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Introduction

Side-Channel Attacks (SCA [START_REF] Brier | Correlation power analysis with a leakage model[END_REF]) and corresponding protection techniques have been a hot research topic for over a decade now. Data masking [START_REF] Goubin | DES and differential power analysis[END_REF] is one of few popular side-channel countermeasures, which motivates thorough investigations of higher-order SCA as e.g., in [START_REF] Prouff | Statistical analysis of second order differential power analysis[END_REF][START_REF] Waddle | Towards efficient second-order power analysis[END_REF]. The following study deals mainly with second-order SCA which is used to break a first-order masking countermeasure. A particular case of second-order SCA is when the two shares used by the masking scheme are processed or leak simultaneously. In this case, Waddle and Wagner introduced an attack at CHES '04 [START_REF] Waddle | Towards efficient second-order power analysis[END_REF], which consists in raising the traces to the power two. Such an attack, a so-called zero-offset SCA, is commonly used against hardware or parallel implementations. However, for software implementations, the two shares naturally leak at different dates or time samples. The second-order attacks which combine two different time samples are termed bivariate SCA. The two different leakage samples are referred to as L(t 0 ) and L(t 1 ) in the following. Despite bi-variate attacks may be powerful, a practical implementation might need a large amount of effort from the part of the attacker. The main problem of bi-variate attacks is to find the exact temporal localization (t 0 , t 1 ) corresponding to leakages L(t 0 ) and L(t 1 ). Incidentally, depending on the implementation, there might exist several such pairs.

To avoid finding the pair (t 0 , t 1 ) explicitly, Waddle and Wagner introduced a method called FFT-2DPA, which only requires to find a window in which both leakages are included. More precisely, the attacker computes the auto-correlation on this window, which combines the two leakages L(t 0 ) and L(t 1 ) multiplicatively. Thus, it is possible to utilize a regular zero-offset SCA on the autocorrelation trace. The authors of [START_REF] Waddle | Towards efficient second-order power analysis[END_REF] suggest, to compute the auto-correlation as the inverse Fourier transform of the square modulus of the trace Fourier transform of the window of size n. This way, the preprocessing time has O(n log 2 n) complexity, which is sub-quadratic.

Another category of second-order SCA are collision-based attacks. A particular case where collision attacks are efficient, is when the same mask is reused for each substitution box (S-box) of the crypto-algorithm. There exist two sub-categories of collision attacks: correlation-collision attacks and collisioncorrelation attacks. If the unmasked input of the S-box is biased, then correlation-collision attacks (see for instance [START_REF] Moradi | Correlation-enhanced power analysis collision attack[END_REF]) can be applied. Otherwise, collision-correlation attacks [START_REF] Clavier | Improved collisioncorrelation power analysis on first order protected AES[END_REF] are more suitable. However, when the masking scheme does not reuse one mask to protect multiple unrelated sensitive variables, collisions attacks in general are not appropriate.

Summing up, apart from FFT-2DPA, bi-variate attacks usually require the knowledge of the samples L(t 0 ) and L(t 1 ). If the leakage models M 0 and M 1 corresponding to the leakages L(t 0 ) and L(t 1 ) are known, then the optimal strategy consists in combining them with a centered product [START_REF] Prouff | Statistical analysis of second order differential power analysis[END_REF]. We denote this attack as "2O-CPA". Note that, if the leakage can be approximated, then a linear-regression approach can mitigate the absence of accurate knowledge of the models M 0 and M 1 [START_REF] Dabosville | A new second-order side channel attack based on linear regression[END_REF]. One way to identify the precise timing of individual operations, consists in using a clone device, where the masks can be set to zero or are known. In this case, several monovariate CPAs [START_REF] Brier | Correlation power analysis with a leakage model[END_REF] can be computed to disclose the exact sample(s) in which each operation leaks as illustrated in Fig. 1(b). Such an analysis seems impossible, without the access to a clone device. However, without any information on the masks, an attacker can compute the several moments or filter the traces. Figure 1(c) plots the variance of the average of the traces computed over each clock cycle. It clearly reveals the structure of one AES round: AddRound-Key (16 identical operations), followed by SubBytes (16 identical operations), ShiftRows (3 identical operations on rows -indeed, the first row is unchanged by ShiftRows), MixColumns (4 identical operations on columns), and AddRound-Key again (corresponding to the second round). The notations in Fig. 1 are as follows: L 0 and L 1 (L 0 , L 1 ⊂ L; L(t 0 ) ∈ L 0 and L(t 1 ) ∈ L 1 ) are the windows in which the shares #0 and #1 are expected to leak (they correspond to the so-called educated guesses coined by Oswald et al. [START_REF] Oswald | Practical second-order DPA attacks for masked smart card implementations of block ciphers[END_REF]); n 0 and n 1 are the width of windows L 0 and L 1 , in terms of sample count. For the sake of simplicity, we assume n 0 = n 1 = n. Typically, L has few hundreds of thousand samples (e.g., 435000 in Fig. 1), whereas n 0 and n 1 may vary from a few hundreds to a couple of thousands.

