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Optimal Attacks for Multivariate and Multi-model Side-Channel Leakages Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, Damien Marion and Olivier Rioul firstname.lastname@telecom-paristech.fr Abstract. In practice, a side-channel signal is measured as a trace consisting of several samples where several sensitive bits are manipulated in parallel, each leaking differently. Therefore, the informed attacker needs to devise side-channel distinguishers that can handle both multivariate leakages and multivariate models at the same time. In the state of the art, these two issues have two independent solutions: on the one hand, dimensionality reduction can cope with multivariate leakage; on the other hand, online stochastic approaches can cope with multivariate models. In this work, we combine both solutions to derive closed-form expressions of the resulting optimal distinguisher in terms of matrix operations, in all situations where the model can be either profiled offline or regressed online. Optimality here means that the success probability is maximized for a given number of traces. We recover known results for uni-and bi-variate models (including correlation power analysis), and investigate novel distinguishers for multivariate models with more than two parameters. Following ideas from the AsiaCrypt'2013 paper "Behind the Scene of Side-Channel Attacks", we also provide fast computation algorithms in which the traces are accumulated prior to computing the distinguisher values.
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Fact

Side-channel leakages are:

- In matrix notation:

X = αY + N (1)
where -X is a matrix of size . . 

Real World Example

The figures below show power consumption traces taken from an ATMega smartcard-datasets are available from the DPA contest V4 team [?] (knowing the mask). 

Solution

Theorem 1. The optimal maximum likelihood (ML) distinguisher [?] for Gaussian noise writes

D ML (x, t) = argmin k tr (x -αy) T Σ -1 (x -αy) .
(2)

Proof. From [?] we have D ML (x, t) = argmax k p(x|y) where from (1) it is easily seen that p(x|y) = p N (xαy). From the i.i.d. assumption the noise density p N (n) is given by

p N (n) = Q q=1 1 (2π) D | det Σ| exp - 1 2 n q T Σ -1 n q (3) = 1 (2π) DQ/2 1 (det Σ) Q/2 exp - 1 2   Q q=1 n q T Σ -1 n q   (4) = 1 (2π) DQ/2 (det Σ) Q/2 exp - 1 2 tr n T Σ -1 n . ( 5 
)
Thus p N (xαy) is maximum when the expression tr n T Σ -1 n for n = xαy is minimum.

Theorem 2. The optimal stochastic multivariate attack is given by

D ML,sto (x, t) = argmax k∈F n 2 tr y T (yy T ) -1 y x T Σ -1 x . (6) 
for which the optimal value of α is given by

α opt = (xy T )(yy T ) -1 . (7) 
Proof. Let x = Σ -1/2 x and y = (yy T ) -1/2 y. The optimal distinguisher minimizes the following expression over α ∈ R D×S :

tr (x -αy) T Σ -1 (x -αy) = tr (x -α y)(x -α y) T = D d=1
xα d y 2 .

The minimization over α d yields α d = (x d y T )(yy T ) -1 for all d = 1, . . . , D. This gives α = (x y T )(yy T ) -1 hence α = (xy T )(yy T ) -1 , which remarkably does not depend on Σ.

The minimized value of the distinguisher is thus

min α tr (x -αy) T Σ -1 (x -αy) = tr (x -α opt y) T Σ -1 (x -α opt y) = tr (Id -y T (yy T ) -1 ) 2 x T Σ -1 x = tr x T Σ -1 x -tr y T (yy T ) -1 x T Σ -1 x
where Id is the D × D identity matrix and where tr x T Σ -1 x is a constant independent of k.

Summary for S > 2 Models

Mathematical expression for multivariate (D ≥ 1) optimal attacks with a linear combination of models (S ≥ 1):

Is α known? D M L (x, t) = argmin k tr (xαy) T Σ -1 (xαy) yes Leakage model:

Optimal distinguisher: 

x = αy ⋆ + n ∀q, n q ∼ N (0, Σ) y ⋆ = φ(t, k ⋆ ) y = φ(t, k) no α ∈ R D×S , Σ ∈ R D×D x ∈ R D×Q , y ∈ R S×Q D M L,sto ( 

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D × Q, -α is a matrix of size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D × S, -Y (the star means: "for the correct key k = k ") is a matrix of size . . . . . . . . . . . . . . . . . . . . . S × Q, -N is a matrix of size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D × Q.

  Mean power consumption for each Hamming weight class 4. Question What is the optimal distinguisher, when in Equation (1): -α is known? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D ML (x, t) -α is unknown? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D ML,sto (x, t)

  x, t) = argmax k tr y T (yy T ) -1 y x T Σ -1 x 6bis. Summary for S 2 Models Modus operandi for multivariate (D ≥ optimal attacks with one model Y associated to envelope α ∈ R D×1 and a constant offsetβ ∈ R D×1 (S = 2): α, β ∈ R D×1 , Σ ∈ R D×D x ∈ R D×Q , y ∈ R 1×Q x = αy ⋆ + β1 + n ∀q, n q ∼ N (0, Σ) y ⋆ = φ(t, k ⋆ ) y = φ(t, k)Univariate ML attack:New multivariate CPA attack:x = α T Σ -1 α T Σ -1 α (x -β1) ∈ R 1×Q x ′ = Σ -1/2 x D S=2 ML (x, t) = argmin k ||x -y|| 2 2 D S=2 ML,sto (x, t) = argmax k D d=1Cov(x ′ d ,y) 2 Var(y)

  multi-variate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (in time) -multi-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (e.g., each bit leaks =)

	2. Matrix Notations

-Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of queries, -D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of samples, -S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . number of models.