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ABSTRACT 
Target clicking having proved an indispensable building block of 
interface design, it is little surprise that the speed/accuracy trade-
off of aimed movement has always been a keen concern of HCI 
research. The trade-off is described by the Fitts law. In HCI and 
psychology likewise, the traditional approach has focused on the 
time-minimisation paradigm of Fitts [5], ignoring other relevant 
paradigms in which the Fitts law fails, such as the spread-
minimisation paradigm of Schmidt et al. [18]. This paper aims at 
unearthing and consolidating the foundations of the 
speed/accuracy trade-off problem. Taking mean movement time 
as our speed measure and relative spread as our accuracy measure, 
we show that a small set of obvious mathematical axioms predict 
not only the data from the Fitts and the Schmidt paradigms but 
also the data from the more recent dual-minimisation paradigm of 
Guiard et al. [7]. The new mathematical framework encourages a 
more complete understanding: not only is it possible to estimate 
an amount of resource, a quantity equivalent to the classic 
throughput, it is also possible to characterize the resource-
allocation strategy ― the other, no less important facet of the 
trade-off problem which has been left aside so far. The proposed 
approach may help HCI practitioners obtain from their 
experimental data more reliable and more complete information 
on the comparative merits of design options.  

Categories and Subject Descriptors 
CCS → Human-centered computing → Human computer 
interaction (HCI) → Interaction techniques → Pointing  

Keywords 
Fitts law, aimed movement, pointing, speed/accuracy trade-off, 
resource, resource allocation. 

1. THE FITTS LAW  
The more exacting the accuracy demand on a movement, the 
slower. In his famous 1954 paper Fitts [5] was able to give this 
general observation the form of a simple mathematical equation, 
known as the Fitts law. In its task version, the Fitts law reads: 

µT = a + b log2 (d/w +1),   (1) 

where µT is the average time it takes people to reach a target of 
width w whose centre is located at distance d, and where a and b > 
0 stand for empirically adjustable constants. The logarithmic term 
is called the index of difficulty (id). Most researchers actually use 

the behavioural version of the Fitts law [26], which reads: 

 µT = a + b log2 (µA/σA +1),   (2) 

where µA and σA denote the mean and the standard deviation of 
movement amplitude, the logarithmic term being called the index 
of effective difficulty Ide.  

1.1 Terminology and Mathematical Notation 
To tackle the subject of this paper, the trade-off of speed and 
accuracy in the execution of aimed movement, we first need to fix 
our terminology and our mathematical notation (see Appendix 1). 
In this research we care about a number of distinctions that have 
been treated somewhat casually in the literature. We use 
lowercase letters to denote deterministic quantities and uppercase 
letters to denote randomly-varying quantities. Thus we note target 
distance and target width, under full control of experimenters, d 
and w, whereas we note the time duration and the amplitude of the 
movement, subject to random variability, T and A. We let µX and 
σX denote the mean and the standard deviation of a random 
variable X. Notice that the error E = A – d, being the difference 
between the random quantity A and the deterministic quantity d, is 
itself a random quantity; and the variability of E being entirely 
due to the variability of A, we have σE = σA. 

1.2 Shortcomings of the Fitts Law 
The Fitts law has been justly praised as an empirically robust rule 
of thumb whose mathematical formulation has received formal 
justifications in light of information theory [5][19][9]. 
Nevertheless the law has some shortcomings that must be 
discussed seriously. 

1.2.1. A Loosely-Constrained Independent Variable 

We have problems with the right-hand side of Fitts-law equations. 
All known variants of id lack a true zero, meaning that the y-
intercept of the Fitts law is uninterpretable [7]. Second, it has been 
a tradition in the description of the Fitts law to omit to specify the 
range of id or Ide values over which the law is supposed to hold — 
in Meehl's [13] terminology the spielraum or range of interest. 
Most corroborations of the Fitts law, with r squares computed 
over arbitrarily narrow ranges of difficulty, look rather like 
confirmations that the Earth is locally flat.  

1.2.2  A Paradigm-Dependent Rule of Thumb 
The Fitts law being of the form µT = f (µA/σA), where the function 
f is nonlinear, the relation should remain nonlinear when recast as 
σA = f (µA/µT). This is precisely the relation investigated in the so-
called Schmidt paradigm [18], in which participants are to 
minimize endpoint spread σA, treated as the dependent measure, 
while covering pre-specified amplitudes in pre-specified amounts 
of time (thus average speed µA/µT is the independent variable). 
Even though the Schmidt paradigm involves strictly the same 
three quantities ― namely µA, µT, and σA ― it has been reported 
to deliver a linear trade-off [18]. The linearity of the Schmidt law, 
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as it is called, does not seem to have troubled Fitts-law theorists 
too much. Yet, the mere fact that the Fitts law is apparently 
jeopardised by a simple rearrangement of the terms of its equation 
— or, at the practical level, by a change in the experimental 
paradigm — raises the concern that the Fitts law, valid within just 
one particular paradigm, lacks generality. 