Our Contributions. In this paper, we propose five practical methods to make 2O-CPA attacks feasible on first-order masking schemes. All five proposed methods are generic in nature and need no knowledge of leaking time samples. The common feature of our attacks is to turn a bivariate leakage into a monovariate leakage (thanks to a combination that creates a sum of weighted products), that can be exploited by a classical zero-offset second-order attack. We base ourselves in the role of an attacker, who has a rough estimate of the zones in L where the leakages t 0 and t 1 are likely to be situated (that we call time intervals L 0 and L 1 ). In particular, our preprocessing methods convert two leakage windows of size n into a new window of size 2n or n, depending on the applied technique. Remarkably, these operations remain in complexity O(n log 2 n), i.e., sub-quadratic. We show that our methods allow faster attacks (in terms of number of queries for the 2O-CPA to reach 80 % success rate) than the generalization of FFT-2DPA on two windows. This gain comes from two major factors:

1. The phase information is kept intact, and 2. The operation is performed in frequency domain.

As shown later, the leakage has a specific signature in terms of waveform shape, and in our implementation, there are multiple occurrences in time of the leakage. The representation in the frequency domain allows to regroup all these leakages, that combine constructively because they share the same waveform. Thus, the gain in terms of success rate is evident, since the signal is magnified at constant noise. Besides, from a computational point of view, the attack still stays on a linear number of points (n or 2n).

Outline of the Paper. The rest of the paper is organized as follows. Preliminaries of tools related to time-frequency conversion are introduced in Sect. 2. Section 3 describes the five proposed preprocessing techniques, using timefrequency conversion tools. The attacks are then applied on a real masking implementation running on an 8-bit AVR smartcard (in Sect. 4). Section 5 provides further insights into the proposed attacks and their standing as compared to the state-of-the-art. Finally, conclusions and perspectives are drawn in Sect. 6.

Tools for Time-Frequency Analysis

This section provides a short background on common tools used in time-frequency analysis, which are then used in the proposed attacks in Sect. 3.

Discrete Fourier Transform Definition 1 (DFT). The discrete Fourier transform of a sequence

Y ∈ R n is another sequence DFT [Y ] ∈ C n such as DFT [Y ] (f ) = 1 √ n n-1 t=0 Y (t) • exp (-2πıf t/n) ,
where ı is one of the (square) roots of 1 in C that is different from ±1.

Property 1 (Inverse DFT). The DFT can be inversed with the inverse DFT such that

IDFT [DFT [Y ]] = Y , where IDFT [Z] (t) = 1 √ n n-1 f =0 Z(f ) • exp (+2πıf t/n).
Definition 2 (Cross-correlation). The (circular) cross-correlation of two discrete sequences X and Y of n samples is defined by

(X Y )(t) = n-1 t =0 X(t ) • Y (t + t mod n).
Theorem 1 (Cross-correlation theorem). Again let X and Y be two discrete sequences of n samples in time domain, then

(X Y )(t) = √ n • IDFT DFT [X] • DFT [Y ] ,
where • denotes complex conjugation.

Discrete Hartley Transform

The application of a DFT on a sequence of real numbers results in a sequence of complex numbers. The discrete Hartley transform [START_REF] Hartley | A more symmetrical Fourier analysis applied to transmission problems[END_REF] (DHT) was proposed as a real-valued alternative to the DFT as DHT multiplies each real input by cos + sin instead of cos -ı sin as in DFT:

Definition 3 (DHT). The discrete Hartley transform of a sequence Y ∈ R n is another sequence DHT [Y ] ∈ R n such as: DHT [Y ] (f ) = 1 √ n n-1 t=0 Y (t) • (cos (2π ft/n) + sin (2π ft/n)) .
Property 2 (Link between Fourier and Hartley transforms). The DHT of the temporal signal Y can be obtained from the DFT by:

