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_ Do you Know Claude Shannon?

U= v A a
“the most important man..

. you’'ve never heard of”
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_ Claude Shannon (1916-2001)

“father of the information age”

April 30, 1916 Claude Elwood Shannon was born in Petoskey,
Michigan, USA
g
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April 30, 2016 centennial day celebrated by Google:
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_ Well-Known Scientific Heroes

ONE OF THE GREATEST MOVIES OF 2014

EVERY ROLE IS FILLED PERFECTION,

Alan Turing (1912-1954)
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_ Well-Known Scientific Heroes

HE SAW THE

FORLDY IN A WAY

NE COULD HAVE
IMAGINED
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The Quiet and Modest Life of Shannon
Shannon with Juggling Props
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The Quiet and Modest Life of Shannon

Shannon’s Toys Room

on a unicycle while simultaneously juggling four balls
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_ Crazy Machines

Theseus (labyrinth mouse)
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_ Crazy Machines

OM

ParisTech
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_ Crazy Machines

calculator in Roman numerals
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Olivier Rioul Shannon and Information Theory =g
_ =5 Fioi |




_ Crazy Machines

“Hex” switching game machine

TELEC
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_ Crazy Machines

Rubik’s cube solver
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_ Crazy Machines

3-ball juggling machine
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_ Crazy Machines

Wearable computer to predict roulette in casinos
(with Edward Thorp)
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_ Crazy Machines

ultimate useless machine

OM
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_ “Serious” Work

At the same time, Shannon made decisive theoretical advances in ...
B |ogic & circuits

cryptography

artifical intelligence

stock investment

wearable computing

...and information theory!
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_ The Mathematical Theory of
Communication (BST]J, 1948)

. :An .

THE MATHEMATICAL THEORY
OF COMMUNICATION

by Claude E. Shannon and Warren Weaver
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_ Nouvelle édition francaise

WARREN
WEAVER

la théorie mathématique

de la communication

<2
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LE SEL ET LE FER
CASSINI
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_ Without Shannon....
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Shannon’s Theorems
Yes it’s Maths !!

(Compression of
ginformation)

2. Channel Coding
heorem

(Transmission of

Information)
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_ Shannon’s Paradigm

The Mathematical Theory of Communication

34
INFORMATION
SOURCE  TRANSMITTER RECEIVER  DESTINATION
> M= e b
SIGNAL RECEIVED
SIGNAL
MESSAGE MESSAGE
NOISE
SOURCE
Fig. 1. — Schematic diagram of a general communication system.
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_ Shannon’s Paradigm... in Communication
Example: Broadcast following crisis

A B c D E
te|eV|_5|on v ) Circuitry, TV sets; viewing
station broadcasting et public
equipment y ™ —
signal: Received
A storm! Signal:
A storm!

Noise Source:
Storm damages TV
equipment; static from storm
in reception

TELECOM
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_ Shannon’s Paradigm... in Linguistics

A SPEECH EVENT

ADDRESSER

emotive function
r[expression of attitude)

referential functien
(locates msg ii experience)

MESSAGE
oetic function
(focus on msg for its own sake)

CONTACT

rhatic_fur_lction
(aspect of msy ||i|k|ng addr + addee)

CODE

metalingual function
(shared aspects of msg)

ADDRESSEE

conatve function

drawn by jjs

Roman Jakobson’s 1960
model of communication
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_ Shannon’s Paradigm... in Biology

I

Source |
Channel code
alphabet | | lalphabet
Noise
Source tape Encoding Decoding
Message in DNA alphabet Channel s
DNA to mRNA :mh" Channel message
alphabet 4 alphabet ' inprotein
mRNA message mRNA message alphabet
in RNA alphabet + genetic noise
DNA tape Transcription Tranglation Protein
tape
DNA Genetic noise
polymerase ed tRNA
Amino
acylated
tRNA
amino acyl
synthetases
tRNA amino
acids
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_ Shannon’s Paradigm... in Psychology

