

Institut Mines-Télécom

Reconciling Fitts' Law with Shannon's Information Theory

EMPG 2015

University of Padua, Sept 1-3, 2015

Julien Gori* Olivier Rioul** Yves Guiard***

*ENS Cachan **Telecom ParisTech ***CNRS LTCI

Paris, France

Table of Contents

Information Theory & Psychology

Historical Perspective Channel Capacity

Fitts' Law

What is Fitts' Law? Multiple formulas

A Geometric Framework

Partitioning the Space with Targets 3 New Derivations

A Coherent Information Theoretic Model

A Communication Channel

A Capacity Formula

Presentation outline

Information Theory & Psychology

Historical Perspective Channel Capacity

Fitts' Law

What is Fitts' Law? Multiple formulas

A Geometric Framework

Partitioning the Space with Targets 3 New Derivations

A Coherent Information Theoretic Model

- A Communication Channel
- A Capacity Formula

Annus Mirabilis : 1948

Claude Shannon's A Mathematical Theory of Communication

- Information
- Uncertainty
- Communication system
- Capacity

Two Telling Quotes

Information is quantifiable and measurable ! A tremendous impact on psychologists :

We now call them experiments on the capacity of people to transmit information.

(G. A. Miller, 1956, The Magical Number Seven, Plus or Minus Two)

Presented with a shiny new tool kit [information theory] and a somewhat esoteric new vocabulary to go with it, more than a few psychologists reacted with an excess of enthusiasm.

(F. Attneave, 1959, Applications of Information Theory to Psychology)

A Strong Reaction from Shannon and Colleagues

The first paper has the generic title « Information Theory, Photosynthesis and Religion » ([Elias, 1958])

[...] the basic results of the subject are aimed in a very specific direction, a direction that is not necessarily relevant to such fields as psychology, economics, and other social sciences. ([Shannon, 1956])

6/34

Maximum amount of information transmittable over noisy communication link (channel)

The Channel Capacity

Maximum amount of information transmittable over noisy communication link (channel)

Additive White Gaussian Noise channel

The Channel Capacity

Maximum amount of information transmittable over noisy communication link (channel)

Additive White Gaussian Noise channel

signal : s
$$\longrightarrow \bigoplus \longrightarrow y = s + n$$

 \uparrow
noise : n

Shannon's famous Theorem 17 (1948)

$$C = \frac{1}{2} \log \left(1 + \frac{S}{N}\right) = \frac{1}{2} \log \left(1 + SNR\right)$$
 bits per channel use

$$N = \mathbb{E}(n^2), \ S = \mathbb{E}(s^2)$$

The Channel Capacity

Maximum amount of information transmittable over noisy communication link (channel)

Additive White Gaussian Noise channel

signal : s
$$\longrightarrow \bigoplus \longrightarrow y = s + n$$

 \uparrow
noise : n

Shannon's famous Theorem 17 (1948)

 $C = \frac{1}{2} \log \left(1 + \frac{S}{N}\right) = \frac{1}{2} \log \left(1 + SNR\right)$ bits per channel use

 $\blacksquare N = \mathbb{E}(n^2), \ S = \mathbb{E}(s^2)$

7/34

Any achievable rate (=reliable communication) $R \leq C$

Reconciling Fitts' Law with Shannon's Information Theory

Whatever Happened to Information Theory in Psychology?

Information theory discredited in psychology

One rarely sees Shannon's information theory in contemporary psychology articles (R. Luce, **2003**, Whatever Happened to Information Theory in Psychology?)

- There is one notable exception : Fitts' Law , since 1954, and more generally the speed-accuracy trade-off for rapid aimed movement [Soukoreff and MacKenzie, 2009].
- Part of ISO 9241-9. Used for device assessment and movement time prediction in HCI.

Presentation outline

Information Theory & Psycholog Historical Perspective Channel Capacity

Fitts' Law

What is Fitts' Law? Multiple formulas

A Geometric Framework

Partitioning the Space with Targets 3 New Derivations

A Coherent Information Theoretic Model

- A Communication Channel
- A Capacity Formula

Aiming at a target of size W from a distance D

10/34

How Do *D* and *W* Affect Target Acquisition Time?

Fitts' definition of an Index of Difficulty (ID), by analogy with Shannon's Theorem 17 :

$$ID = \log_2\left(rac{2D}{W}
ight) \ (bits)$$

- (Movement Time) MT = a + b · ID through linear regression → Speed-accuracy trade-off
- *a* and *b* determined through experimentation.

