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Abstract. In practice, a side-channel signal is measured as a trace consisting of several samples 5. Solution

where several sensitive bits are manipulated in parallel, each leaking differently. Therefore, the in-
formed attacker needs to devise side-channel distinguishers that can handle both multivariate leakages

Theorem 1. The optimal maximum likelihood (ML) distinguisher [?] for Gaussian noise writes

and multivariate models at the same time. In the state of the art, these two issues have two inde- Dy (x, t) = argmin  tr ( (x—a )TZ_l x—a >) 2)
pendent solutions: on the one hand, dimensionality reduction can cope with multivariate leakage: on MLAS B/ = gk, Y Y)) -
the other hand, online stochastic approaches can cope with multivariate models.
In this work, we combine both solutions to derive closed-form expressions of the resulting optimal Proof. From [?] we have Dy, (x,t) = argmaxi p(x|y) where from (1) it is easily seen that
distinguisher in terms of matrix operations, in all situations where the model can be either profiled p(x|y) = pN(x — ay). From the L.i.d. assumption the noise density pn(n) is given by
offline or regressed online. Optimality here means that the success probability is maximized for a given o
number of traces. We recover known results for uni- and bi-variate models (including correlation power 1 I 1o
. . . A o . pN(n) = H exp —=Ng X Ny (3)
analysis), and investigate novel distinguishers for multivariate models with more than two parameters. \/(27r) D[ det Y| 9
Following ideas from the AsiaCrypt’2013 paper “Behind the Scene of Side-Channel Attacks”, we q=1
also provide fast computation algorithms in which the traces are accumulated prior to computing the 1 1 1 ¢
oo = exp —— Zn Ty=1p (4)
distinguisher values. = DQ/2 Q2 P 75 q q
. (27) (det X) —
(full version at PROOFS 2016 &) 1=
: L (075 'n) (5)
= exp —=tr [ n nj.
1. Fact (2m)PQ/2(det 13)@/2 2

Side-channel leakages are: Thus pN(x — ayy) is maximum when the expression tr (nTZ_ln) for n = x — oy is minimum. [

— multi-variate ....... ... .. (in time)
~ multi-model ...... ... (e.g., each bit leaks #) Theorem 2. The optimal stochastic multivariate attack is given by

: : DL sto(X, t) = argmax tr (yT(ny)_ly XTZ_1X) - (6)
2. Matrix Notations kEFy
— Q ............................................................................ number Of quer1687 fOIr' thCh the Opt/[/ma/l Ualue OfOé iS given by
— D number of samples

’ opt __ T T\—1 7

R number of models. @ (xy )lyy ) (7)

In matrix notation:
Proof. Let x' = w12 x and y' = (ny)_l/ 2 y. The optimal distinguisher minimizes the following

X=aY*"+N (1) expression over o € RP*S:
where D
Ty—1 T 2

— X Isamatrix of S1Ze . ... D x (@) tr (<X —ay) L(x - &y)) = s ((X/ N O/Y)(X/ B o/y) ) - Z HX, B Oély” ‘

7 d=1
— aisamatrix of SIZe ... .. D xS,
— Y™ (the star means: “for the correct key k = k™) is a matrix of size ..................... S x (), The minimization over 0421 yields O‘él = (XZZYT)(YYT)_l for all d = 1,...,D. This gives o/ =
_ N s a matrix of size Dx0. (x'y ") (yy ")~ hence o = (xy ")(yy "), which remarkably does not depend on X.

The minimized value of the distinguisher is thus

3. Real World Example min ((X —ay) 2 x - O‘Y)) - ((X —ay) 2 - O‘OptY))
tr (('d - yT(ny)_1)2XTZ_1X)

The figures below show power consumption traces taken from an ATMega smartcard—datasets are

available from the DPA contest V4 team |?] (knowing the mask). — iy (XTZ_lX) _tr (yT(ny)_l XTZ_lx)
E ::{1“_3 I I I I I
ﬂ where Id is the D x D identity matrix and where tr (XTZ_lX) is a constant independent of k. [
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; i
E S=2 5 =9 | 5 =9 W= Modus operandi for multivariate (D > 1) optimal attacks
g 001 * ; ——HW=t I with one model Y associated to envelope o € RP*1
'"E. (g —— Y ‘ A\ L e A e tioirinicn M MIA: A A om0 and & constant offset 5 & R (5=2);
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2 Y | ;‘
G 0011 V ‘ - Xx=ay*+ f1+n y* = o(t, k) x € RPXQ y ¢ RIX@
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(b) Mean power consumption for each Hamming weight class
Affine projection: Data transformation:
4. Question x = 2 X (x — f1) € RI¥@ x = Y1/2x
What is the optimal distinguisher, when in Equation ([1)): ¢ i
@S KNOWN? oo Dy (x, t) Univariate ML attack: New multivariate CPA attack
. S=2 _ : S 2 =9 _ D Cov(x/,y)?
— o Is unknown? ... DL sto(X, t) Dy (x, ) = argming [[X —y|[5 DX, t) = argmaxy, ) o)~