PSYCHOLOGICAL PHYSICAL PSYCHOL OGICAL
REALITY REALITY REALITY

A B

Perceving —— INFORMATION Percerving

— Interpreting Interpreting—|

Action Acfon

/ Colective”

Undestanding ——Believing Acton Believirg —Undestanding —
-~ e 1 . .
~ . . - .-

e . Muual L7 e
R Agrelemnt P
~. | “
T MutuasL o
UNDERSTANDING

SOCIAL
REALITY

A&B
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Message
encoded by the
transmitter

Medium

Message sent
through the
medium

Transmitter's
field of
experience

MNoise

Feedback

_ Shannon’s Paradigm... in Social Sciences

Interference

loop

Message
decoded by
the receiver

Zone in which
communication
takes place

Receivers
field of
experience
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_ Shannon’s Paradigm... in

Human-Computer Interaction

Human participant

Receiving device

Source Encoder Channel Decoder Destination
User intention Movement mapping Target recognition Target hit
Noiseé
neural noise,
tremoaor,...
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_ Shannon’s “Bandwagon” Editorial

(& =——u"—a)

The Bandwagon

CLAUDE E. SHANNON

become something of a scientific bandwagon.

Starting as a technical tool for the communica-
tion engineer, it has received an extraordinary
amount of publicity in the popular as well as the
scientific press. In part, this has been due to connec-
tions with suech fashionable fields as computing ma~
chines, eybernetics, and automation; and in part, to
the novelty of its subject matter. As a consequence,
it has perhaps been ballooned to an importance
beyond its actual accomplishments. Our fellow scien-

]I NFORMATION theory has, in the last few years,

subject are aimed in a very specific direction, a
direction that is not necessarily relevant to such
fields as psychology, economics, and other social
sciences. Indeed, the hard core of information theory
is, essentially, a branch of mathematics, a strictly
deductive system. A thorough understanding of the
mathematical foundation and its communication
application is surely a prerequisite to other applica-
tions. I personally believe that many of the concepts
of information theory will prove useful in these other
fields—and, indeed, some results are already quite

Olivier Rioul Shannon and Information Theory
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_ Shannon’s Viewpoint

“The fundamental problem of communication is that of
reproducing at one point either exactly or approximately a
message selected at another point.

Frequently the messages have meaning; [...] These
semantic aspects of communication are irrelevant to the
engineering problem.

The significant aspect is that the actual message is one
selected from a set of possible messages [...] unknown at
the time of design. ”

X : a message symbol modeled as a random variable
p(x) : the probability that X = x

TELECOM
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_ Kolmogorov’s Modern Probability Theory

Andrei Kolmogorov (1903-1987)

® founded modern probability theory in 1933
B 3 strong early supporter of information theory!

“Information theory must precede probability theory and
not be based on it. [...] The concepts of information theory
as applied to infinite sequences [...] can acquire a certain
value in the investigation of the algorithmic side of M

mathematics as a whole.”
TELECOM
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_ A Logarithmic Measure

B 1 digit represents 10 numbers 0,1,2,3,4,5,6,7,8,9;
B 2 digits represents 100 numbers 00, 01, ..., 99;
B 3 digits represents 1000 numbers 000, ..., 999;

B |0g;9 M digits represents M possible outcomes

Ralph Hartley (1888-1970)

“[...] take as our practical measure of information the
logarithm of the number of possible symbol sequences” E
TELECOM

Transmission of Information, BST]J, 1928
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B The Bit

B |0g;q9 M digits represents M possible outcomes

H or..
B |og, M bits represents M possible outcomes

John Tukey (1915-2000)

coined the term “bit” (contraction of “binary digit”)

which was first used by Shannon in his 1948 paper

any information can be represented by a sequence

of 0’s and 1's — the Digital Revolution! |E
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_ The Unit of Information

bit (binary digit, unit of storage) # bit (binary unit of information)

B |ess-likely messages are more informative than more-likely ones
® 1 bit is the information content of one equiprobable bit (3,1)

otherwise the information content is < 1 bit:

The official name (International standard ISO/IEC 80000-13)

for the information unit:
...the Shannon (symbol Sh) |E

TELECOM
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_ Fundamental Limit of Performance

B Shannon does not really give practical solutions but
solves a theoretical problem:

B No matter what you do,
(as long as you have a given amount of ressources)
you cannot go beyond than a certain bit rate limit
to achieve reliable communication
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_ Fundamental Limit of Performance

B before Shannon: | ‘

communication technologies did not have a landmark
B the limit can be calculated: we know how far we are from it
and you can be (in theory) arbitrarily close to the limit!

