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On the Optimality and Practicability
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in Some Scenarios
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Abstract. The best possible side-channel attack maximizes the success rate
and would correspond to a maximum likelihood distinguisher if the leak-
age probabilities were totally known or accurately estimated in a profiling
phase. When profiling is unavailable, however, it is not clear whether Mutual
Information Analysis (MIA), Correlation Power Analysis (CPA), or Linear
Regression Analysis (LRA) would be the most successful in a given scenario.
In this paper, we show that MIA coincides with the maximum likelihood
expression when leakage probabilities are replaced by online estimated prob-
abilities.
We then exhibit two case-studies where MIA outperforms CPA. One case is
when the leakage model is known but the noise is not Gaussian. The second
case is when the leakage model is partially unknown and the noise is Gaussian.
In the latter scenario MIA is more efficient than LRA of any order.

Keywords: Side-channel analysis, unprofiled distinguishers, MIA, CPA, LRA, max-
imum likelihood.

1 Introduction

Many embedded systems implement cryptographic algorithms, which use secret
keys that must be protected against extraction. Side-channel analysis (SCA) is one
effective threat: physical quantities, such as instant power or radiated electromagnetic
field, leak outside the embedded system boundary and reveal information about
internal data. SCA consists in exploiting the link between the leakage signal and
key-dependent internal data called sensitive variables.

The cryptographic algorithm is generally public information, whereas the imple-
mentation details are kept secret. For high-end security products, the confidentiality
of the design is mandated by certification schemes, such as the Common Criteria [6].
For instance, to comply with ALC_DVS (Life-Cycle support – Development Security)
requirement, the developer must provide a documentation that describes “all the
physical, procedural, personnel, and other security measures that are necessary to
protect the confidentiality and integrity of the TOE (target of evaluation) design and
implementation in its development environment” [6, clause 2.1 C at page 141]. In
particular, an attacker does not have enough information to precisely model the
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leakage of the device. On commercial products, the attacker cannot set specific secret
key values hence cannot profile the leakage. Therefore, many side-channel attacks
can only be performed online using some distinguisher.

Correlation Power Analysis (CPA) [2] is one common side-channel distinguisher. It
is known [11, Theorem 5] that its optimality holds only for a specific noise model (Gaus-
sian) and for a specific knowledge of the deterministic part of the leakage—namely it
should be perfectly known up to an unknown scaling factor and an unknown offset.

Linear Regression Analysis (LRA) [7] has been proposed in the context where
the leakage model is drifting apart from a Hamming weight model. Its parametric
structure and ability to include several basis functions makes it a very powerful
tool, that can adjust to a broad range of leakage models when the additive noise is
Gaussian. Incidentally, CPA may be seen as a 2-dimensional LRA [11].

When both model and noise are partially or fully unknown, generic distinguishers
have been proposed, such as Mutual Information Analysis (MIA) [9], Kolmogorov-
Smirnov test [20,23] or Cramér-von-Mises test [20, Sec. 3.3.]. Thorough investigations
have been carried out (e.g., [3,13,21]) to identify strengths and weaknesses of various
distinguishers in various scenarios. In keeping with these results, we aim at showing
some mathematical justification regarding MIA versus CPA and LRA.

Contributions. In this article, we derive MIA anew as the distinguisher which maxi-
mizes the success rate when the exact probabilities are replaced by online estimations.
In order to assess the practicability of this mathematical result, we show two scenarios
where MIA can outperform its competitors CPA and LRA, which themselves do not
estimate probabilities. In these scenarios, we challenge the two hypotheses needed
for CPA to be optimal: additive Gaussian noise and perfect knowledge of the model
up to an affine transformation. This is illustrated in Fig. 1.

CPA is optimal [11]:
– known model,
– Gaussian noise.

Section 3: MIA > CPA:
– known model,
– non-Gaussian noise.

Section 4: MIA > CPA, LRA:
– unknown model,
– Gaussian noise.

