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OFDM Based System Radio Resources

Dimensioning Approach: A Comparison Between

Cox Process and Poisson Point Process

Ridha Nasri, Jalal Rachad and Laurent Decreusefond

Abstract

The upcoming fifth generation (5G) New Radio (NR) interface inherits many concepts and techniques from

4G systems such as the Orthogonal Frequency Division Multiplex (OFDM) based waveform and multiple access.

Dimensioning 5G NR interface will likely follow the same principles as in 4G networks. It aims at finding the

number of radio resources required to carry a forecast data traffic at a target users Quality of Services (QoS).

The present paper attempts to provide a new approach of radio resources dimensioning considering the congestion

probability, qualified as a relevant metric for QoS evaluation. We distinguish between the spatial random distribution

of indoor users, modeled by a spatial Poisson Point Process (spatial PPP) in a typical area covered by a 5G cell,

and the distribution of outdoor users modeled by a linear PPP generated in a random system of roads modeled

according to a Poisson Line Process (PLP). Moreover, we show that the total requested Physical Resource Blocks

(PRBs) follows a compound Poisson distribution and we attempt to derive the explicit expression of the congestion

probability by introducing a mathematical tool from combinatorial analysis called the exponential Bell polynomials.

Finally we show how to dimension radio resources, for a given target congestion probability, by solving an implicit

relation between the necessary resources and the forecast data traffic expressed in terms of cell throughput. Different

numerical results are presented to justify this dimensioning approach.

Index Terms

5G New Radio, Dimensioning, Congestion probability, Poisson Line Process, Poisson Point Process, Indoor,
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I. INTRODUCTION

Radio dimensioning consists in assessing the network resources required to carry a predicted data traffic

with a satisfactory QoS. This later is often summarized in some metrics such as the average user throughput

or the target congestion probability. In contrast with some recent works, where the dimensioning exercise

is performed to satisfy a minimum user throughput in the cell, we use the cell congestion as the target

QoS, instead. Besides, dimensioning is performed assuming mobile users distributed in roads or located

in buildings. The first kind of users are modeled by Cox point process driven by PLP where the second

kind is described by a spatial PPP. Such mobile users are granted some radio resources, called Physical

Resource Blocks (PRB), at each Time Transmit Interval (TTI) and according to a predefined scheduling

algorithm. The choice of the scheduling algorithm is mainly related to the fairness level made between

users, i.e., the way that resources are allocated to users according to their channel qualities and their

priorities, defined by the operator [1]–[3].

A. Related works

Dimensioning approaches, resource allocation and scheduling algorithms have been widely addressed in

literature for OFDMA access technology; see for instance [2]–[10]. In [4], an adaptive resource allocation

for multiuser OFDM system, with a set of proportional fairness constraints guaranteeing the required

data rate, has been discussed. Similarly, authors in [2] surveyed different adaptive resource allocation

algorithms and provided a comparison between them in terms of performance and complexity. Furthermore,

OFDMA dimensioning has been always considered as a hard task because of the presence of elastic data

services. It was provided in [9] an analytical model for dimensioning OFDMA based networks with

proportional fairness in resource allocation between users requiring different transmission rates. For a

Poisson distribution of mobile users, authors in [9] showed that the required number of resources in

a typical cell follows a compound Poisson distribution. In addition, an upper bound of the blocking

probability was given. Likewise in [10], authors have proposed a Downlink OFDMA dimensioning

approach considering an Erlang’s loss model and Kaufman-Roberts algorithm to evaluate the blocking

probability. Also in [11], it has been proposed an analytical method to evaluate the QoS for Downlink

OFDMA system considering real-time and elastic traffic with a dimensioning approach illustration.

Additionally, Different models for network geometry and user distributions can be found in [12]–

[15]. Stochastic geometry is a strong mathematical tool to model the spatial randomness of wireless

communication and also the random tessellations of roads. In particular, authors in [14] and [15] considered
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vehicular-type communication systems where the transmitting and receiving nodes are distributed along

roads and modeled by a linear PPP, while roads random tessellations are modeled by a PLP, i.e., the

process of nodes is doubly stochastic. Such a model is known as Cox point process driven by PLP.

Others models have been proposed in literature such as Manhatan model that uses a grid of horizontal and

vertical streets, Poisson Voronoi Tessellations (PVT) and Poisson Delaunay Tessellations (PDT) [16]–[18].

Manhattan model does not fit the irregularity of roads in urban and dense urban environment, while PVT

and PDT could not lead to explicit analytical result. It seems that Cox point process driven by PLP is a

relevant model for roads in urban environment that is gaining popularity recently and merits investigations

when looking for performance analysis and dimensioning problems of wireless cellular communications.