1.2.3. Half of the Question Ignored 
A trade-off between two quantities x and y is a dual phenomenon 
with both a conservation facet and a change facet: a certain 
combination of x and y is conserved despite a change in the 
respective contributions of x and y to the conserved quantity. 
Being a conservation across a certain transformation, an 
invariance — e.g., the invariance of shape under such transfor-
mations as rotations, translations, or rescalings [11] — is 
something far more interesting than a trivial constancy [21].  

In the case of the speed/accuracy trade-off of aimed movement, 
the Fitts law [10][19] amounts to the statement of the invariance 
of the throughput across the variations of the index of difficulty, 
which controls the speed/accuracy balance. Unfortunately the 
Fitts-law literature has paid little or no attention to the variation of 
the speed/accuracy balance, the transformation facet of the 
speed/accuracy trade-off. A sign of this conceptual hemineglect is 
visible in the recent ISO standard [10], a set of guidelines for 
Fitts-law experimentation, which recommends to practitioners to 
retain only throughput estimates from their data. This implies the 
problematic assumption that a single number can fully 
characterize the performance achieved with a device or an 
interaction technique. In fact, quite independently of the 
throughput, devices and interaction techniques may differ to 
considerable extents in terms of the speed/accuracy strategy they 
elicit, and in some contexts these differences may be of much 
practical consequence. 

2. INVENTORYING AND SIFTING 
POSSIBLE SPEED AND ACCURACY 
MEASURES 
Shouldn't there exist a more general, paradigm-independent law? 
Notice that the Schmidt law and the Fitts law do not use the same 
measures of speed and accuracy. To measure speed the Schmidt 
law uses the ratio µA/µT, of dimension [LT−1], whereas the Fitts 
law uses µT, of dimension [T]; and to measure accuracy the 
Schmidt law uses the spread σA, of dimension [L], whereas the 
Fitts law uses the dimensionless ratio µA/σA. To be in a position to 
see whether or not different paradigms reveal different laws, we 
must make sure we use the same measures, and obviously valid 
ones. But several definitions of movement speed and accuracy are 
possible, and so we need to inventory the possibilities and 
examine the validity of each. 

As first identified by Fitts [5], our speed/accuracy trade-off 
problem involves three crucial quantities, two central–trend 
statistics, mean movement time µT and mean amplitude µA, and 
one dispersion statistic, endpoint spread σE or σA. In Figure 1 
these statistics outline a speed axis vertically and an accuracy axis 
horizontally. At the intersection of the two axes stands the scale 
parameter µA ≈ d, which specifies the absolute magnitude of the 
movement. By definition an aimed-movement task demands the 
specification of a certain target amplitude d that µA is supposed to 
approach, but µA is not involved in the trade-off of interest and 
does not constitute a utility. The aiming bias µE = µA - d is indeed 
a negative utility (the less the better), but it is not involved in the 

trade-off we are talking about. The two negative utilities crucial 
here are mean movement time and endpoint spread. 

 
Figure 1. The three statistics that can be combined in the 

definition of speed and accuracy. m1 and m2 denote the first 
and the second moment of distributions. 

There are three possible basic measures of movement speed: (1) 
absolute slowness µT (in s) as in the Fitts paradigm (2) relative 
speed µA/µT (in m/s) as in the Schmidt paradigm, and (3) relative 
slowness µT/µA (in s/m), an unused option.  

Likewise there are three possible basic measures of movement 
accuracy: (1) absolute spread σA (mm) as in the Schmidt para-
digm, (2) relative amplitude µA/σA (-) as in the Fitts paradigm, 
and relative spread σA/µA (-) as in the paradigm we recently 
introduced [8]. We now compare the merits of these different 
candidate measures in light of three independent criteria. 

2.1 Scale Independence 
More often than not in Fitts-law studies the scale parameter d is 
manipulated thoughtlessly in designs simply because it is hard for 
experimenters to obtain a reasonably large range of difficulties at 
a single level of d. Most designs suffer from a more or less severe 
factor confound, a positive correlation, between the index of 
difficulty and d [6]. For example the correlation was no less than 
+.68 in Fitts's [5] famous tapping experiment, as is easy to check 
from his Table 1 (p. 254). But the confound was essentially 
harmless in his case because to measure movement speed the 
author had chosen µT and Fitts's data show that d had essentially 
no effect on this dependent variable, in keeping with the 
isochrony principle reported in the handwriting literature — there 
is little or no change in the time it takes people to complete a 
given graphical form as they rescale the form up and down, within 
limits [20]. Had Fitts instead used relative speed µA/µT as his 
speed measure, his experiment would have produced confusing 
data because this ratio happens to be massively scale dependent. 
Thus, of the three candidate measures of speed only µT passes the 
scale-independence test.  

