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Abstract. Side-channel analyses allow to extract keys from devices
whatever their length. They rely on tools called “distinguishers”. In this
paper, we intend to compare two generic distinguishers per se: we pro-
vide a characterization environment where all the implementation details
are equal, hence a fair comparison.

In the field of distinguishers that use a model, the notion of equiva-
lence between distinguishers has already been studied in some seminal
works [6, 13]. However, no such work has been carried out for generic
distinguishers, that work on observable values distributions rather than
on their values themselves. In this paper, we set up simulations that aim
at showing experimentally that two generic distinguishers are different.
Then, we develop a theory to actually prove that one distinguisher is
better than the other.

Keywords: InformationTheoretic (IT)metrics,Probability/Cumulative
Density Function (PDF/CDF), Kolmogorov-Smirnov Analysis (KSA),
Inter-class Kolmogorov-Smirnov Analysis (IKSA), Masking.

1 Introduction

Smart cards play a crucial role in many security systems. These devices typically
operate in hostile environments and, therefore, the data they contain might be
relatively easily compromised. For example, their physical accessibility some-
times allows a number of very powerful attacks against their implementation.
During the last decade, side-channel attacks in general, and power analysis at-
tacks in particular, have shaken the belief in the security of smart cards. Kocher
et al. showed in their pioneering article [10] that a smart card that is unprotected
against power analysis attacks can be broken without difficulty. The core idea of
side-channel attacks is to compare some key-dependent predictions of the physi-
cal leakages with actual measurements, in order to identify which prediction (or
key) is the most likely to have given rise to the measurements. In practice, it
requires both to be able to model the leakages with a sufficient precision in order
to build the predictions, and to have a good comparison tool, thereafter referred
to as a distinguisher, to efficiently extract the keys.

In 2008, Mutual Information Analysis (MIA) [7] has been proposed as a new
side-channel distinguisher. MIA aims at genericity in the sense that it is expected
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to lead to successful key recoveries with as little assumptions as possible about
the leaking devices it targets. Previous works [14, 19, 23] demonstrated that the
estimation of probability density functions for these key-dependent models is of
decisive importance to the performance of MIA in practice.

The authors of [19] suggested an alternative distinguisher that do not require
explicit density estimation: the Kolmogorov-Smirnov test. It is a non-parametric
statistical test to distinguish between distributions by computing the absolute
difference between their cumulative distribution. Reference [24] explores the ef-
fectiveness and efficiency of the Kolmogorov-Smirnov Analysis (KSA) in the
context of SCA and compare it to the MIA in a number of relevant scenarios
ranging from unprotected to masked implementations.

All the distinguishers listed above compare the key-dependent predictions of
the physical leakages versus actual measurements. Our approach in this paper
consists in comparing the conditional leakages between themselves (pairwise) in
order to efficiently recover the secret key. We name this approach “inter-class”.
We provide a methodology to fairly compare two SCA distinguishers based on
simulations.

The remainder of this article is organized as follows. The definition of the
state-of-the-art and inter-class metric is given in section 2. This section con-
trasts the principle of inter-class metrics with other metrics. In section 3, a
fair framework to evaluate and compare distinguishers is given. We applied this
methodology to compare the KSA and the inter-class KSA (aka IKSA). These
theoretical results are then validated by simulations in section 4. Section 5 con-
cludes the paper and gives some perspectives for future works.

Our Contributions
This paper presents three novel contributions. First, we propose the notion of
“inter-class” metrics, which allows to build a new distinguisher for SCA aimed to
be efficient when exploiting several kinds of leakages. The originality of this new
test is that it does a pairwise comparison between the key-dependent leakage
classes. Second, we apply this notion to the Kolmogorov-Smirnov test which
yield the Inter-class Kolmogorov-Smirnov Analysis (IKSA). In order to compare
two SCA distinguishers, we propose a simulation-based “fair” framework which
takes into account the different errors of estimation tools used in simulation
process. Third, we present several experiments to compare IKSA to KSA using
this framework, where simulated attacks are performed against unprotected and
protected AES with Boolean masking. Attacks’ simulation in section 4 confirm
that the IKSA compares favorably to KSA and that IKSA is non-equivalent to
KSA, even when masking is applied to ensure some protection.

2 Mutual and Inter-class Distinguishers

2.1 Notations

We use capital letters, like Z, to denote a random variable (RV), calligraphic
letters, like Z, to denote its support (set of possible values), and lowercase letters,
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like z, for its realizations. The expectation of Z is denoted by E[Z]. The Hamming
weight of z is written as HW (z). We use the following notations.