B. Contribution

Compared to the existing works, the main contributions of this paper are:

• We provide an analytical model to dimension OFDM based systems with a proportional fair

resources’ allocation policy. This dimensioning model is very useful for operators because it

gives a vision on how they should manage the available spectrum. If the dimensioned number

of resources exceeds the available one, the operator can, for instance, aggregate fragmented

spectrum resources into a single wider band in order to increase the available PRBs, or activate

capacity improvement features like dual connectivity between 5G and legacy 4G networks, in

order to delay investment on the acquisition of new spectrum bands. Moreover, the proposed

model can be applied to the scalable OFDM based 5G NR with different subcarriers’ spacing

in order to enable different types of deployments and network topologies and support different

use cases.

• Instead of considering only the random distribution of users in the cell often modeled by a spatial

PPP, we consider two types of users: i) indoor users distributed in buildings and modeled by

a spatial PPP. ii) for outdoor users (e.g., pedestrians or vehicular), we characterize at first the

random distribution of roads in a typical cell coverage area by a PLP and then we consider the

random distribution of users in this system of roads according to a linear PPP. This model allows

the operator to evaluate and compare performances between outdoor and indoor environments

in terms of required radio resources.
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• We show that the total number of the requested PRBs follows a compound Poisson distribution

and we derive the explicit formula of the congestion probability as a function of different system

parameters by using a mathematical tool from combinatorial analysis called the exponential Bell

polynomials. This metric is defined as the risk that the requested resources exceed the available

ones. It is often considered primordial for operators when it comes to resources dimensioning

since it is related to the guaranteed quality of service. Then by setting a target congestion

probability, we show how to dimension the number of PRBs given a forecast cell throughput.

To the best of our knowledge, the explicit formula of the congestion probability has never been

derived in similar studies.

C. Paper organization

The rest of this paper is organized as follows: In Section II, system models, including a short description

of Poisson Line Process, are provided. Section III characterizes the proposed dimensioning model and

provides an explicit expression of the congestion probability and an implicit relation between the number

of required resources and the cell throughput. Numerical results are provided in Section IV. Section V

concludes the paper.

II. SYSTEM MODEL AND NOTATIONS

Cellular networks modeling is often related to the network geometry, the shape of the cell, the association

between cells and users and of course their spatial distributions. This latter is related to the geometry of

the city where the studied cell area exists. The Geometry of the city, in turn, is linked to the spatial

distribution of roads and buildings. Indoor users, which are distributed in buildings, are often modeled by

a spatial PPP in R2. However, outdoor users (e.g., pedestrians or vehicular) are always distributed along

roads. As we mentioned in the introduction, many models have been proposed in literature to model the

spatial distribution of roads, such as Manhattan model, PVT, PDT and Poisson Line Process. In this work,

we consider a combination of indoor and outdoor users in the studied cell area. Indoor users are distributed

according to spatial PPP and outdoor users are distributed along a random system of roads according to

a Cox Point Process driven by PLP.

A. Indoor users model

A PPP in R2 with intensity ζ is a point process that satisfies: i) the number of points inside every

bounded closed set B ∈ R2 follows a Poisson distribution with mean ζ |B|, where |B| is the Lebesgue



5

measure on R
2; ii) the number of points inside any disjoint sets of R

2 are independent [19]. Actually,

spatial PPP has been widely used to model BSs and users locations in cellular network. In this work,

indoor users are considered to be distributed in buildings according to a spatial PPP ϕ of intensity κ,

which means that their locations are uniformly distributed in the studied cell coverage area and their

number follows a Poisson distribution.

B. Outdoor users model

As we mentioned previously, outdoor users are considered to be distributed along a random system of

roads. To model the random tessellation of roads, we consider the so-called PLP which is mathematically

derived from the spatial PPP. Instead of points, the PLP is a random process of lines distributed in the

plane R2. Each line in R2 is parametrized in terms of polar coordinates (r,θ) obtained from the orthogonal

projection of the origin on that line, with r ∈ R+ and θ ∈ (−π, π]. Now we can consider an application

T that maps each line to a unique couple (r,θ), generated by a PPP in the half-cylinder R+ × (−π, π];

Fig. 1. The distribution of lines in R2 is the same as points’ distribution in this half-cylinder; see [14]

and [20] for more details.

In the sequel, we assume that roads are modeled by a PLP φ with roads’ intensity denoted by λ. The

number of roads that lie inside a disk s of radius R is a Poisson random variable, denoted by Y . It

corresponds to the number of points of the equivalent spatial PPP in the half-cylinder [0, R] × (−π, π]

having an area of 2πR. Hence, the expected number of roads that lie inside s is E(Y ) = 2πλR. Then,

conditionally on φ (i.e., conditionally on roads), outdoor users are assumed to be distributed on each road

according to independent linear PPPs having the same intensity δ. This model is known as Cox point

process. The mean number of users on a given road j is δLj , with Lj is the length of road j. Besides,

the number of roads that lie between two disks of radius R1 and R2 respectively, with R1 6 R2, is

2πλ(R2 − R1). Also, the number of distributed users in a road, parametrized by (r,θ) and delimited by

the two disks, is 2δ(
√

R2
2 − r2 −

√

R2
1 − r2). Additionally, the average number of outdoor users in the

disk of radius R can be calculated using the equivalent homogeneous spatial PPP with intensity λδ in

the disk area. For illustration, Fig. 1 presents the line parametrization described above and Fig. 2 shows

a realization of a Cox Point Process driven by PLP.