DHT [Y ] (f ) = e DFT [Y ] (f ) -DFT [Y ] (f ).
Reciprocally, the DFT of the signal Y can be computed from the DHT with the formula:

DFT [Y ] (f ) = 1 2 (DHT [Y ] (f ) + DHT [Y ] (-f )) -ı 2 (DHT [Y ] (f ) -DHT [Y ] (-f )) . Property 3 (DHT Involution). The DHT is its own inverse; ∀Y ∈ R n , DHT [DHT [Y ]] = Y . The proof is given in [7].
As such, the DHT avoids two computationally undesirable characteristics of the DFT:

1. the inverse DHT is identical with the direct transform -it is not necessary to keep track of +ı and -ı versions; 2. more importantly, the DHT has real rather than complex values. As a consequence, in a 2O-CPA, the computation of the correlation coefficient can be done in the frequency spectrum without any loss of information.

Fast Fourier Transform

The DFT (resp. IDFT) is directly obtainable from the FFT (resp. IFFT), that runs in O(n log 2 n) complexity [START_REF] Frigo | The design and implementation of FFTW3[END_REF]. The computational complexity of DHT is also O(n log 2 n), as it is simply obtained as the difference between the real and imaginary parts of the FFT.

3 New Second-Order Attacks with Time-Frequency Preprocessing In first-order masking implementations, it is expected that each mask is reused (at least twice). Unfortunately, as shown in Fig. 1, the distance between two leakages using the same mask can be about 100000 samples. Therefore, the attacker, in practice, needs two distinct windows where the mask is reused, assuming for the sake of simplicity both of size n. Since the exact temporal localization of t 0 and t 1 corresponding to the leakages L(t 0 ) and L(t 1 ) is unknown to the attacker, he would have to mount n 2 2O-CPAs, resulting in O(n 2 ) complexity, which can become impractical for large n.

Another method would be to apply the approach of FFT-2DPA. However, one window in which L(t 0 ) and L(t 1 ) are included would be too large (e.g., 100000 time samples), therefore to overcome this problem we straightforwardly extend the idea of Waddle and Wagner to the case of two distinct windows L 0 and L 1 . In particular, we consider two different approaches to treat L 0 and L 1 . First, we use the concatenation: Definition 4 (auto-corr). Let us denote L 01 as the concatenation in time of

L 0 and L 1 . Then auto-corr = (L 01 L 01 ) = IDFT |DFT [L 01 ]| 2 .
Second, if the size of the windows, L 0 and L 1 have equal width (i.e., n 0 = n 1 = n), the attacker can compute cross-correlation between L 0 and L 1 , which we call x-corr.

Definition 5 (x-corr). x-corr = (L 0 L 1 ) = IDFT DFT [L 0 ] • DFT [L 1 ] .
Interestingly, both auto-corr and x-corr can be computed in a complexity O(n log 2 n), owing to the cross-correlation Theorem 1. Moreover, the preprocessing stage turns a bi-variate leakage into a uni-variate leakage. Indeed, the expressions auto-corr(t) and x-corr(t) contain the product L(t 0 )•L(t 1 ), which is exploited by a 2O-CPA. So, the optimal prediction function is the same as in any bi-variate 2O-CPA. Thus, after the preprocessing with either auto-corr or x-corr, an attacker can simply perform a zero-offset SCA on the resultant trace to find the secret key.

However, we noticed two essential drawbacks when using the straightforward extension from Waddle and Wagner:

-First of all, as the DFT of the signals are processed via a modulus (See e.g., Definition 4), the phase information is lost.

-Second, returning in the timing domain is less efficient than staying in the frequency domain: indeed, as will be seen with on our practical examples (Sect. 4), the leaks in software usually feature many peaks in time domain, that nonetheless have a common signature in frequency domain.

New Attacks in Frequency Domain

Based on the previous definitions and observations, we introduce 5 new preprocessing methods, which intend to capture the leakage directly in frequency domain without transferring it back into time domain. Similar as for auto-corr and x-corr, we divide methods into two distinct classes. The first class consists of so-called "one window " methods, which utilizes the concatenated window L 01 from two individual windows L 0 and L 1 resulting in an output of 2n. The second class of methods ("two windows" methods) are capable to combine two windows of size n into a single window also of size n.

As analysis methods we use DFT and DHT (see Definition 3 in Sect. 2). The four resultant preprocessing techniques are summarized in Table 1.