B the challenge becomes:
how can we build practical solutions that are close to the limit?

oM
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_ Asymptotic Results

B to find the limits of performance, Shannon’s results are
necessarily asymptotic
B 3 source is modeled as a sequence of random variables

X1,X2, ..., Xn

where the dimension n — +o0.
B this allows to exploit dependences
and obtain a geometric “gain”
using the law of large numbers
where limits are expressed as expectations E{-}

TELECOM
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_ Asymptotic Results: Example

Consider the source X1, X>,...,X, where each X can take a finite
number of possible values, independently of the other symbols.

The probability of message x = (x1,X2,...,Xn) is the product of the
individual probabilities:

p(z() = p(Xl) . P(Xz) ......... p(Xn)-

Re-arrange according to the value x taken by each argument:

p(x) =[] px)"™

where n(x) = number of symbols equal to x.

Pari<Tech
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_ Asymptotic Results: Example (Cont’d)

By the law of large numbers, the empirical probability (frequency)

n(x
57) —p(x) asn— +oo
Therefore, a “typical” message x = (x1, X2, ..., Xn) satisfies

p(x) = H p(x)"X) ~ H p(x)"PX) = p=nH

where

H=3" pb0)os; p(lx) - E{Iogz p(lx)}

is a positive quantity called entropy.

i E"
TELECOM
F Tech
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I shannon's entropy |H=> p(x)log,

X

p(x)

B analogy with statistical mechanics

\ Ludwig Boltzmann (1844-1906)

B suggested by
“You should call it entropy [...] no one really

knows what entropy really is, so in a debate
<. you will always have the advantage.”
John von Neumann (1903-1957)
B studied in physics by

Léon Brillouin (1889-1969) TeLECom

Y
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_ The Source Coding Theorem

Compression problem: noiseless channel, minimize bit rate

INFORMATION NOISELESS
SOURCE TRANSMITTER CHANNEL RECEIVER DESTINATION
X — — X
- SIGNAL RECEIVED -
SIGNAL
MESSAGE MESSAGE

A “typical” sequence x = (X1, X2, ..., X,) satisfies p(x) ~ 27",

Summing over the N typical sequences:
1~N27™

since the probability of x being typical is ~ 1. So N ~ 2",
It is sufficient to encode only the N typical sequences: :

logzN .
928 H bits per symbol
i
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_ The Source Coding Theorem

Theorem (Shannon’s First Theorem)

Only H bits per symbol suffice to reliably encode an information
source.

The entropy H is the bit rate lower bound for reliable compression.

B This is an asymptotic theorem (n — +o0) not a practical solution.
B Variable length coding solution by Shannon and

D
i

-
[}

M Robert Fano (1917-2016)

B Optimal code(1952) by David Huffman (1925-1999) /AE
B Elias, Golomb, Lempel-Ziv, ...

4

|
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_ Back to Shannon’s Proof

What is the probability that a sequence x = (x1,X2,...,Xn) IS
g-typical?
q(x) = q(x1) - q(x2) - H q(x ”(X ~ H q(x) ”P(X — >—n-H(p,q)

where H(p,q) = > _, p(x)log, q( y Is @ “cross-entropy"”.

Thus the probability that the sequence is g-typical is N - 2~"H(P-9),

Replacing g by p, we would have N - 2 "H(PP) = . 2-nH(P) < 1 (g

probability).

Therefore the probability that the sequence is g-typical is bounded by
on-(H(p)—H(p,q)) — »—n-D(p,q)

where D(p,q) =), p(x)log, E g (relative entropy aka dlvergenﬁiE ii

TELECOM
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_ Relative Entropy (or Divergence)

D(p,q) = ZX: p(x) log, 583 > 0 with D(p,q) = 0 iff p = q.