Turning to accuracy, a simple Weber law argument predicts that 
absolute spread σA must be about proportional to µA, and the 
presence of this scale-dependency effect is verified in virtually 
any data set. In contrast, the other two candidate measures of 
accuracy, relative amplitude µA/σA and relative spread σA/µA, 

which consist of dimensionless ratios, are scale independent by 
construction.  



2.2 Ratio-Scale Metric 
Facing an empirical relation of the form y = f (x) it is desirable to 
have a true physical zero not only on the y axis (as is nearly 
always the case) but also on the x axis, otherwise y-intercepts are 
uninterpretable [7].  

All three candidate measures of speed have a true zero. Having 
passed the first test, mean movement time µT also passes the 
second. As for accuracy, at first sight the ratio µA/σA and its 
inverse σA/µA look like equally promising accuracy measures 
because it is mathematically trivial to transform one into the other. 
One should realise, however, that only the latter ratio enjoys a 
ratio-scale metric [7]. Relative distance µA/σA, which underlies 
the calculation of all indices of difficulty in the Fitts paradigm, 
has an arbitrary zero. No one can tell what µA/σA = 0 might 
specify in the physical world because A being a non-negative 
random variable it is impossible to have µA = 0 together with σA > 
0. Therefore we disagree with [19]: in a Fitts-law plot, whose x 
axis exhibits an index of difficulty computed from the ratio µA/σA, 
there is no rationale for expecting (or even hoping) that the 
intercept will be close to zero, simply because this intercept is 
uninterpretable. 

Unlike the zero of relative amplitude µA/σA, the zero of relative 
spread σA/µA does exist. Just like any coefficient of variation, 
relative spread σA/µA (or σE/µA) zeroes out at the point where the 
random variability of movement endpoint zeroes out, with σA = 0 
while µA > 0. The zero of relative spread is simply the theoretical 
limit where movement amplitude becomes a deterministic 
quantity [7]. Therefore below we shall use relative spread σA/µA, 
rather than relative amplitude µA/σA, to measure movement 
accuracy [8]. It is inaccuracy, not relative accuracy, that σA/µA 
measures, but the traditional ratio µA/σA measures neither. 

Thus after our second test a single possibility remains for the 
measurement of both speed and accuracy, namely µT and σA/µA, 
respectively. Although we have completed our choice task, let us 
see how the two surviving candidates stand a third and final test. 

2.3 Length/Angle Neutrality  
In many aimed-movement tasks A is a length, but in some others 
it is an angle. We want our speed and accuracy measures to allow 
performance comparisons between tasks that involve translational 
and rotational sorts of movement. For example Schmidt et al. 
[18], who inaugurated the Schmidt paradigm with a stylus-tapping 
movement, expressed effective width in mm whereas Wright and 
Meyer [25], who did a replication experiment using a wrist-
rotation movement, expressed effective width in angular degrees. 
Both studies used the Schmidt paradigm, yet their data cannot be 
plotted together because the accuracy measures (degrees vs. mm) 
as well as their speed measures (degrees/s vs. cm/s) had different 
units.  

The duration of a movement obviously provides a dimensionless, 
length/angle-neutral measure of speed — quite unlike average 
speed µA/µT or its inverse µT/µA, which involve an angle or a 
length. As for accuracy, the dimensionless ratio σA/µA we have 
retained has no unit (unlike σA, which is either a length or an 
angle). Thus our third test provides a further argument in favour 
of the two candidates that already passed the first two tests: mean 
movement time µT for speed and relative spread σE/µA or σA/µA 
for accuracy. 

 

3. A MINIMALIST THEORETICAL 
FRAMEWORK 
In this section we present a small set of pretty obvious axioms 
regarding the speed and the accuracy variables we have chosen 
and the trade-off function that relates them. We will see that these 
axioms suffice to give birth to a parsimonious mathematical 
model of the speed/accuracy trade-off of aimed movement. The 
model arises quite straightforwardly from the axioms without the 
need to theorize about substantive issues such as the information 
conveyed by the movement (e.g., [5][12][19][9]), or about the 
cognitive mechanisms of movement programming, execution, and 
correction (e.g., [3][14]). 

Please note that below we will be somewhat disrespectful to an 
old convention of Fitts-law research: we shall systematically plot 
movement speed (µT) on the horizontal axis, treating it as our x 
variable, and movement accuracy (σA/µA) on the vertical axis, 
treating it as our y variable. When it comes to pointing, we tend to 
construe accuracy as the independent variable, but this is because 
we look through the prism of Fitts’s highly popular time-
minimisation paradigm, in which indeed the accuracy (the id) is 
something experimenters manipulate and the speed (µT) some-
thing they measure. However, the Fitts paradigm is just one of 
several possible experimental approaches to our trade-off 
problem, as will be recalled in Section 4.1, and there is serious 
reason to assume that ultimately it is the speed of our movements 
that determines their accuracy rather than the reverse [23].  