Table 1. Variants of considered preprocessing attacks Function \ name DFT [•] DHT [•] concat-name (f ) |DFT [L 01 ] | 2 DHT [L 01 ] 2 window-name (f ) |DFT [L 0 ] • DFT [L 1 ] | DHT [L 0 ] • DHT [L 1 ]
In order to reveal the secret key an attacker applies a zero-offset CPA on the output of these preprocessing techniques and the optimal prediction function M 01 , which we specify in Sect. [START_REF] Dabosville | A new second-order side channel attack based on linear regression[END_REF].

Additionally as a "heuristic" method, we consider the max-corr attack to cope with a complex 2O-CPA (i.e., ρ(

• , • ) ∈ C). More precisely, max-corr = max(|ρ( e(DFT [L 01 ]), M 01 )|, |ρ( m(DFT [L 01 ]), M 01 )|).
Beware that the suffix "corr" in "max-corr" refers to the Pearson correlation coefficient "ρ" of the high-order CPA, and not to any auto-or cross-correlation.

Concluding, in total we proposed five new methods of the same complexity O(n log 2 n) to mount second-order attacks on a first-order masking implementation. The described methods are applied on a real masked AES implementation running on a smartcard in the following section.

Experimental Validation

Software Implementation of the Protected AES

To test our methods, we use the publicly available traces of DPA contest v4 [START_REF] Schaumont | DPA Contest[END_REF], which uses a low-cost masking protection applied on AES, called Rotating Sbox Masking (RSM). RSM is a first-order countermeasure in which the S-boxes F 2 8 → F 2 8 are (statically) precomputed. The same mask is XORed to one plaintext byte (T ) and to some S-box output (corresponding to another plaintext byte T ). In this case, collision attacks might be applicable to the design. However, we considered an attack based on the combination of two "heterogeneous" leakage models. The applicable (centered ) leakage models are given by: M 0 = w H (T ⊕ M ) -4 and M 1 = w H (Sbox[T ⊕ K] ⊕ M ) -4, where T , T , K are respectively two bytes of the plaintext and one byte of the key, and where w H ( • ) is the Hamming weight function. Thus, the prediction function M 01 for all our preprocessing methods is given by

M 01 = E[(M 0 • M 1 )|T, T , K].

Leakage Detection

In the following we ensure that both leakage models M 0 and M 1 are suitable for our evaluation. We first perform a CPA on the traces, assuming the mask to be a known quantity in order to identify the most leaking points and to verify our assumed leakage models. The prediction functions knowing the mask are simply: , where in 94 time instants the correct key takes the highest correlation, moreover, these instants are less spread than for the XOR operation. Further, Fig. 3 shows the mean consumption of each class of the highest correlation peak around the time instant ≈3000. One can clearly detect that the classification according to M m 0 (resp. M m 1 ) is reasonable. We therefore maintain our models M 0 and M 1 capturing the XOR and the Sbox[•] operation. The average number of traces to break the key using M m 1 is about 15 (very low! ) for a success rate 80 %, as can be seen in Fig. 4(a).

M m 0 = E[M 0 |T, M ] and M m 1 = E[M 1 |T , K, M].

Empirical Evaluation

First of all, we confirm that a direct application of a 1O-CPA (Brier et al. [START_REF] Brier | Correlation power analysis with a leakage model[END_REF]) using model M 0 or M 1 on the whole trace L does not allow to retrieve any key byte using 100000 traces. No preprocessing was applied on the traces before the attack. Then, we applied a bi-variate 2O-CPA by multiplying the two most leaking samples for models M m 0 and M m 1 . The success rate is given in Fig. 4(b). About 300 traces are sufficient to break the key with probability 80 %.

For our empirical evaluation we choose 3 different sets of window sizes n: small n = {50, 200}, medium n = {500, 2000}, large n = {4000, 6000}. So, autocorr, concat-dft & concat-dht are calculated on a window of size 2n, whereas x-corr, window-dft & window-dht utilize two windows each with size n. Since only a fixed number of measurement traces (100000) are provided by the DPA contest v4, we were restricted in the number of retries. More precisely, for small windows we computed the success rate using up to 2000 traces and we were therefore able The success rate for a window of smaller size (n = 50 and n = 200) is shown in Fig. 5. In both cases, auto-corr and x-corr are the most efficient preprocessing methods, followed by the window-dht, concat-dft, and concat-dht, whereas window-dft is not able to retrieve the correct key. This confirms that the preprocessing of Waddle and Wagner is relevant when the time instants of the leakages are well known a priori. However, we also note that for such small windows, an exhaustive search of the interesting (t 0 , t 1 ) is not deterrent (computationally speaking), and would yield better success rates (recall Fig. 4(b)).