Bounds of the type 2~""P(P.9) yseful in statistics:

B |arge deviations theory
B asymptotic behavior in hypothesis testing

s M Herman Chernoff (1923-)

Chernoff information to classify empirical data

) Fisher information for parameter estimation

| Ronald Fisher (1890-1962) w
T%LECDM
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33170 sz srernon and Information Theery =]



_ Shannon’s Mutual Information

Shannon’s entropy of a random variable X:

H(X) = p(x)log, p(l) E{l 9% p(lx)}

X

Shannon’s (mutual) information between two random variables X, Y:

X p(x,y) PX,Y)
=2 Pley)leg: ooy = {'°92p(X)p(Y)}

This exactly D(p, q) where:
B p(x,y) is the (true) joint distribution;
B g(x,y) = p(x)p(y) is what would have been in the case of
independence.
Therefore I(X;Y) > 0 with I(X;Y) = 0 iff X and Y are independenw

TELECOM

ParisTech
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_ Shannon’s Mutual Information

Shannon writes
I(X;Y)=E {log2 pé)(()‘:)/) } = H(X) — H(X|Y)

where H(X|Y) is the conditional entropy of X given Y.

H(X) H(Y)

H(X.Y)

B H(X|Y) < H(X): knowledge decreases uncertainty
by a quantity equal to the information gain /(X;Y). w
B jntuitive and rigorous!
T o
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_ The Set of All Possible Codes

A channel with input x = (x1, X2, ...,Xp) (the channel code) and
output y = (y1,¥2,...,¥n) is characterized by the conditional
distribution p(y|x) = p(y1|x1) - p(y2|x2) - -+~ p(Yn|Xn).

(memoryless case).

Shannon considers all possible codes as if each x were chosen
according to a probability distribution

p(x) = p(x1) - p(x2) -+ p(x,).  (random coding!)

® x is jointly typical with y if p(x, y) a2 27 "HXY);
® but another (independent) code has q(x,y) = p(x)p(y);
B thus the probability that it is also jointly typical with y is WE ii

< 2-n:D(p,g) — | p—nI(X;Y) |
T%LE(;I_DI‘;I
‘arisTech
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_ The Channel Coding Theorem

Transmission problem: noisy channel, maximize bit rate
for reliable communication

TRANSMITTER CHANNEL RECEIVER
X y
- — RECEIVED e
SIGNAL
MESSAGE MESSAGE

NOISE
SOURCE

It is sufficient to decode only sequences x jointly typical with y. i E 3

TELECOM
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_ The Channel Coding Theorem (Cont’d)

But another code is also jointly typical with y with probability

bounded by
2—nI(X;Y)

Summing over the N code sequences, the total probability of
decoding error is bounded by
N . 2 IXY)
which tends to zero only if the bit rate
log, N

<I(X;Y)

Definition (Channel Capacity)

C = max/(X;Y)
p(x)

TELECOM
ParisTech
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_ The Channel Coding Theorem (Cont’d)

If the bit rate is < C, then the error probability, averaged over all
possible codes, can be made as small as desired.

Therefore there exists at least one code with arbitrarily small
probability of error.

Theorem (Shannon’s Second Theorem)

Information can be transmitted reliably provided that the bit rate
does not exceed the channel capacity C.

The capacity C is the bit rate upper bound for reliable transmission.

Revolutionary! Transmission noise does not affect
quality—it only impacts the bit rate.
This is the theorem that led to the digital revolution!

COoM
ParisTech
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_ Shannon’s Result is Paradoxical!

B Shannon theorems show that good codes exist, but give no clue
on how to build them in practice
B but choosing a code at random would be almost optimal!

B however random coding is impractical (n is large)...

B only 50 years later were found turbo-codes (by Claude Berrou &
Alain Glavieux) that imitate random coding to approach capacity

TELECOM
ParisTech
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_ Additive White Gaussian Noise Channel

A very common model: Y = X + Z where Z is Gaussian N(0, o).