Fig. 1: Illustration of two practical situations where MIA can defeat CPA

Organization. The remainder of this paper is organized as follows. Section 2 provides
notations, assumptions, and the rigorous mathematical derivation that MIA reduces
to a maximum likelihood distinguisher, where exact leakage probabilities are replaced
by online probabilities. Section 3 studies two examples where the attacker knows the
one-bit model under non-Gaussian algorithmic noise, and for which MIA is shown to
outperform CPA. Section 4 provides a scenario in which the leakage model is partially
unknown under additive Gaussian noise, and where MIA outperforms CPA and LRA.
Section 5 concludes.
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2 Optimality of Mutual Information Analysis

2.1 Notations and Assumptions

We assume that the attacker has at his disposal q̃ independent online leakage measure-
ments1 x̃=(x̃1,...,x̃q̃)

2 for some sequence of independent and uniformly distributed
text n-bit words t̃=(̃t1,...,̃tq̃) (random but known). The n-bit secret key k∗ is fixed
but unknown.

We do not make any precise assumption on the leakage model—in particular the
attacker is not able to estimate the actual probability density in a profiling phase.
Instead we choose an algorithmic-specific function f and a device-specific function ϕ
to compute, for each key hypothesis k, sensitive values ỹ=(ỹ1,...,ỹq̃) by the formula

ỹ=ϕ(f(k,̃t)), (1)

that is, ỹi=ϕ(f(k,̃ti)) for all i=1,...,q̃. In practice, a suitable choice of ϕ should be
optimized depending on some leakage model but in what follows, f and ϕ can be
taken arbitrarily such that they fulfill the following Markov condition.

Assumption 1 (Markov condition) The leakage x̃ depends on the actual secret
key k∗ only through the computed model ỹ=ϕ(f(k∗,̃t)).

Thus, while the conditional distribution Pk(x̃|̃t) depends on the value k of the
secret key, the expression P(x̃|ỹ) depends on k only through ỹ=ϕ(f(k,̃t)). If we
let Pk(x̃,̃t) be the joint probability distribution of x̃ and t̃ when k∗=k, one has the
Fisher factorization [4]

Pk(x̃,̃t)=P(̃t)Pk(x̃|̃t)=P(̃t)P(x̃|ỹ) where ỹ=ϕ(f(k,̃t)). (2)

In the latter expression we have P(̃t)=2−q̃n since all text n-bit words are assumed
independent and identically distributed (i.i.d.) and uniformly distributed.

In the case of an additive noise model, we simply have x̃=ỹ+ñ where ñ is the
noise vector, and the Markov condition is obviously satisfied. In general, in order to
fulfill the Markov condition the attacker needs some knowledge on the actual leakage
model. We give two examples regarding the Markov condition:

Example 1. If leakage xi is linked to ti and k∗ through the relationship xi =
wH(k∗⊕ ti) +ni for all i = 1, ... , q̃, where wH is the Hamming weight and ni is
the noise (independent of ti), then both models yi=k⊕ti and yi=wH(k⊕ti) satisfy
the Markov condition3. Sections 3 and 4 give other, more sophisticated, examples
that satisfy the Markov condition.

1 We comply with the usual notations of [8] where offline quantities are indicated with
a hat, whereas online quantities are indicated with a tilde. In this paper, there is no
profiling phase hence no offline quantities.

2 We use bold letters to indicate vectors while scalars are presented using small italic letters.
3 In order to uniquely distinguish the correct key, some conditions on the expressions of
y are required. Specifically, let us denote by yk the function t 7→yk(t)=y(k,t), and let
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Example 2. In the same scenario as in Example 1, consider the bit-dropping strat-
egy (called 7LSB in [9] and used in [18,22]). Then e.g., yi = (k⊕ti)[1 : 7] (the first
seven bit components) does not satisfy the Markov condition. Note that the leakage
model in this exemple intentionally discards some information, hence may not be
satisfactory [18].

Let k̃ be the key estimate that maximizes a distinguisher D given x̃ and t̃, i.e.,

k̃=argmax
k∈K
D(x̃,ỹ) (5)

where K is the key space.