3.1 Axioms 
Let us start with the observation that x and y are both negative 
utilities, meaning quite simply that the shorter the time and the 
smaller the spread, the better the performance. In the trade-off 
function we want to model, ideal performance corresponds to the 
case where the movement would last an average of 0s and would 
exhibit 0% of relative spread — thus an ideal block of trials would 
deliver a data point that fell right at the origin of the graph.  

The notion of a speed/accuracy trade-off implies a number of 
prior assumptions [8][16]. In our view no theory of the 
speed/accuracy trade-off of aimed movement can sensibly avoid 
any of the following six prior assumptions, or axioms.  

3.1.1  An Absolute Minimum of Movement Time 
In any particular experimental condition there must be a minimum 
to the duration T of any individual movement, owing to the 
limited acceleration and deceleration capabilities of any effector 
system. On the horizontal axis we have the constraint that 

 x  ≥  x0  > 0,     Axiom 1  

where x0 defines the strictly-positive minimum of µT, which must 
be imposed unconditionally on our model. Whenever x0 can be 
determined, it will be convenient to express our independent 
variable as the difference x−x0, rather than x. 

Note that the particular value taken by x0, dependent on an 
indefinitely large number of parameters (e.g., scale, the 
musculature involved, the way instructions were formulated and 
understood by participants, etc.), is uninterpretable per se. The x0 

parameter cannot serve to compare data from different 
experiments. If, however, the ceteris-paribus condition is satisfied 
as may be the case within a given experimental design, between-
conditions comparisons of x0 may be useful. 

 



3.1.2  An Absolute Minimum of Relative Spread 
Since any effector system at rest suffers some irreducible 
physiological tremor, and any recording device has a finite 
resolution [1][22], there necessarily is a strictly positive minimum 
to the value of spread σA and hence of relative spread σA/µA to be 
recorded in an experiment. Calling that theoretical minimum y0, 
the vertical axis of our function has the constraint that  
 y  ≥  y0 > 0.    Axiom 2 

Whenever the value of y0 can be determined, it will be useful to 
express our dependent variable as the difference y−y0, rather than 
y. Just like x0, y0 is a parameter whose value is of little interest in 
and of itself, being subject to indefinitely many influences, but it 
may possibly allow useful comparisons within a controlled 
experimental design. 

3.1.3  A Decreasing Convex Function.  
Since the less of one negative utility, the more of the other, the 
function y =f (x) or y−y0 = f (x−x0) must be strictly decreasing and 
strictly convex, with a vertical asymptote at x0 (where no more 
resource is available for the y-minimisation effort), and a 
horizontal asymptote at y0 (where no more resource is available 
for the x-minimisation effort): 

 for x → +∞, y → y0 > 0     

Axiom 3  
 for y → +∞, x → x0 > 0.  

This assumption is consistent with Norman and Bobrow's 
principle of graceful degradation [15] (p. 44).  

 
Figure 2. A decreasing and convex trade-off function with 

asymptotes at x0 and y0.  

Figure 2 summarises our progress so far. 

3.1.4  A Certain Combination of x and y Conserved 
The trade-off of speed and accuracy must be supposed to result 
from the fact that the two concurrent minimisation efforts draw 
from the same limited resource pool. The content of the 
hypothetical pool, whose nature is unknown, may be thought to 
consist of attention or effort. Using the familiar economic 
analogy, it is assumed that some generic currency is convertible 
into speed and/or accuracy and that the amount of this currency 
available to a given individual placed in a given situation is finite 
[8]. Were 100% of the resource invested in the aimed-movement 
task, we would have 

 ∀(x, y), x ⊙ y = c,   Axiom 4 

where the symbol ⊙ denotes some as yet unspecified way of 
combining the two variables, and c denotes some adjustable 
constant. Notice that since we are combining two negative 
utilities, c can only work as an estimate of the scarcity of the 
resource — the smaller c, the more resource. 

3.1.5  Less-than-Total Investment of the Resource 
Although the participants are supposed to invest the totality of 
their resource to produce their best possible performance in every 
single experimental condition, human effort is subject to random 
fluctuations. Only occasionally can participants approach their 
best possible performance. Of a block of trials (x, y), where x = µT 
and y = σE/µA, we may say: 

 If (x, y) is doable, then,  

 ∀x’ ≥ x and ∀y’ ≥ y,  Axiom 5 

  (x’, y’) is doable.    

In other words, it is always possible to do worse: All empirical 
data points must fall above the limiting curve we are looking for 
— i.e., y ≥ f (x) and x ≥ f -1(y) — or, equivalently, the curve is 
necessarily located below the scatter plot. 