Shannon finds the exact expression:

C=W-log, (1 + g) bit/s

where W is the bandwidth and P/N is the signal-to-noise ratio.
B 3 “concrete” finding of information theory - the most celebrated

formula of Shannon!
B to derive this formula, Shannon popularized the Whittaker-

Nyquist sampling theorem — “Shannon’s Theorem”!

TELECOM
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_ Claude Shannon

Shannon’s formula:

P+ N
C =Wlog, (%)

“A Mathematical Theory of Communication,” The Bell System Technical Journal, Vol. 27, pp.

623-656, October, 1948 .

. i In the end, “The
Mathematical Theory of Communication,” [1] and the book
based on it [25] came as a bomb, and something of a
delayed-action bomb.

Note on the Theoretical Efficiency of
Information Reception with PPM* M

For small P/N ratios, the now classical
exoression for the information reception ca- TELECOM
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_ And then there were eight
Quote from Shannon, 1948:

Formulas similar to C = W log B—]_I\;—ﬂ for the white noise case have

been developed independently by several other writers, although with some-
what different interpretations. We may mention the work of N. Wiener,’
W. G. Tuller,’ and H. Sullivan in this connection.

Norbert Wiener, Cybernetics, 1948

William G. Tuller, PhD Thesis, June 1948

Herbert Sullivan (unpublished, 1948)

Jacques Laplume, April 1948

Charles W. Earp, June 1948

André G. Clavier, December 1948 w
TELECOM

NouhkwnH

Stanford Goldman, May 1948
8. Claude E. Shannon, Oct. 1948
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_ What about the French?

Deux ingénieurs francais ont publié la méme « formule de Shannon »

en 1948:
Clavier & Laplume

TELECOM
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_ André G. Clavier

of Transmission Efficiency According to

Hartley’s Expression of Information Content*
By A. G. CLAVIER

Federal Telecommunication Laboratories, Incorporated, Nutley, New Jersey

small percentage of error due to noise. The total
number of distinguishable levels on the ideal
line is thus given by
S+NVZ S _—
N * A symposium on “‘ Recent Advance
Communication’’ was presented at the ]

with a reasonable approximation. It follows that meeting of the New York Section of the
the amount of information transmittible on the Engineers. Four papers were presented

ideal line is measured by Federal Telecommunication Lahoratori
e poafitton (14 St Hazeltine Electronics Corporat) s
1m=ko+ 21t og( +N—_——l\/2_>- C.E. Shagnon, pot.h of Bell T €
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_ Jacques Laplume

Meanwhile (1948), far away. ..

PHYSIQUE MATHEMATIQUE., — Sur le nombre de signauz discernables en présence
du bruit erratique dans un systéme de transmission ¢ bande passante Iimitée.
Note de M. Jacoues LarLume.

Si N et r sont suffisamment grands, on pe{lt former une expression approchée
de logM en utilisant la formule de Stirling limitée aux termes prépondérants.
On trouve ainsi

N N
(2) logM £ N log :n+nlog +r
Si, de plus, N = n,
N
(3 logM = n log!—l =TW lcgi—,- :i! i 2

TELECOM
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_ More on Jacques Laplume...

INSTITUT DE FRANCE
Académie des sciences

Histoire des sci / Evolution des discipli et histoire des découvertes — Octobre 2016

ip

Laplume, sous le masque

par Patrick Flandrin (directeur de recherche CNRS a I'Ecole normale supérieure de Lyon,
membre de I'Académie des sciences) et Olivier Rioul (professeur a Télécom-ParisTech et
professeur chargé de cours a ’Ecole Polytechnique)

Cette note vise a faire sortir de I'oubli un travail original de 1948 de I'ingénieur frangais Jacques Laplume, relatif B
au calcul de la capacité d’'un canal bruit¢ de bande passante donnée. La publication de sa Note dans les w

Comptes Rendus de I'Académie des sciences a précédé de peu celle de I'article du mathématicien américain

Claude E. Shannon, fondateur de la théorie de I'information, ainsi que celles de plusieurs chercheurs aux U.S.A.
. o . . _ . - TELE(;I_DI‘;I
islech
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_ Who's formula?