We also assume that leakage values are quantized4 in a suitable finite set X .
Letting Y denote the discrete sensitive value space, we have x̃ ∈ X q̃ and ỹ ∈ Y q̃.
The actual probability densities being unknown, the attacker estimates them online,
during the attack, from the available data in the sequences x̃ and ỹ (via t̃), by
counting all instances of possible values of x∈X and y∈Y:

P̃(x)=
1

q̃

q̃∑
i=1

1x̃i=x, (6)

P̃(y)=
1

q̃

q̃∑
i=1

1ỹi=y, (7)

P̃(x,y)=
1

q̃

q̃∑
i=1

1x̃i=x,ỹi=y, (8)

P̃(x|y)=

∑q̃
i=11x̃i=x,ỹi=y∑q̃
i=11ỹi=ỹ

=
P̃(x,y)

P̃(y)
, (9)

where 1A denotes the indicator function of A: 1A=1 if A is true and =0 otherwise.

B the set of bijections on the leakage space X . We have:

if ∀k,∃k′ 6=k, ∃β∈B s.t. yk′ =β◦yk, then the distinguisher features a tie, (3)

if ∀k,∀k′ 6=k, ∃β∈B s.t. yk′ =β◦yk, then the distinguisher is not sound. (4)

Indeed, in Eq. (3), there is no way for the distinguisher to tell k∗ from k′, and in Eq. (4),
the distinguisher yields the same value for all the key guesses.

We refer the interested reader to the work done in [24, Sec. 3]. We note that
yi = k⊕ti does not lead to a sound distinguisher, as for all k′, x 7→ x⊕k′ is bijective,
and maps yk to yk⊕k′ . On the contrary, there is no bijection β such that for all t,
wH(k⊕t)=β(wH(k⊕k′⊕t)). So the choice yi=wH(k⊕ti) is sound.

4 Some side-channels are discrete by nature, such as the timing measurements (measured
in units of clock period). In addition, oscilloscopes or data acquisition appliances rely
on ADCs (Analog to Digital Converters), which usually sample a continuous signal into
a sequence of integers, most of the time represented on 8 bits (hence X=F8

2).
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Definition 1 (Empirical Mutual Information). The empirical mutual informa-
tion is defined as

Ĩ(x̃,ỹ)=
∑

x∈X ,y∈Y
P̃(x,y) log2

P̃(x,y)

P̃(x)P̃(y)
, (10)

which can also be written as

Ĩ(x̃,ỹ)=H̃(x̃)−H̃(x̃|ỹ), (11)

where the empirical entropies are defined as

H̃(x̃)=
∑
x∈X

P̃(x) log2
1

P̃(x)
(12)

and

H̃(x̃|ỹ)=
∑

x∈X ,y∈Y
P̃(x,y) log2

1

P̃(x|y)
. (13)

These quantities are functions of the sequences x̃ and ỹ since P̃(x,y) is a function
of x̃ and ỹ. They also depend on the key guessed value k, via the expression of ỹ.

2.2 Mathematical Derivation

In this subsection, we show that MIA coincides with the maximum likelihood expres-
sion where leakage probabilities P are replaced by online estimated probabilities P̃.

Definition 2 (Success Rate [19, Sec. 3.1]). The success rate (averaged over all
possible secret key values) is defined as:

SR=
1

2n

2n−1∑
k=0

Pk(k̃=k). (14)

Here we follow a frequentist approach. An equivalent alternative Bayesian approach
would be to assume a uniform prior key distribution [11].

Theorem 3 (Maximum Likelihood [5]). Let ỹ = ϕ(f(k,t̃)). The optimal key
estimate that maximizes the success rate (14) is:

k̃=argmax
k

P(x̃|ỹ). (15)
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Proof. We give here a formal proof, which nicely relates to Definition 2. Straightfor-
ward computation yields:

SR=
1

2n

2n∑
k=1

∑
x̃,̃t

Pk(x̃,̃t) 1k=k̃ (16)

=
1

2n

2n∑
k=1

∑
x̃,̃t

P(x̃|ỹ=ϕ(f(k,̃t))) P(̃t) 1k=k̃ (by (2) & Assumption 1) (17)

=
1

2n(q̃+1)

2n∑
k=1

∑
x̃,̃t

P(x̃|ỹ=ϕ(f(k,̃t))) 1k=k̃ (18)

=
1

2n(q̃+1)

∑
x̃,̃t

P(x̃|ỹ=ϕ(f(k= k̃,̃t))). (19)

Thus, for each given sequences x̃,̃t maximizing the success rate amounts to choosing
k= k̃ so as to maximize P(x̃|ỹ)=P(x̃|ỹ=ϕ(f(k= k̃,̃t))):

k̃=argmax
k

P(x̃|ỹ). (20)

�

When no profiling is possible the conditional distribution

P(x̃|ỹ)=

q̃∏
i=1

P(x̃i|ỹi) (21)

is unknown to the attacker. Therefore, Theorem 3 is no longer practical and we
require a universal5 version of it.