Axiom 5 has one far-reaching implication. Since the empirical 
function we look for characterizes an upper limit of performance, 
regression techniques are inadequate to infer the function from 
empirical scatter plots. A least-squares minimisation procedure 
delivers an average curve summarising all data points, including 
those obtained in trial blocks with far from complete investment 
of the resource. But little can be learned from poor performance, 
and so it is not the scatter plot that we want to model, but rather 
the South-West quadrant of the convex hull of the scatter plot — 
what we call the convex front of performance [8].  

3.1.6  Resource-Allocation Strategy  
Humans can, to an appreciable extent, modulate the proportion in 
which they allocate their resource to the mutually incompatible 
speed and accuracy efforts, exhibiting a certain strategic 
flexibility. Little can be learned from the Fitts-law literature about 
the range of speed/accuracy strategies participants are actually 
capable of, most studies having used rather narrow ranges of 
difficulty levels.1  

At this point we need to introduce a conceptually important 
distinction between a curve in a plane and an arc on that curve. A 
curve corresponds to an infinite function, whereas an arc 
corresponds to a certain finite interval on a function, specified for 
example by an xmin and an xmax. Two extra constraints being 
required to determine an interval along a given curve, a 
curvilinear arc conveys more information than a curve. 

The trade-off model we are contemplating is an infinite theoretical 
function extending from y = +∞ at x0 to y = y0 at x = +∞. Such an 
infinite function, however, says nothing about the range of 
strategies actually covered in a given data set. As shown in 
Figure 3, that range is a finite subset of the function, a curvilinear 
arc whose localisation on the infinite curve requires two extra 
parameters: xmin (where y = ymax), and xmax (where y = ymin). 

1 One reason why strategic ranges are usually narrow in Fitts-law 
experimentation is because extreme strategies are difficult to handle 
within the classic time-minimisation paradigm. 
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Figure 3. Modelling the theoretical trade-off function with an 

infinite curve, and the particular subset of the function 
actually realised in a data set with a finite curvilinear arc. 

 Thus, facing a set of experimental data, we must have 

 xmax  >  xmin  ≥  x0  >  0 

               Axiom 6 
 ymax  >  ymin  ≥  y0  >  0.  

While the function’s asymptotes at x0 and y0 represent the 
theoretical minima of Axioms 1-2, the points of coordinates (xmin, 
ymax) and (xmax, ymin) are empirical extrema. We will exploit them 
below to characterize the resource-allocation strategy (Section 
4.2.3). 

3.2  The Homographic Model 
One very simple function that satisfies Axioms 1 through 4 is the 
so-called homographic function: 

 (y – y0) (x – x0) = k,    (3) 

where k > 0 is an adjustable constant and x0 and y0 are the theo-
retical minima of Axioms 1 and 2. 

 

 

Figure 4. The homographic model with k varied from 0.05 
(inner curve) to 0.2 (outer curve). 

The homographic model (Figure 4) has just the properties we 
demand. The function is strictly decreasing and strictly convex 
and it links a vertical asymptote at x0 to a horizontal asymptote at 
y0 (Axioms 1-3). And it conserves the product k, which may serve 
as a global estimate of the resource (more exactly, of resource 
scarcity) assumed to be invariant across the variations of the 
resource allocation (Axiom 4). The model satisfies our axioms 
while being simplest, in two senses: it involves just one free 
parameter, and it resorts only to one basic arithmetic operation, 
the multiplication. The homographic model has just one 
undesirable property, the curve symmetry with respect to the axes’ 
bisector. Our axioms do not allow us to presuppose in what 
proportions the speed and the accuracy efforts actually draw on 
the resource, and so an amendment of the model is in order. 

3.3  The Weighted Homographic (WHo) 
Model  
To get rid of the rigid symmetry of the homographic model, we 
endow it with a free skewness parameter, obtaining what we call 
the weighted homographic (WHo) model (Figure 5): 

(y – y0) 1−α  (x – x0) α = kα,   (4) 

where the weighting exponent α is an adjustable coefficient (0 < α 
< 1) free to deviate from its neutral value of ½ (symmetry). If α = 
½, one is back to Equation 3 whose constant then equals k½². The 
role of α is to allow some degree of asymmetry, it being 
understood that the coefficient should not approach 0 or 1.  

 

Figure 5. The WHo model with k = 0.15 and α = .4 (dotted 
line), .5 (continuous line), and .6 (dashed line).  

4. DATA FROM THE THREE 
PARADIGMS 
In this section we consider a selection of speed/accuracy trade-
offs of the literature and replot all of them with µT (s) shown on 
the x axis and σA/µA (or σA/d, if µA is unknown) shown on the y 
axis. We assume a negligible difference between σA/d and σA/µA 
on the ground that pointing experiment produce generally little or 
no aiming bias.  