– X : a RV that represents the leakage (e.g. the measured current drawn by a
cryptographic device);

– K: the cryptographic key;
– Z: the input or the output of the cryptographic device (i.e. its plaintext or

ciphertext);
– Y = ψ(Z,K): a sensitive variable used internally, that depends both on

Z (known by the attacker) and K (unknown by the attacker). We assume
that this sensitive variable Y can be computed exhaustively from K by the
attacker and that it causes the leakages; put differently, when the key guess
is correct, X and Y are dependent.

Side-channel analysis consists in estimating whether X and Y are dependent for
every key guess, i.e., for every value K = k. The analysis is said to be sound if
the greatest dependence is obtained for the correct value of the key, noted k!. In
this case, the key can be extracted successfully from the device. In practice, the
values taken by X are noisy, because they consist in physical measurements and
because the link between X and Y is imperfect (it might involve other variables,
yielding algorithmic noise). Therefore, many couples (X,Y ) are required for the
2n estimations (for each value of K) to find the correct key, where n is the
bit-width of K.

2.2 Inter-class Notion

Distinguishers can be defined based on the analysis of values or of distributions.

– Examples of distinguishers based on values: DPA [10], CPA [5], stochas-
tic [16], DCA [1].

– Distinguishers based on distributions: MIA [2], KSA [24], etc.

The distinguishers based on values can be considered weaker than those based
on distributions. A justification is that there exist some distributions (e.g. the
log-normal distribution) that are not uniquely determined by their moments.
Distinguishers based on distributions are referred to as information-theoretic
and have been acknowledged as more generic.

Several “distances” D( · ; · ) are known to measure the dependency between
two distributions, such as Kullback-Leibler (KL) divergence, Hellinger distance,
or Kolmogorov-Smirnov (KS) distance. In the sequel, we focus on KS test, be-
cause it has been investigated recently and constitutes an interesting competitor
to the (already much discussed) mutual information based attacks.

The distance between distributions D( · ; · ) is used to build distinguishers in
two different ways:

1. (marginal-to-conditional approach) D(X |Y ;X), which yields the KSA dis-
tinguisher,

2. (inter-class approach) D(X |Y ;X |Y ′), where Y ′ is an independent copy of
Y , which yields its inter-class counterpart, called IKSA.
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3 Comparison Methodology

3.1 Frameworks

In this section, we analyze previous comparison frameworks, highlight possible
limitations and motivate for a new setting. The first proposed evaluation frame-
work is [17] basically suggests to use a leakage metric to quantify the maximal
chance that an optimal attacker would have to extract secrets. This metric rep-
resents a vulnerability analysis, for an attacker might not be able to turn the
leakage into a successful attack. For the comparison of attacks, i.e. of distin-
guishers, [17] suggests metrics like o-th order success rate (with o ∈ !1, 2n")
or guessing entropy. In another framework [23, 24], the distance to the nearest
rival is employed; it is the same definition as previously termed “Correlation
Contrast” in [3]. Many other metrics can be invented, such as the signal (distin-
guisher expected value for the correct key k!) to noise (distinguisher variance
over incorrect keys k ∈ Fn

2\{k!}) ratio [8] or the norm-2 of the characterized
coefficients in a stochastic profiling [9].

Recent analyses [23] suggest pitfalls in the evaluation methodologies for dis-
tinguishers. Errors can arise from many sources:

– Estimation Bias: the estimator does not converge to the correct value. For
instance, the MIA with few bins for the PDF estimation can have a square
bias significantly larger than its variance.

– Estimation Algorithm: it can approximate the data. Whatever the kernels
used in PDF constructions [14], the binning of the observed side-channel
reduces its accuracy.

– Success Rate Error: it is a random variable, that has its own variance.
– Sampling Errors: the random variables are not drawn a sufficient number

of times and thus do not obey to their law. As a rule of thumb, estimations
are incorrect if a discrete RV has been measured a fewer number of times
than the size of its set of possible values.

In the sequel, we intend to compare KSA [24] and IKSA on a fair basis.

3.2 The Kolmogorov-Smirnov as SCA Distinguisher

In a first stage of the SCA attack, an adversary has to estimate the leakage
probability density functions (PDFs) for different key-dependent models. In a
second stage, this adversary has to test the dependence of these models with
actual measurements. The problem of modeling a PDF from random samples of a
distribution is a well studied problem in statistics, referred to as PDF estimation.
A number of solutions exist, ranging from simple histograms to kernel density
estimation [7, 14] or data clustering [20].