Definition 3 (Universal Maximum Likelihood). Let ỹ =ϕ(f(k,t̃)). The uni-
versal maximum likelihood (UML) key estimate is defined by

k̃=argmax
k

P̃(x̃|ỹ), (22)

where

P̃(x̃|ỹ)=

q̃∏
i=1

P̃(x̃i|ỹi). (23)

Here P̃, defined in Equations (9), (8), (7) and (6), is estimated directly from the
available data, that is, from the actual values in the sequences x̃ and ỹ.

Theorem 4 (UML is MIA). The universal maximum likelihood key estimate is
equivalent to the mutual information analysis (MIA) [9]:

k̃=argmax
k

P̃(x̃|ỹ)=argmax
k

Ĩ(x̃,ỹ), (24)

where Ĩ(x̃,ỹ) is the universal mutual information (definition 1).

5 Universal, in the information theoretic sense of the word, means: computed from the
available data without prior information.
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Proof. Rearrange the likelihood product according to values taken by the x̃i and ỹi’s:

P̃(x̃|ỹ)=

q̃∏
i=1

P̃(x̃i|ỹi)=
∏

x∈X ,y∈Y
P̃(x|y)ñx,y (25)

where ñx,y is the number of components (x̃i,ỹi) equal to (x,y), i.e.,

ñx,y=

q̃∑
i=1

1x̃i=x,ỹi=y= q̃ P̃(x,y). (26)

The second inequality in Eqn. (25) is based on a counting argument: some events
collide, i.e., we have (xi,yi) = (xi′,yi′) for i 6= i′. The exponent ñx,y is meant to
enumerate all such possible collisions. This gives

P̃(x̃|ỹ)=
∏

x∈X ,y∈Y
P̃(x|y)q̃ P̃(x,y)=2−q̃H̃(x̃|ỹ), (27)

(see Definition 1). Therefore, maximizing P̃(x̃|ỹ) amounts to minimizing the empirical
conditional entropy H̃(x̃|ỹ). Since H̃(x̃) is key-independent, this in turn amounts to
maximizing the empirical mutual information Ĩ(x̃,ỹ)=H̃(x̃)−H̃(x̃|ỹ). �

From Theorem 4 we can conclude that MIA is “optimal” as a universal maximum
likelihood estimation. This constitutes a rigorous proof that mutual information is
a relevant tool for key recovery when the leakage is unknown (in the case where the
model satisfies the Markov condition) as was already hinted in [9,16,18,21].

Corollary 5. MIA coincides with the ML distinguisher as q̃→∞.

Proof. By the law of large numbers, the online probability P̃ converges almost surely
to the exact probability of the leakage as q̃→∞. For any fixed values of x̃∈X ,ỹ∈Y,

P̃(x̃|ỹ) −→
q̃→∞

P(x̃|ỹ) a.s.

Thus in the limit, MIA coincides with the maximum likelihood rule. �

Remark 1. It is well known [16] that if the mapping t̃ 7→ ỹ=ϕ(f(k,̃t)) is one-to-one
(for all values of k), then MIA cannot distinguish the correct key. This is also clear
from Eq. (4) in footnote 3: given two different keys k,k′, there is a bijection between
yk and yk′, which is simply β=yk′◦y−1k . In our present setting this is easily seen by
noting that when ỹ=ϕ(f(k,̃t)),

P̃(x|y)=

∑q̃
i=11x̃i=x,ỹi=y∑q̃
i=11ỹi=y

=

∑q̃
i=11x̃i=x,̃ti=t∑q̃
i=11t̃i=t

(28)

is independent of the value k. Note that this is true for any fixed number of mea-
surements q̃ during the attack.
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3 Non-Gaussian Noise Challenge

In this section, we show two examples where MIA outperforms CPA due to non-
Gaussian noise. The first example presented in subsection 3.1 is an academic (albeit
artificial) example built in order to have the success rate of CPA collapse. The second
example in subsection 3.2 is more practical.