We will consider the famous tapping data of Fitts [5], the two 
relevant data sets of Schmidt et al. [18], and the more recent data 
reported by Guiard et al. [8]. These data sets are commonly sup-
posed to be governed by different laws because they emanate 
from three different paradigms.  

Speed extremum  
(xmin, ymax) 

Accuracy extremum 
(xmax, ymin) 



4.1  Three Possible Experimental Paradigms 
The speed/accuracy trade-off of aimed movement has been 
investigated using three experimental paradigms — three different 
ways to experimentally handle the same crucial statistics µT, µA, 
and σA (see Figure 1). Note that in all three paradigms a certain 
target level of amplitude is prescribed to the participants, who 
have to produce samples of movement such that µA ≈ d or µE ≈ 0 
(i.e., they must aim at target centres).  

In the time-minimisation paradigm of Fitts [5], the participants are 
to minimise the duration of their movements at various pre-
specified levels of endpoint spread. The Fitts paradigm thus treats 
mean movement time as the dependent measure and endpoint 
spread as a constraint. Target width is manipulated with the hope 
that σA will remain about proportional to it so that the frequency 
of target misses will remain approximately fixed — which, 
however, involves some wishful thinking, as has been known 
since the nineteen-fifties [2].  

The spread-minimisation paradigm of Schmidt [18] goes the other 
way round, asking the participants to minimise their endpoint 
spread at various pre-specified levels of movement time. The 
Schmidt paradigm thus treats the spread as the dependent measure 
and movement time as a constraint, experimenters hoping that µT 
will approximately equal the recommended value of t across all 
the range of nominal target times — wishful thinking again, as an 
inspection of the published data clearly reveals.2 

The third possibility is the dual-minimisation paradigm recently 
explored by Guiard et al. [8], who asked their participants to 
minimise both µT and σA with various degrees of imbalance. The 
participants were encouraged by verbal instructions to ‘push’ their 
data points in various down-left directions corresponding to a 
number of different speed/accuracy compromises. Such 
instructions amount to asking them to produce data points located 
as close as possible to various regions of the limiting curve which 
constitutes their trade-off function. In this paradigm any pretence 
to have direct experimental control over either the speed or the 
accuracy of participants’ movements is renounced. Notice that 
here neither the x nor the y can be considered an 'independent' 
variable: involved in the trade-off are two participant-dependent 
random variables. 

4.2  Data from the Dual-Minimisation 
Paradigm  
For convenience we start with the data of Guiard et al. [8], which 
will allow us to illustrate in finer detail the new methodology we 
have developed in compliance with Axioms 1-6. 

The authors asked their 16 participants to perform a fixed-
amplitude movement (d = 15cm), trying to minimise µT and σA 
concurrently, though in variable proportions. Five sets of 
instructions served to encourage the participants to cover their full 
spectrum of resource-allocation strategy. The instructions ranged 
from a recommendation to perform at maximum speed to a 
recommendation to perform with maximal accuracy (zero pixel 
error).  

Of course we fitted the WHo model separately for each 
participant, but for brevity here we will only consider pooled data. 
The shortest movement time value of the fastest participant will 
serve here as an estimate of the theoretical minimum of µT ― i.e., 

2 Guiard, Y. & Rioul, O. (in preparation). The Schmidt law, a false alarm.  

we will set x0 = 0.092s. The movement being recorded on a 
digitising tablet with higher resolution than the screen, we will 
compute the theoretical minimum of spread as the uncertainty 
entailed by screen discretisation― i.e., we will set y0 = 0.0018. 

 

Figure 6. Extracting the convex front of performance from 
pooled data. The data points of the convex hull are circled. 

The subset of them that form the critical South-West 
quadrant are connected with thicker line segments. 

 

Figure 7. The WHo model fitted to the Guiard et al. data [8], 
with the CFP arc marked with a thicker red line.― 

4.2.1  Convex Front of Performance (CFP) 
Figure 6 plots 253 blocks of trials from all 16 participants (15-20 
movements per block). As expected, the mass of data points tend 
to cluster against the South-West quadrant of the convex hull of 
the scatter plot, the CFP being the subset of the convex hull that 
belong to this critical quadrant (11 points here). 

4.2.2  Fitting the WHo model to the CFP 
One manual fit of the WHo model to the CFP of Figure 6 is 
shown in Figure 7, where α = .60 and k = 0.070. Note that usual 
regression procedures are of no help in the present case and we 
will report no r² scores.3 Figure 7 should suffice to show that the 
model accommodates the data fairly well.  