Interestingly, an explicit PDF estimation is not always necessary and there
also exist statistical tools to compare two PDFs directly from their samples. The
Kolmogorov-Smirnov (KS) test is typical of such non-parametric distinguishers.
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In the context of SCA, the KSA test has been mentioned first in [19] as a
non-parametric statistical test to distinguish between distributions. Then, [24]
explores the effectiveness and efficiency of the Kolmogorov-Smirnov Analysis
(KSA) and compare it with the Mutual Information Analysis (MIA). It is mainly
used as a one-sample test where it allows the comparison of the frequency distri-
bution of a sample to some known distribution, such as a Gaussian distribution,
it can also be used as a two-sample test. As a two-sample test KSA distance com-
pares the distributions of values in the two data vectors X1 and X2 of length
n1 and n2, respectively. The null hypothesis for this test is that X1 and X2

have the same distribution. The alternative hypothesis is that they have differ-
ent distributions. The KSA distance is a simple measure which is defined as the
maximum value of the absolute difference between two cumulative distribution
functions (CDFs): DKSA = supx∈X |FX1(x) − FX2(x)|, where FX1 and FX2 are
the empirical CDFs (aka ECDFs). By definition a (univariate) ECDF is a step
function. It is the proportion of observed values of a RV, that are less than or
equal to some value. We can write it as: FX(x) = 1

N

∑N
i=1 Ixi≤x. In this formula,

the tuple {xi}i∈!1,N" denotes the values realized by the RV X . The function
I is an indicator, which is equal to one when the enclosed expression is true,
and zero otherwise. Like MIA, the KSA distinguisher measures the maximum
distance between the leakage (measurements) X and the hypothesis-dependent
conditional observations X | Y :

DKS = EY sup
x∈X

∣∣FX(x) − FX|Y (x)
∣∣ . (1)

The KSA returns the largest difference when the key is correct, i.e. when k = k!.
In contrast to KSA, IKSA consists in comparing the conditional leakages

between themselves, pairwise. The Inter-class KSA distinguisher can write as:

DIKSA =
1

2
· EY,Y ′ sup

x∈X

∣∣FX|Y (x) − FX|Y ′(x)
∣∣ , (2)

where Y ′ is an independent copy of Y . The 1/2 factor makes up for double counts
((Y, Y ′) ↔ (Y ′, Y )).

3.3 Increasing the Fairness of the Estimations

We try here to eliminate or at least bound the errors listed in Sec. 3.1.

– The KS distance is shown to be unbiased by the Glivenko-Cantelli theo-
rem [22], (and furthermore there is a uniform convergence). This is never
true for entropy estimators (for instance, all the estimation methods pre-
sented in [14] are biased).

– We use an estimation algorithm that keeps the data unchanged (see Eqn. (1)
and (2)); Our estimation for KSA is the same as that of Whitnall, Oswald
and Mather [24].

– We quantity the success rate error. An upper bound of the variance of the
success rate error is shown below to behave as 1/

√
N , where N is the number

of experiments (also called “number of queries” in [17]).
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– We consider attacks with a noise large enough for the success rate to be well
below 100% for a number of queries smaller than the size of its definition
set.1

3.4 Bounding the Success Rate

Let Si denote i.i.d. Bernoulli variables that take binary values in {0, 1} with
probabilities p and 1 − p, where p is the success probability. The success rate
is defined as SR = 1

N

∑N
i=1 Si and has expectation E[SR] = p, i.e., SR is an

unbiased estimator of the success probability. According to the strong law of
large numbers the success rate converges to p almost surely: SR

a.s.−→ p. In
addition, E[SR] = p, i.e. SR is an unbiased estimator of the success rate. Now,
the standard deviation of SR is easily computed:

σ(SR) =
√

1
N2 ·N · σ2(Sj) =

√
p·(1−p)

N . (3)

Thus, the estimation error on the success rate is maximized when p is close to
1/2, and is minimized when p is almost equal to 0 or 1.

In practice, one wishes to compare the success rates of two distinguishers
by examining the values of intermediate p (i.e. p ≈ 1/2). Note that there is a
uniform majoration σ(SR) ! 1

2
√
N
, but the error bars can be a function of p

and N . The criterion for analyzing experiments will be that errors bars never
overlap. Otherwise (see Fig. 1 for N = 10), more experiments must be done,
so as to reach a situation such as Fig. 1 for N = 200. The exact number of
experiments depends on the distinguishers to be relatively characterized. The
closer they are in success rate, the more experiments are required.

Fig. 1. Examples of success rates errors (Eqn. (3)) for various numbers of experiments

1 For instance, it can be seen in Fig. 2 that for the unprotected (resp. Boolean masked)
AES, the number of traces to recover the key successfully with probability > 80% is
about 2, 000 (resp. 70, 000), which is significantly greater than the number of possible
plaintexts (i.e. 2n = 256) for σ " 8.
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4 Simulation Results

In this section, we perform several attack experiments to compare KSA and
IKSA. Our methodology allows to observe how the different attacks behave
against unprotected reference and a masking scheme, and to compare their re-
sistance for different noise’s standard deviations.