3.1 Pedagogical Case-study

We consider a setup where the variables are X=Y +N , with Y =ϕ(f(k∗,T)), where
Y ∈{±1}, and N∼U({±σ}) (meaning that N takes values −σ and +σ randomly,
with probabilities 1

2 and 1
2), where σ is an integer. Specifically, we assume that k∗,

t∈Fn2 , with n=4, and that f :Fn2×Fn2→Fm2 is a (truncated version) of the SERPENT
Sbox6 fed by the XOR of the two inputs (key and plaintext nibbles) and ϕ=wH is
the Hamming weight (which reduces to the identity F2→F2 if m=1 bit).

The optimal distinguisher (Theorem 3) in this scenario has the following closed-
form expression:

D(x̃,̃t)=argmax
k

P(x̃|̃t,k)=argmax
k

1

2q̃

q̃∏
i=1

δ(x̃i,̃ti,k), (29)

where δ :Fm2 ×Fn2×Fn2→{0,1} is defined as:

δ(x,t,k)=


1 if x−ϕ(f(k,t))=−σ,
1 if x−ϕ(f(k,t))=σ,

0 otherwise.

The evaluation of this quantity requires the knowledge of σ, which by definition is an un-
known quantity related to the noise. Our simulations have been carried out as follows.

1. Generate two large uniformly distributed random vectors t̃ and ñ of length q̃;
2. Deliver the pair of vectors (t̃,x̃=ϕ(f(k∗,̃t))+ñ) to the attacker;
3. Estimate averages and PMFs (probability mass functions) of this data for q̃step

(=1) , then for 2q̃step, 3q̃step and so on;
4. At each multiple of q̃step, carry out CPA and MIA.

The attacks are reproduced 100 times to allow for narrow error bars on the estimated
success rate.

Remark 2. We do not consider linear regression analysis because the model is not
parametric. The only unknown parameter is related to the noisy part of the leakage,
not its deterministic part.

6 The least significant bit S0 of the PRESENT Sbox S is not suitable because one has
∀z∈F4

2, S0(z)=S0(z⊕0x9)=¬S0(z⊕0x1)=¬S0(z⊕0x8). As in Eq. (3) of footnote 3, ties
occur: it is not possible to distinguish k∗, k∗⊕0x9, k∗⊕0x1, k∗⊕0x8 (the corresponding
bijections are respectively x 7→ x and x 7→ 1−x). Therefore, we consider component 1
instead of 0, which does not satisfy such relationships.
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Simulation results are given in Fig. 2 for σ=2 and σ=4. The success rate of the
“optimal” distinguisher (the maximum likelihood distinguisher of Theorem 3 – see
Eqn. (29)) is drawn in order to visualize the limit between feasible (below) and
unfeasible (above) attacks. It can be seen that MIA is almost as successful as the
maximum likelihood distinguisher, despite the knowledge of the value of σ is not
required for the MIA. In addition, one can see that the CPA performs worse, and
all the worst as σ increases. In this case, the CPA is not the optimal distinguisher
(as e.g., underlined in [11, Theorem 5]) since the noise is not Gaussian (but discrete).

Fig. 2: Success rate for σ = 2 (left) and σ = 4 (right), when Y ∼ U({±1}) and
N∼U({±σ})

Remark 3. Another attack strategy for the leakage model presented in this subsection
would simply be to filter out the noise. One could for instance dispose of all traces
where the leakage is negative. The remaining traces (half of them) contain a constant
noise N =+σ>1, hence the signal Y can be read out without noise. Such attack,
known as the subset attack [14, Sec. 5.2], is not far from the optimal one (Eqn. (29)).
It actually does coincide with the optimal attack if the attacker recovers Y from both
subsets {i/Xi>0} and {i/Xi<0}. Still it can noted that MIA is very close to being
optimal for this scenario.