3 Equation 4 can be linearised in log-log coordinates and so linear 
regression is doable, but in this context the linear r² has no sense 
mathematically. On the other hand, standard non-linear regression is 



4.2.3  Resource, Strategic Style, and Flexibility 
The parameter k is an estimate of the overall level of performance 
of Guiard et al.'s participants (see Equation 4). But Figure 7 shows 
not just a curve, it shows a finite curvilinear arc whose location 
and extent reflect the various strategies that were actually 
explored by the participants. Relying on Lagrangian minimisation, 
we developed a simple index to capture this aspect of the data. 
Letting λ = -dy/dx, then β = λ/(1+λ) is a quantity that varies from 1 
(or 100%) at x0 to 0 (or 0%) at x = +∞. Given that the CFP of 
Figure 7 extends from β = 85.5% at xmin to β = 0.05% at xmax, the 
strategic style for that data set can be characterized as an average 
of these two values, µβ = ½ (βmin + βmax) = 42.8%. But we may 
also compute a no less useful index of strategic flexibility as the 
difference between these two extrema, Δβ = βmax − βmin = 85.5%. 
While the index of strategic style µβ is an indication of the 
location of the arc on the trade-off curve, the index of strategic 
flexibility Δβ is an indication of the extent of the arc. 

 4.3  Data from the Fitts Paradigm 

 

Figure 8. The WHo model fitted to the Fitts data [5]. The data 
points of the CFP are circled. 

The numerical data reported by Fitts [5] consist of 16 tabulated 
averages corresponding to four d levels times four w levels. All 
participants being collapsed, obviously we could not use the 
method of CFP extraction described in Section 4.2.1, in which we 
considered all the individual trial blocks of the Guiard et al. 
experiment. We estimated the CFP for the Fitts data by 
determining which of the 16 data points belong to the convex hull 
of the graph: nine data points happen to satisfy this criterion. As 
visible in Figure 8, we obtained an excellent manual fit of the 
WHo model to Fitts’s CFP, assuming x0 = 0.092s and y0 = 0.001 
and setting α = .62 and k = 0.103.  

Notice that the β index reaching less extreme values in the Fitts 
data (68.4 – 1.32 = 67.1%) than in the Guiard et al. data (85.5 – 
0.05 = 85.4%), meaning less strategic flexibility. This is not 
surprising as Fitts’s experiment included neither a max-speed nor 

inapplicable in practice due to the model's vertical asymptote: in the 
region of low x values, where the slope is very steep,  a minute horizon-
tal error may entail a huge residual in the vertical dimension ― the only 
dimension taken into account in ordinary least squares methods ― 
yielding in some cases a strongly negative r².  We have no space here to 
present and justify our current solution, which combines non-linear 
regression with a total least squares minimisation technique (Rioul, 
Guiard, & Gori, in preparation). 

a max-accuracy condition. As for the average strategic style of 
Fitts’ participants, they favoured accuracy more than did the 
participants of Guiard et al. (µβ = 34.9% to be compared with 
42.8%). Again this outcome is easy to understand as Fitts 
explicitly emphasized accuracy in his task instructions whereas 
Guiard et al. used instructions aimed at covering the whole 
spectrum of speed/accuracy strategies.  

4.4  Data from the Schmidt Paradigm 
In their notorious stylus-pointing experiment on fast discrete 
movements that gave birth to the Schmidt law, Schmidt et al. [18] 
used nominal movement times in the 140-200ms range. The data 
are shown in Figure 9. With only four data points in the CFP to 
constrain the fit of the WHo model, obviously our finding of α = 
.45 and k = 0.090 is tentative. 

 
Figure 9. The WHo model fitted to the fast-movement data of 

Schmidt et al. [18] 

The authors also did an experiment, less successful in their view, 
with nominal times in the 200-500ms range. Figure 10 shows a 
manual fit of the WHo model for these slower movements, in 
which we obtained α = .43 and k = 0.073. 

Comparing the curvilinear arcs of Figure 9 and 10 one can see a 
more speedy strategic style in the fast-movement (µβ = 60.4%) 
than slower-movement experiment (µβ = 45.5%), in keeping with 
the authors' intention. However, the most pronounced difference 
was in the flexibility of the speed/accuracy strategy, with Δβ = 
45.6% for fast movements and 84.0% for slower movements. In 
fact, rather surprisingly, it is in the experiment on "slower" 
movements that the shortest values of µT were recorded. These 
differences make sense if it is realized that apparently the 
performance benefited from more resource in the slower-
movement experiment (k = 0.073, to be compared with k = 0.090).  

.  
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Figure 10. The WHo model fitted to the slower-movement 
data of Schmidt et al. [18].  

Figure 11 offers a superposed view of the fours CFPs, as the WHo 
model idealises them. Dropping the data points to avoid 
cluttering, we just retain the arcs. The merit of such arcs is that 
they not only outline a certain function, they also specify a certain 
range along the function, thus answering both the question of the 
resource and the question of the range of resource allocation. 

 
Figure 11. Plotting the four curvilinear CFP arcs together.  