The “Shannon” formula

P
C=wl (1 7)
00, +N

should actually be the
Shannon-Laplume-Tuller-Wiener-Clavier-Earp-Goldman-Sullivan formula

TELECOM
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_ Derivation: Capacity of the AWGN Channel

For a continuous r.v. X: Differential Entropy

h(X) = E(Iogi) = /p(x) IogL dx

p(X) p(x)

Lemma (MaxEnt)

h(X) < 3 log(2reP) with equality iff X ~ N'(0, P).

Information inequality D(p||q) > 0 where g ~ N(0,P). O

TELECOM
ParisTech
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_ Derivation: Capacity of the AWGN Channel

1 P
Cc= > log, (1 + N) bits/sample

C = max/(X;Y) where Y = X + Z and Z is Gaussian with power N:

max/(X;Y) = maxh(Y) — h(Z) = maxh(Y) — % log(2mweN)

maxh(Y) = maxh(X +Z) = h(X* +Z) = % log(2re(P + N))

hence C = log(2me(P + N)) — 3 log(2meN). li
TELECOM
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_ Entropy Power

Definition (Entropy Power)

Let X have power P. The entropy-power of X is the power P* of a
white Gaussian X* having the same entropy:

1 exp(2h(X
h(X) = h(X*) = > log(2meP*)P* = % (which is e to the power Z
T
By MaxEnt, P* < P with equality iff X is white Gaussian.

Theorem (EPI as stated by Shannon, 1948)

For any independent X,Y € L?,

Px + Py < Px.y| < Pxyy = Px + Py M

61 /70 25042018 Shannon and Information Theory =
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_ Application: nonGaussian Capacity
Y = X + Z where Z is of power P with power constraint E(X?) < P
max I(X; Y) = max h(Y) — h(Z) = maxh(Y) — % log(2reN®)
but for X* ~ N(0,P), maxh(Y) > h(X* + Z) > 1 log(2re(P + N*)) (EPI)

Theorem (Shannon lower bound, 1948)

P
c> W|og(1+—)
N*

with equality iff the channel is Gaussian.

B Gaussian means worst noise / Gaussian means best signal

|

TELECOM
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_ The Entropy-Power Inequality (EPI)

Differential entropy of a random vector with density p:

ho) = [ OLICE

For any two X, Y independent continuous random variables,

Px.iy > Px + Py enXHY) > @ih(X) 4 g7h(v) |

Equality holds iff X, Y are Gaussian.
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_ The EPI has a Long History

1948
1959
1965
1978
1991
1991
2000
2006
2007
2014
2016
2017

Stated and “proved” by Shannon in his seminal paper
Stam’s proof using Fisher information

Blachman’s exposition of Stam’s proof in IEEE Trans. IT
Lieb’s proof using strengthened Young’s inequality
Dembo-Cover-Thomas’ review of Stam’s & Lieb’s proofs
Carlen-Soffer 1D variation of Stam’s proof
Szarek-Voiculescu variant with Brunn-Minkowski inequality
Guo-Shamai-Verdu proof based on the I-MMSE relation
Rioul’s proof based on Mutual Information
Wang-Madiman strengthening using Rényi entropies
Courtade’s strengthening

Yet another simple proof ﬁ i
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_ A simple change of variables

Lemma (inverse function sampling method)

If U is uniform in [0, 1] and X has c.d.f. F(x) = P(X < x), then
F~Y(U) has the same distribution as X.

P(F1(U) < x) = P(U < F(x)) = F(x). O

Corollary (monotonic increasing transport T = F~! 0 G)
Let F,G be two c.d.f’s. Then X* ~G = X =T(X*) ~F.