In what follows, we consider a model in which the leakage variable X is ex-
pressed as a deterministic leakage function φ of the intermediate variable Y with
an independent additive noise N .

Target Leakage: We list hereafter the leakages we consider and the underlying
leaking variables:

– 1st-order leakage of an unprotected implementation: X = φ(Y ) +N ;
– 2nd-order leakage of 1st-order Boolean masking scheme [18]: X = φ(Y ⊕

M) + φ(M) +N , where the mask M is a uniformly distributed RV.

The leakage measurements have been simulated as samples of the random vari-
ables X with φ = HW 2 and assuming an additive white Gaussian noise N ∼
N (0,σ2). For both attacks, the sensitive variable Y was chosen to be an AES
S-box output of the form S(Z ⊕ k!), where S : F8

2 → F8
2 is SubBytes, Z is uni-

formly distributed over F8
2, and represents a varying plaintext byte and k! ∈ F8

2

represents the key byte to recover.

Side-Channel Distinguishers: We apply KSA and IKSA such as described in
previous sections. The guess key k is tested by estimating DKSA(X ; φ̂(Y (k)))
and DIKSA(X ; φ̂(Y (k))), respectively, where φ̂ is the prediction function. We
select the Hamming weight function as prediction function in our simulations.

Attack Simulation Results: For each investigated context, we compute the first-
order success rate of the attacks, over a set of 200 independent experiments
for several noise standard deviation values. For comparison purposes, we com-
pute the same metric for other univariate distinguishers: MIA, DPA [4], CPA,
VPA [11] and 2O-CPA [21]. Figure 2 summarizes the number of leakage mea-
surements required to observe a success rate of 90% in retrieving k! for those
SCA attacks. This figure is the compilation of success rates curves obtained for
different values of the noise standard deviation (see examples in Fig. 3).

The results presented in Fig. 2 show the significant gain of number of measure-
ments needed induced by IKSA compared to KSA attack. Our new distinguisher
compares favorably to KSA: the IKSA attack outperforms the KSA attack when
targeting the unprotected implementation or even when the Boolean masking
scheme is used for the protection. As expected, CPA performs well in both sce-
narios since the dependency between the leakage and the model is linear. But,

2 Assuming Hamming weight leakage model is realistic for implementations on simple
microcontrollers [12].
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Fig. 2. Evaluation of N90%, the number of messages to achieve a success rate greater
than 90%, according to the noise standard deviation when attacking unprotected (left)
and Boolean masking (right) AES implementation
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Fig. 3. Success rate of both IKSA and KSA distinguishers when attacking one substi-
tution box of an unprotected AES (left) and of a Boolean masking scheme (right)

we like to stress that we focus in this paper only on information-theoretic dis-
tinguishers which are generic.

In [13], a notion of asymptotic equivalence (noted “∼”) for side-channel dis-
tinguishers is introduced: two distinguishers are said equivalent if the number
of traces to overcome a given success rate (say 90%) decreases when the noise
variance increases. For example, the likelihood and the Pearson correlation are
equivalent in this sense. A look at N90% curves in Fig. 2 shows that other
univariate distinguishers exhibit a similar equivalence law:

– DPA ∼ CPA on an unprotected implementation (left);
– 2O-CPA ∼ VPA on a first-order masked implementation (right);
– KSA ∼ MIA on both implementations (already proved in [24]).

However, IKSA and KSA are not equivalent. The difference between IKSA and
KSA ∼ MIA is materialized in Fig. 2 as a circle in cyan color. To the best of
our knowledge, it is the first time that two distinguishers that do not become
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equivalent in the sense of [13] are put forward. Incidentally, we note that this
conclusion could not have been derived mathematically under the usual Gaussian
approximation, because under this approximation equivalence holds as σ → +∞.
This tends to show that the mutual and inter-class approaches are of a different
kind, even in a mono-variate context.

5 Conclusions and Perspectives

In this paper, we have introduced the new “inter-class” concept to distinguish be-
tween various partitionings. We applied this concept to the Kolmogorov-Smirnov
distance, resulting in IKSA. We also proposed a simulation-based fair framework
to compare the two distinguishers KSA and IKSA. Our framework takes in ac-
count the different sources of errors estimations. We used this framework to com-
pare KSA to IKSA using the success rate metric. Security metrics are clearly in
favor of IKSA even when the implementation is unprotected or protected using
a first-order Boolean masking countermeasure (with a linear leakage model).

An interesting question for the future work is to give a theoretical proof of
the soundness of the distinguishers. Also, we endeavour to find a mathematical
explanation why IKSA outperforms KSA for usual leakage functions.
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