The efficiency of the attacks is changed when using a window of medium size (see Fig. 6). The usage of x-corr seems only reasonable when the window size is sufficiently small, whereas the efficiency of window-dft and concat-dht increases when provided with more time instants. Interestingly, one can observe that window-dht is more efficient when using a window size of 500 as x-corr with smaller window size. This is an illustration that the attack manages to properly combine constructively the plurality of leakage instants in the trace (recall the multiple leakage peaks in Fig. 2(a) and(b)).

When increasing the window size up to n = 4000 and n = 6000 the difference between window-dht, concat-dht, and concat-dft becomes greater. Remarkably, even for large window sizes (two windows with each 6000 time instants), windowdht is still able to efficiently reveal the secret key. It is about equivalent in terms of efficiency with max-corr. Thus, this confirms that attacks remain very practical, even though the attacker does not have a precise idea about the leakage location.

From Table 2, we can deduce that when the attacker knows the leakage samples, i.e., a small window size, x-corr is the best attack. Moving from small to medium windows, window-dht proves to be the best attack. Finally, max-corr seems to be the best attack for large window size. This means that max-corr is well suited for practical cases because only a minimum assumption on the knowledge of leakage samples is required, thus, the attacker is able to choose a large window. As already underlined, another noteworthy observation from Table 2 is Fig. 6. Success rate when using a medium window size Fig. 7. Success rate when using a large window size that, x-corr takes more traces to disclose the key for a window of 200 points as compared to window-dht for a window of 500 points.

Discussion

Benefits of the Proposed Attacks

Preprocessing Speed-up. Turning bi-variate into mono-variate leakage is actually a matter of trade-off:

-the computational power is lowered while exploiting the traces (because the research of (t 0 , t 1 ) is skipped); -at the expense of a greater noise in the estimation of the distinguisher (hence more traces to guess the key), due to the inaccurate location of the leakages in the window(s).

The use of our methods can be justified for software traces, that can be so long (millions of samples) that a complexity in O(n 2 ) is prohibitory. For instance, with window size n = 6000, the complexity of our preprocessing (in terms of "multiplications" count) is roughly n log 2 n ≈ 75300 or 0.0753 × 10 6 , whereas an exhaustive search of pairs (t 0 , t 1 ) requires n(n-1)
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≈ 18 × 10 6 tries. So our attack method is very light in computation time. Now, in terms of number of traces to break the key, our method requires about 3000 traces instead of 300 knowing the most leaking samples, which remains reasonable.

Resilience to Traces Desynchronization. Our techniques can withstand a global desynchronization in the acquisition of the traces. It can happen that the traces are offset one w.r.t. the others, due to the lack of a reliable synchronization signal. It is already known that DFT based techniques (if the phase is ignored) can work even in this case [START_REF] Mateos | A new correlation frequency analysis of the side channel[END_REF]. (We do not consider here countermeasures like dummy cycles addition [START_REF] Coron | Analysis and improvement of the random delay countermeasure of CHES 2009[END_REF].) So concat-dft, window-dft and max-corr resist traces disalignment.

Explanation of the Results: Why are Attacks in Frequency

Domain More Efficient when the Window Width is Large?

When the correlation is computed on auto-corr or x-corr signals, i.e., in the time domain, the leakage L(t 0 )•L(t 1 ) is "dissimulated" into the numerous other terms L(t) • L(t ), for (t, t ) = (t 0 , t 1 ). Thus, when the window becomes too large, the signal-to-noise ratio at each point of the auto-corr/x-corr becomes very small. Of course, when the size of the window is small, it is possible to distinguish efficiently.

On the contrary, we see from Fig. 8 that the leakage is well localized in a few frequencies 1 . Those frequencies are around 20 MHz, which corresponds to the dynamic of the CMOS logic (see the duration of the bounces in Fig. 3: it is about 25 samples, i.e., 50 ns). The clock frequency is equal to 3.57 MHz, which is much smaller. Interestingly, the leakage is not modulated by the periodic clock signal.