U = G(X*) ~ uniform; T(X*)=F *(G(X*)) = F 1(U) ~F.
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_ A simple change of variables: Entropy

Lemma (Change of variable [Shannon’48])

For any continuous X, X*, monotonic increasing transport T(X*) ~ X,
h(X) =|h(T(X*)) = h(X*) + Elog T'(X*)

Proof: make the change of variable x = T(x*) in
1 1
h(X) = [ fx(x)lo —x:/f T(xX)T' (x*)log ———x*
00 = [ 0atog i = [ KT 09 2 s

fx (x*)

® in particular h(aX) = h(X) + log |a| <= P%, = a’P};
® more generally in nD: h(T(X*)) = h(X*) + E log | det T'(X*)|

[l -

TELECOM
ParisTech

66 / 70 25/22018 Shannon and Information Theory =
_ EZETN



_ A Proof that Shannon Missed

Proceed to prove the EPI:

Pj(—i—Y > P} + PT/ = Pxx + Py = Px*+y*P;*+Y*

1. Let X*,Y* are indep. Gaussian s.t. h(X*) = h(X) and
h(Y) = h(Y*), i.e., P; = Px* and P; = Py*.
One is led to prove | Py y > Px« vy« |h(X +Y) > h(X* +Y™)

2. Scaling a,b € R: | h(aX + bY) > h(aX" + bY")
3. We may assume h(X) = h(Y) = h(X*) = h(Y*)

Otherwise:
* setc=e "™ and d = e ") so that h(cX) = h(dY);
° apply the above to cX and dY. w
So w.l.0.g. ‘X*, Y* arei.i.d. ‘ Gaussian.
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_ A Proof that Shannon Missed

Proceed to prove the inequality ‘ h(aX + bY) > h(aX™ + bY™)
where X*,Y* are i.i.d. Gaussian s.t. h(X*) = h(X) = h(Y) = h(Y*)

4. We may always normalize: . Otherwise:
* divide a,b by A = v/a? + b?;

° the log A terms cancel.
5. Make the changes of variables X = T(X*), Y = U(Y*):
One is led to prove ‘ h(aT(X*) 4+ bU(Y")) > h(ax™ + bY™)
6. Define X = aX* + bY*. Complete the rotation: Y = —bX* + aY* so
that|X, Y are i.i.d.| Gaussian and ’X* =aX — b?‘, ‘ Y* = bX +a¥ ‘

e
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_ A Proof that Shannon Missed
One is led to prove ‘ h(aT(X*) + bU(Y")) > h(aX™ + bY™)
X,Y are i.i.d.|Gaussian and ‘X* —aX —bY ‘ ‘ Y* = bX + a)N".

7. Since conditioning reduces entropy:
h(aT(X*) + bU(Y*)) = h(aT(aX — bY) + bU(bX + aY¥))

> h(aT(aX — bY) + bU(bX + aY) |Y)

8. By the change of variable: Ty(X)

= h(X|Y) + Elog T;(X)

= h(X) + Elog(aT'(aX — bY) + b*U'(bX + aY¥))
= h(aX* + bY*) + Elog(a®T'(X*) + b2U'(Y*))

9. By concavity of the log:
> h(aX* + bY*) + a’Elog T’( )j—bzIE Iogw

0

(X) h(X*) ( ) TELECDM
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_ Equality Case

For nonzero a, b:
B in log concavity inequality:

Elog(a®T'(X*) + b°U'(Y*)) = a’Elog T'(X*) + b°Elog U'(Y*)

= T/(X*) = U'(X*) = c > 0 constant a.e.

= T,U arelinear: X = T(X*) = cX*, Y = U(Y*) = cY* Gaussian.

= ¢ = 1since h(X) = h(X*), h(Y) = h(Y*).
B in information inequality:

h(aT(aX — bY) +bU(bX + aY)) = h(aT(aX — bY) +bU(bX + aY)|Y)

comes for free since a(aX — bY) + b(bX + a¥) = X is indep of Y.

70 /70 25/32018 Shannon and Information Theory
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_ Shannon on Information Theory

“I didn’t think at the first stages that it was going to have
a great deal of impact. | enjoyed working on this kind of a
problem, as | have enjoyed working on many other
problems, without any notion of either financial or gain in
the sense of being famous; and | think indeed that most
scientists are oriented that way, that they are working
because they like the game.”
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