Remembering that Fitts-law students have believed since 1979 
[18] that the data from the Schmidt paradigm are of a special 
nature that motivates the conjuring up of another law, our result is 
good news: from the moment the data are processed in a unified 
fashion the quantitative patterns are strikingly similar. It is not just 
that the shapes of the curves are all describable in the minimalist 
terms of the WHo model. Consider the spielraum of x and y in 
Figure 11: we might summarise things by saying that our 
speed/accuracy problem is pretty much a matter of 20% of relative 
inaccuracy that trade with 2 seconds of time. While the four 
(infinite) curves have similar shapes and fall roughly in the same 
region of the space of relevance, there is quite some variability in 
the location and extent of the (finite) curvilinear arcs, and we have 
seen that this variability sensibly reflects the different palettes of 
speed/accuracy instructions used in the different experiments.  

5. CONCLUSION 
5.1 Implications for Basic Research 
The above data provide reassuring evidence in favour of the view 
that human aimed movements are indeed governed by a single 
speed/accuracy trade-off, and that that trade-off is what it is 
regardless of the experimental technique with which it is 
demonstrated. The high quality of the fits is not surprisingly, 
bearing in mind that the WHo model arises from six obvious 
axioms. Theorising out of carefully-chosen sets of truisms is an 
old recipe of good science and it is certainly the least risky of all 
― truisms, as far as we can see, are true propositions. 

If the present work involves some theorizing, its potential 
contribution has little to do with the substantial theory of the 
subject. Here our concerns are essentially methodological and 
empirical, our primary focus being the particular shape of the 
trade-off under study. The WHo model says nothing whatsoever 
about the real-time cognitive, physiological, or physical 
mechanisms that might possibly explain the speed/accuracy trade-
off of aimed movement. For example, this work does not address 
the question of whether qualitatively different phases, one ballistic 
and the other monitored under the control of vision, take place in 
the course of an aimed movement viewed as a continuous 
kinematic event [4][14][17]. We believe that every step forward in 
the quest for an accurate and robust mathematical description of 
the empirical regularity psychologists have been concerned with 
since Woodworth (1899) [24] may be valuable, if only because an 
improved description of the observables should facilitate the work 
of substantive theorists. 

5.2.  Implications for HCI 
Suppose that a team of HCI researchers, practitioners of the Fitts 
law who care about methodology and scrupulously follow the 
recommendations of the ISO standard [10], design and carry out 
an experiment to compare a promising novel pointing technique 
with some traditional baseline. Also suppose that the research 
takes place in an industrial context where safety is critical. Alas, 
they find no throughput difference (in our language no difference 
in the amount of resource users have at their disposal, that is, 
similar values of k). According to the ISO standard, the 
researchers' intuitions were false and they unluckily wasted their 
time. But there is reason to be sceptical.  

The odds of two qualitatively different techniques yielding non-
different throughputs in a pointing experiment are what they are, 
but there is no question that the odds of the two techniques 
yielding not just similar throughputs but also the same range of 
speed/accuracy strategies, given standardised task instructions, are 
much lower. Suppose the innovation induces in its users more 
careful strategies (as revealed by a systematic rightward and 
downward shift of the β index), in comparison with performance 
with the baseline technique. If so (recalling that in our 
hypothetical scenario safety is a critical concern) the novel 
technique must certainly be judged preferable but the ISO 
standard, which claims that only the throughput matters, is an 
invitation to miss that important conclusion. Improved 
experimental procedures and finer analytic tools should allow HCI 
researchers to save experimentation time and eventually take 
better informed decisions. 
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APPENDIX 1: MATHEMATICAL NOTATION AND TERMINOLOGY 
 

 

 

Symbol Variable name Physical dimension Practical unit

d target distance [L] or [-] cm or degree
w target width or tolerance [L] or [-] cm or degree
t nominal movement duration [T] s
d / w relative target distance [-] -
w / d relative target tolerance [-] %
v  = d / t nominal average speed [LT-1] or [T-1] cm/s or deg./s
i d index of task difficulty [-] bit

A movement amplitude [L] or [-] cm or degree
T movement duration [T] s
E = A – d endpoint error [L]  or [-] cm or degree
V = A / T average movement speed [LT-1] or [T-1] cm/s or deg./s
I de index of effective difficulty [-] bit

µA mean amplitude [L] or [-] cm or degree
µT mean movement duration [T] s
µV = µa / µT mean average speed [LT-1] or [T-1] cm/s or deg./s
µE = µA - d constant error or aiming bias [L] or [-] cm or degree
σA = σE variable error or endpoint spread [L] or [-] cm or degree
σA / µA = σE / µA relative endpoint spread [-] %
µA / σA = µA / σE mean relative amplitude [-] -

Task Parameters under Experimenter Control

Movement Measures Subject to Random Variability

Movement Statistics for Blocks of Repeated Movements or Higher Aggregates