Few peaks at ≈ 20 MHz Fig. 8. Correlation coefficient on a 2O-CPA on concat-dft in frequency domain when using n = 6000 and 10000 traces (we recall that the sampling rate is F S = 500 Msample/s) When the window size n is large, the frequency resolution of the DFT or the DHT is high, so it is more likely that the signal is decomposed close to the main leaking frequencies (i.e., the 20 MHz frequency value is well approximated in the domain of the DFT/DHT -recall that frequencies are quantified, i.e., discrete variables f ∈ F S /n × [[0, n -1]], where F S is the sampling rate). Additionally, there are many leaking samples in the timing window (recall Fig. 2), but the Fourier transform manages to constructively sum them up.

Comparison with the State-of-the-Art

There are several existing methods to evaluate the resistance against secondorder attacks in the state-of-the-art. Among the most recent published methods that can be applied to evaluate our masking scheme, we can consider a direct 2O-CPA with pointwise multiplication of L(t 0 ) • L(t 1 ) by using the detection method proposed in [START_REF] Reparaz | Selecting time samples for multivariate DPA attacks[END_REF]. As explained in Sect. 4.1, two heterogeneous leakage variables that share information about the mask can be extracted from the power traces. In our case these two leakages depend respectively on {T, M } and {T , K, M}. Formally, in a fixed chosen plaintext scenario it is possible to identify the leakage points by searching the couples of points that maximizes the quantity: Î (L(t); L(t )), where Î denotes the estimator of the mutual information.

This method, although more efficient than performing n 2 2O-CPA, remains of quadratic, i.e., O(n 2 ), complexity. Besides, it cannot be applied directly to the context of known plaintexts (random, not chosen) scenario. In [START_REF] Reparaz | Selecting time samples for multivariate DPA attacks[END_REF], an extension of this method is presented. It is possible to consider the couples of points that maximize: Î (L(t); L(t ); M 1 ), where M 1 is a model of the leakage. This value is high when the variation of the leakage depends on {T, M }. In our case (DPA contest v4), the variation of the leakage also depends on another plaintext byte T , thus this method will be less practical. This method could be extended by using: Î (L(t); L(t ); M 0 ; M 1 ). In this case, we have to consider a quadrivariate mutual information analysis that is likely to be little efficient in the presence of noise, and would require more traces to identify the leakage points. Our methods (cf. Sect. 3.2) basically skip the detection step, and perform a direct 2O-CPA on larger windows than in [START_REF] Waddle | Towards efficient second-order power analysis[END_REF].

Among the state-of-the-art methods, Moradi and Mischke reported at CHES '13 [START_REF] Moradi | On the simplicity of converting leakages from multivariate to univariate[END_REF] a similar approach as [START_REF] Waddle | Towards efficient second-order power analysis[END_REF], where the attack is performed in time basis after point combination. In the case they report, the two leaking time samples are close in time (a few tens of clock cycles), and the low-pass filtering of the acquisition system mixes the two signals. The scenario of the attack is thus the same. The difference is however that the "overlapping" of the two leaking signals is done for free in Moradi and Mischke's setup, whereas it is forced by a preprocessing in our case. Indeed, in our masking scheme, the two sensitive variables masked with the same mask M are not used consecutively.

Conclusions and Perspectives

We present five preprocessing techniques that turn a bi-variate attack into a second-order zero-offset attack. Our technique applies even if the two leakage samples to be combined are far from each other. Remarkably, the proposed methods need only a rough estimate of the location of two windows (around t 0 and t 1 ), where the two leaks can be found purportedly. The regularity of encryption algorithms, such as the AES, facilitates the identification of the elementary operations, like plaintext blinding and S-box calls.

In addition, we notice that our techniques have the potential to scale for higher-order attacks. For instance, imagine d + 1 shares that are leaking at time samples t 0 , t 1 , . . . , t d . If the attacker is only able to know an approximate window L i containing t i (i ∈ [[0, d]]), then window-dht becomes simply

d i=0 DHT [L i ].
The working factor of this dth-order CPA attack method is that this product, once expanded, contains terms of the form d i=0 L(t i ), which indeed combines multiplicatively the leakage from all the shares.
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Table 2 .

 2 Comparison of performance of proposed methods against attack efficiency.

	Window size Best attack Number of traces for SR 0.8
	50	x-corr	450
	200	x-corr	750
	500	window-dht	550
	2000	window-dht max-corr	550
	4000	max-corr	1950
	6000	max-corr	3000

Three or four frequencies are especially leaky, which is much less than the tens of leakages dates in the time domain -cf. Fig.
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