T(X∗) = cX∗, Y = U(Y∗) = cY∗ Gaussian.
=⇒ c = 1 since h(X) = h(X∗), h(Y) = h(Y∗).

in information inequality:
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comes for free since a(aX̃ − bỸ) + b(bX̃ + aỸ) = X̃ is indep of Ỹ.
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Extension to Linear Transformations

Proceed to prove h(AX) ≥ h(AX∗).

We may assume all Xi have the same entropy: Otherwise,
introduce ci = e−h(Xi) and apply the result to the ciXi.

Since h(X∗i ) = h(Xi), all X∗i have the same variance, hence are
i.i.d.

We may assume that A has rank = m ≤ n (otherwise the result is
trivial): h(AX) = h(AX∗) = −∞.

The difference h(AX)− h(AX∗) is invariant by elementary row
operations. By the Gram-Schmidt procedure, we may assume
that the rows of A are orthonormal: AAt = I.

Extend A to an orthogonal matrix A′ =

(
A

Ac

)
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Extension to Linear Transformations

Then let X̃ = AX∗ et X̃c = AcX∗ so that X̃′ =

(
X̃

X̃c

)
= A′X∗ has

i.i.d. components. Inverting yields X∗ = A′t X̃′.

By the changes of variables Xi = Ti(X∗i ), since conditioning
reduces entropy:

h(AX) = h(AT(X∗))

= h(AT(A′
t
X̃′))

≥ h(AT(A′
t
X̃′) | X̃c)

But the Jacobian matrix of
TX̃c(X̃) = AT(A′t X̃′) = AT(At X̃ + (Ac)t X̃c) for fixed X̃c is
T′
X̃c

(X̃) = AT′(A′t X̃′)At = AT′(X∗)At where T′(X∗) = diag(T′i (X
∗
i ))
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Extension to Linear Transformations

The change of variables in the entropy yields

h(AX) ≥ h(AT(A′
t
X̃′) | X̃c)

= h(X̃|X̃c) + E log det(AT′(X∗)At)

By the concavity of the logarithm: [Zamir-Feder’s Lemma, 1993]

log det(AT′(X∗)At) ≥ tr(A · logT′(X∗) · At)

thus
h(AX) ≥ h(X̃|X̃c) + tr(A · E logT′(X̃) · At)

But h(X̃|X̃c) = h(X̃) = h(AX∗) and
E log T′i (X̃i) = h(Ti(X̃i))− h(X̃i) = h(Xi)− h(X̃i) = 0; so

h(AX) ≥ h(AX∗)

Equality case?
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Equality Case

Definitions

A component Xj of X is

present in the linear mixture AX if AX depends on Xj (the jth
column of A is non zero).

recoverable from the the linear mixture AX if there exists a
linear transformation (line vector `) such that Xj = `(AX) a.e.
(i.e., ∃` s.t. `A = (0 · · ·0 1︸︷︷︸

j

0 · · ·0)).

Theorem

Equality h(AX) = h(AX∗) holds iff all unrecoverable components
present in the mixture are Gaussian.
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