Asymptotics. We can estimate the theoretical quantities for CPA and MIA as follows.
We have Var(Y )=1 and Var(N)=σ2, hence a signal to noise ratio SNR=1/σ2. In
addition, X can only take four values: ±1±σ. Since E(XY ) =E(X2)+E(YN) =
V ar(X)+E(Y )E(N)=1+0×0=1, the correlation is simply ρ(X,Y )=1/σ, which
vanishes as σ increases.

However, for σ > 1, the mutual information I(X,Y ) = 1 bit. Indeed, H(X) =
−∑x∈{±1±σ}P(X=x)log2P(X=x)=−∑x∈{±1±σ}

1
4 log2

1
4 =log24=2 bit, H(X|y=

±1)=log22=1 bit, so I(X,Y )=log24−
∑
y∈{±1}P(X=x)log22=log24−log22=1 bit,

irrespective of σ∈N.
The important fact is that the mutual information does not depend on the value

of σ. Accordingly, it can be seen from Fig. 2 that the success rate of the MIA is not
affected by the noise variance. This explains why MIA will outperform the CPA for
large enough σ.
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3.2 Application to Bitslice PRESENT

Bitslicing algorithms is a common practice. This holds both for standard [17] (e.g.,
AES) and lightweight [12] (PRESENT, Piccolo) block ciphers. Here the distinguishers
must be single-bit: Y ∈{±1}. However, compared to the case of Sec. 3.1, the noise
takes now more than two values: On an 8-bit computer, the 7 other bits will leak inde-
pendently. They are, however, not concerned by the attack, and constitute algorithmic
noise N which follows a binomial law α×B(7,12), where α is a scaling factor.

Fig. 3: Success rate for the attack of a bitsliced algorithm on an 8-bit processor, where 7
bits make up algorithmic noise, and have weight 0.5, 1.0 (top) and 0.8 and 2.0 (bottom).

Simulation results for various values of α are in Fig. 3. Interestingly, MIA is
efficient for the cases where the leakage Y ∼U({±1}) is not altered by the addition
of noise: For α = 0.8 and α = 2.0, it is still possible to tell unambiguously from
X what is the value of Y . On the contrary, when α=0.5 or α=1.0, the function
(Y,N) 7→X=Y +N is not one-to-one. For instance, in the case α= 1.0, the value
X=2 can result as well from Y =−1 and N=3, or Y =+1 and N=2. (see Fig. 4).

α = 1.0

X

P(X|Y = −1)

α = 0.8

X

Caption: P(X|Y = +1)

Fig. 4: Illustration bijectivity (left) vs. non-injectivity (right) of the leakage function.
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4 Partially Unknown Model Challenge

Veyrat-Charvillon and Standaert [20, section 4] have already noticed that MIA can out-
perform CPA if the model is drifted too far away from the real leakage. However, LRA
is able to make up for the model drift of [20] (which considered unevenly weighted bits).
In this section, we challenge CPA and LRA with a partially unknown model. We show
that, in our example, MIA has a much better success rate than both CPA and LRA.

For our empirical study we used the following setup:

X=ψ(Y (k∗))+N, Y (k∗)=wH(Sbox(k∗⊕T)),

where Sbox is the AES substitution box, ψ is the non-linear function given by:

x 0 1 2 3 4 5 6 7 8

ψ(x) +1 +2 +3 +4 0 −4 −3 −2 −1

which is unknown to the attacker, and N is a centered Gaussian noise with unknown
standard deviation σ. The non-linearity of ψ is motivated by [13], where it is discussed
that a linear model favors CPA over MIA.

The leakage is continuous due to the Gaussian noise. In order to discretize the
leakage to obtain discrete probabilities, we used the binning method. We conducted
MIA with several different binning sizes:

B={[(i−1)×∆x,i×∆x[,i∈Z} for ∆x={1,3,5,7,9}. (30)

In this paper, we do not try to establish any specific result about binning, but content
ourselves to present empirical results obtained with different bin sizes.