Other Formulations for ID

Fitts' original formulation, [Fitts, 1953]

$$ID = \log_2\left(rac{2D}{W}
ight)$$

Welford's formulation [Welford, 1960]

$$ID = \log_2\left(0.5 + \frac{D}{W}\right)$$

MacKenzie's formulation [MacKenzie, 1989]

$$ID = \log_2\left(1 + \frac{D}{W}\right)$$

$$\begin{array}{l} a(\frac{D}{W})^b \\ a+b\sqrt{A} \\ a+b\log(\frac{A}{W}) \\ -a+b(c+D)\log(\frac{2A}{W}) \end{array} \end{array}$$

Many more formulations !

MacKenzie's Formulation

an analogy with Shannon's capacity :

$$ID = \log_2\left(1 + \frac{D}{W}\right)$$
 $C = \frac{1}{2}\log_2\left(1 + \frac{S}{N}\right)$

- D,W target distance and size
- S, N powers of signal and noise
- is ^D/_W an amplitude SNR? What is the communication model? What are the input, output and noise?
- What about the $\frac{1}{2}$ factor?

Mackenzie's Formulation (cont'd)

Capacity for a system

 \rightarrow Communication model

signal : $s \xrightarrow{\oplus} y = s + n$ noise : n

MacKenzie formulation

 \rightarrow Speed-accuracy trade-off

$$C = \frac{1}{2}\log_2\left(1 + \frac{S}{N}\right)$$

Achievable rate (vanishing error probability)

$$ID = \log_2\left(1 + \frac{D}{W}\right)$$

Presentation outline

Historical Perspective A Geometric Framework Partitioning the Space with Targets **3 New Derivations**

A Communication Channel

A Capacity Formula

Idea : aiming = choosing !

Idea : aiming = choosing !

Idea : aiming = choosing !

Idea : aiming = choosing !

Idea : aiming = choosing !

Idea : aiming = choosing !

Idea : aiming = choosing !

Idea : aiming = choosing !

Idea : aiming = choosing !

Idea : aiming = choosing !

aiming at a target is equivalent to choosing one target among N

16/34

Idea : aiming = choosing !

Idea : aiming = choosing !

Rederiving the Fitts Formulation

- An analogy with Hick's law (Fitts 1953)
- An analogy with Shannon's Capacity (Fitts 1954)
- the movement terminates somewhere in between 0 and 2D :

Rederiving the Fitts Formulation (cont'd)

• Number of targets : $n = \frac{2D}{W}, n \in \mathbb{N}$

Corresponding entropy assuming a uniform distribution :

$$H = \log_2(n) = \log_2 \frac{2D}{W} = ID_F$$

Rederiving the Welford Formulation

To put it in another way, he is called to choose a distance W out of a total distance extending from his starting point to the far edge of the target. (A. T. Welford, 1960)

choose a distance W out of a total ^W/₂ + D
 number of possible targets : n = ^{D-W}/_W + 1 = ¹/₂ + ^D/_W, n ∈ N

$$H = \log n = \log \left(\frac{1}{2} + \frac{D}{W}\right) = ID_W$$

Rederiving the MacKenzie Formulation

■ number of possible targets : $n = 1 + \frac{D}{W}$, if $\frac{D}{W} \in \mathbb{N}$ ■ Entropy :

$$H = \log\left(1 + \frac{D}{W}\right) = ID_{MCK}$$

Where Are We?

- Capacity for a system
- \rightarrow Problem stated
- \rightarrow Communication model

signal :
$$s \xrightarrow{\oplus} f \longrightarrow g = s + n$$

noise : n

 $C = \frac{1}{2}\log_2\left(1 + \frac{S}{N}\right)$

 \rightarrow Speed-accuracy trade-off : $\textit{ID} = \log_2 \left(1 + \frac{D}{W}\right)$

What model?

Presentation outline

Historical Perspective Multiple formulas Partitioning the Space with Targets A Coherent Information Theoretic Model A Communication Channel A Capacity Formula

The Human-motor System as a Communication System

Adapted from [Zhai et al., 2012]

Communication Model

Message

choosing a target = aiming at its center Set of messages : $\{-\frac{D}{2}, -\frac{D}{2} + W, \dots, \frac{D}{2} - W, \frac{D}{2}\}$ Messages uniformly distributed

Noise

ensuring reliable communication (= error-free) \to the noise has absolute amplitude less than $\frac{W}{2}$ Uniform distribution

Output

choosing a target = aiming at its center = hitting the target

Gaussian versus Uniform Channel

Shannon Capacity for gaussian noise

- Signal power limited to S
- Noise power limited to N
- Gaussian distribution for noise

signal : $s \xrightarrow{\oplus} y = s + n$ noise : n

$$C = \frac{1}{2}\log_2\left(1 + \frac{S}{N}\right)$$

MacKenzie formulation

- Signal amplitude limited to $\frac{D}{2}$
- Noise amplitude limited to $\frac{W}{2}$
- Uniform distribution for noise

$$|s| \leq rac{D}{2} \xrightarrow{\qquad \uparrow} s+n$$

 $|n| \leq rac{W}{2}$

C′ =?