We have carried out LRA for the standard basis in dimension d = 9 and
higher dimensions d = {37,93,163}. More precisely, for d = 9 we have ỹ′(k) =
(1,ỹ1(k),ỹ2(k), ... ,ỹ8(k)) with ỹj(k) = [Sbox(k⊕ T)]j where [·]j : Fn2 → F2 is the
projection mapping onto the jth bit. For d=37 the attacker additionally takes into
consideration the products between all possible ỹj (1≤j≤8), i.e., ỹ1·ỹ2,ỹ1·ỹ3,ỹ1·ỹ4

and so on. Consequently, d=93 considers additionally the product between 3 ỹ’s and
d=163 includes also all possible product combinations with 4 columns. See [10] for
a detailed description on the selection of basis functions.

Fig. 5 shows the success rate using 100 independent experiments. Perhaps surpris-
ingly, MIA turns out to be more efficient than LRA. Quite naturally, MIA and LRA
become closer as the the variance of the independent measurement noise N increases.
It can be seen that LRA using higher dimension requires a sufficient number of traces
for estimation (for d=37 around 100, d=93 around 150, and d=137 failed below
200 traces). Consequently, in this scenario using high dimensions is not appropriate,
even if the high dimension in question might fit the unknown function ψ.

One reason why MIA outperforms CPA and LRA in this scenario is that the func-
tion ψ was chosen to have a null covariance. Moreover, one can observe that the most ef-
ficient binning size depends on the noise variance and thus on the scattering of the leak-
age. As σ grows larger values of∆ should be chosen. This is contrary to the suggestions
made in [9], which proposes to estimate the probability distributions as good as possible
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(a) σ=0 (b) σ=1

(c) σ=2 (d) σ=3

Fig. 5: Success rate for σ∈{0,1,2,3} when the model is unknown

and thus to consider as many bins as there are distinct values in the traces. In our ex-
periments, when noise is absent (σ=0) the optimal binning size is∆=1 which is equiv-
alent to the step size of Y , while for σ=2 the optimal binning is ∆=5 (see Fig. 5(c)).

It can be seen that using 40 traces the success rate of MIA with ∆=5 reaches
90%, whereas using ∆=1 it is only about 30%. To understand this phenomenon,
Fig. 6 displays the estimated P̃(x|y) in a 3D histogram for the correct key and one
false key hypothesis, such that MIA is able to reveal the correct key using ∆=5 but
fails for ∆= 1. Clearly, the distinguishability between the correct and false key is
much higher in case of ∆=5 than for ∆=1.

More precisely, as the leakage is dispersed by the noise the population of bins of the
false key becomes similar to the the ones of the correct key when considering smaller
binning size (compare Fig. 6a and 6b). In contrast, the difference is more visible when
the leakage is quantified into larger bins (compare Fig. 6c and 6d). Therefore, even
if the estimation of Ĩ(x̃,ỹ) using P̃(x|y) for larger ∆ is more coarse and thus looses
some information, the distinguishing ability to reveal the correct key is enhanced.
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(a) ∆=1, correct key guess (b) ∆=1, false key guess

(c) ∆=5, correct key guess (d) ∆=5, false key guess

Fig. 6: Estimated P̃(X|Y ) using 40 traces for σ=2 (see Fig. 5(c))

5 Conclusion

We derived MIA anew as the distinguisher which maximizes the success rate when
the exact probabilities are replaced by online estimations. This suggests that MIA
is an interesting alternative when the attacker is not able to exactly determine the
link between the measured leakage and the leakage model. This situation can either
result from an unknown deterministic part or from an unknown noise distribution.

We have presented two practical case-studies in which MIA can indeed be more
efficient than CPA or LRA. The first scenario is for non-Gaussian noise but known
deterministic leakage model. The second scenario is for Gaussian noise with unknown
deterministic leakage model, where one leverages a challenging leakage function which
results in failure for CPA, and in harsh regression using LRA. Incidentally, this
example is in line with the work carried out by Whitnall and Oswald [21] where a
notion of relative margin is used to compare attacks. Our findings go in the same
direction using the success rate as a figure of merit to compare attacks.

We note that all our results are ϕ-dependent. It seems obvious that the closer we
are from the actual leakage, the better the success rate will be. An open question is
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to find an analytic way to determine the function model that will provide the highest
success rate.
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