Capacity Formula for the Uniform Channel [Rioul and Magossi, 2014]

Theorem 1 :

$$C' = \log_2\left(1 + \frac{D}{W}\right)$$

Proof :

$$\bullet C' = \max_{x,|x| \le \frac{D}{2}} I(x,y)$$

 $I(x,y) = h(y) - h(y|x) = h(y) - h(n+x|x) = h(y) - h(n) = h(y) - \log_2(W)$

- Thus maximizing the mutual information between X and Y is equivalent to maximizing h(Y)
- $|y| \le |x| + |n| \le \frac{D+W}{2}$
- For a continuous RV under amplitude constraint, the uniform density maximizes differential entropy
- *x* discrete with uniform density gives *y* uniform
- $C' = h(y) \log_2(W) = \log_2(D + W) \log_2(W) = \log_2(1 + \frac{D}{W})$

Gaussian versus Uniform Channel

Shannon's Capacity Formula

- Signal power limited to S
- Noise power limited to N
- Gaussian distribution for noise

signal :
$$s \xrightarrow{\oplus} y = s + n$$

noise : n

$$C = \frac{1}{2}\log_2\left(1 + \frac{S}{N}\right)$$

MacKenzie formulation

- Signal amplitude limited to $\frac{D}{2}$
- Noise amplitude limited to $\frac{W}{2}$
- Uniform distribution for noise

$$|s| \leq rac{D}{2} \xrightarrow{\qquad \uparrow} s+n$$

 $|n| \leq rac{W}{2}$

$$C' = \log_2(1 + \frac{D}{W})$$

More than an Analogy

Theorem 2 :

$$C = C'$$

Proof :

• $C = \frac{1}{2}\log(1 + SNR)$

uniform noise and uniform output

• Y : power of
$$y \propto (D+W)^2$$

• N : power of $n \propto W^2$

•
$$C = \frac{1}{2} \log\left(\frac{S+N}{N}\right) = \frac{1}{2} \log\left(\frac{power \text{ of } y=s+n}{power \text{ of } n}\right) = \frac{1}{2} \log\left(\frac{(D+W)^2}{W^2}\right) = \log\left(\frac{D+W}{W}\right) = C'$$

A true identity !

Pending Issues

- A more realistic model
- With feedback ?
- What is the interpretation of throughput?
- Can we take non-zero error into account?

Any questions?

30/34

Reconciling Fitts' Law with Shannon's Information Theory

Bibliography I

Elias, P. (1958).

Two famous papers.

IRE Transactions on Information Theory, 4(3):99.

Fitts, P. (1953).

The influence of response coding on performance in motor tasks. *Current Trends in Information Theory. University of Pittsburgh Press, Pittsburgh, PA*, pages 47–75.

Luce, R. D. (2003).

Whatever happened to information theory in psychology? *Review of General Psychology*, 7(2) :183–188.

MacKenzie, I. S. (1989).

A note on the information-theoretic basis for fitts' law. *Journal of motor behavior*, 21(3) :323–330.

- Rioul, O. and Magossi, J. C. (2014).
 On Shannon's formula and Hartley's rule : Beyond the mathematical coincidence.
 Entropy, 16(9) :4892–4910.
- Shannon, C. E. (1956).

The bandwagon.

IRE Transactions on Information Theory, 2(1) :3.

Bibliography III

 Soukoreff, R. and MacKenzie, I. (2009).
 An informatic rationale for the speed-accuracy trade-off.
 In Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on, pages 2890–2896.

Welford, A. T. (1960).

The measurement of sensory-motor performance : Survey and reappraisal of twelve years' progress.

Ergonomics, 3(3) :189–230.

Bibliography IV

Zhai, S., Kristensson, P. O., Appert, C., Andersen, T. H., and Cao, X. (2012).

Foundational issues in touch-screen stroke gesture design-an integrative review.

Foundations and Trends in Human-Computer Interaction, 5(2) :97–205.