Additionally, we assume that outdoor and indoor users processes are independent and they form

respectively two processes with intensities λδ and κ. Therefore, the average number of users (outdoor and
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Figure 1: Line parametrization.

Figure 2: A realization of Cox Point Process driven by PLP.

indoor), denoted by u, inside the cell coverage area can be calculated by

u = (λδ + κ)πR2. (1)

Table I summarizes the basic notations used in the article.

C. Network model

We consider a circular cell s of radius R with a base station (BS), denoted also s and positioned at its

center, transmitting with a power level P . The received power by a user located at distance x from s is

Px−2b/a, where 2b is the path loss exponent and a is a propagation parameter that depends on the type
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Symbols Definition

ϕ spatial PPP of indoor users with intensity κ

φ PLP of roads with intensity λ

δ The linear PPP intensity on each road (outdoor)

rj The short distance between a road j and the origin

Y number of roads that lie inside s

δλ Spatial PPP intensity on half-cylinder [0, R]× (−π, π]

u Average number of users in s

Table I: Notations.

of the environment (outdoor, indoor). We assume that BS s allocates PRBs to its users at every TTI (e.g.,

1 ms). Each PRB has a bandwidth denoted by W (e.g., W =180kHz for scalable OFDM with subcarriers

spacing of 15kHz).

Active users in the cell compete to have access to the available dimensioned PRBs. Their number is

denoted by M . The BS allocates a given number n of PRBs to a given user depending on: i) the class

of services he belongs to (i.e.,the transmission rate he requires) and ii) his position in the cell (i.e., the

perceived radio conditions). Without loss of generality, we assume that there is just one class of service

with a required transmission rate denoted by C∗.

A user located at distance x from s decodes the signal only if the metric “Signal to Interference plus

Noise Ratio (SINR)” Θ(x) = Px−2b/a
I+σ2 is above a threshold Θ∗ = Θ(R), where I is the received co-channel

interference and σ2 is the thermal noise power. For performance analysis purpose, SINR Θ(x) is often

mapped to the user throughput by a link level curve. To simplify calculation, we use hereafter the upper

bound of the well known Shannon’s formula for MIMO system Tx×Rx, with Tx and Rx are respectively

the number of transmit and receive antennas. Hence, the throughput of a user located at distance x from

s is

C(x) = ϑW log2 (1 +Θ(x)) , (2)

with ϑ = min(Tx,Rx).
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Then, the number of PRBs required by a user located at distance x from s is

n(x) = ⌈
C∗

C(x)
⌉ ≤ N, (3)

where N = min(Nmax, ⌈C
∗/(ϑWlog2(1 +Θ∗))⌉), Nmax is the maximum number of PRBs that a BS can

allocate to a user (fixed by the operator) and ⌈.⌉ stands for the Ceiling function.

It is obvious from (3) that users are fairly scheduled because a user with bad radio conditions (with

low value of C(x)) gets higher number of PRBs to achieve its transmission rate C∗.

Let dn be the distance from s that verifies, for all x ∈ (dn−1, dn], n(x) = n, with

n =
C∗

C(dn)
(4)

is an integer and

dn =



















0 if n = 0,
[

a(I+σ2)
P

(2
C∗

nϑW − 1)
]

−1

2b

otherwise,

From (4), the cell s area can be divided into rings with radius dn such that for 1 6 n 6 N, 0 6 dn−1 <

dn 6 R. The area between the ring of radius dn and the ring of radius dn−1 characterizes the region of

the cell where users require n PRBs to achieve the transmission rate C∗. Given that dn depends on the

propagation parameter, it is worth to mention that there is a difference between dn values for outdoor and

indoor environments. Thus to avoid confusion, we denote in the remainder, for indoor environment, the

ring radius by d̃n and the propagation parameter by ã. Finally, we define the cell throughput by the sum

over all transmission rates of users:

τ = uC∗, (5)

with u is recalled the average number of users inside s and expressed by (1).

On the other hand, inter-cell interference is one of the main factors that compromise cellular network

performance. The analysis of this factor level go through the SINR evaluation that depends on the geometry

of the network as well as the distribution of users’ locations. The analytical random models that can be

found in literature, such as Homogeneous PPP, assume that BSs are randomly distributed according to a

spatial point process. Thus, it becomes hard to estimate the interference level in each user location and
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only its distribution is determined; see for instance [13].

Besides, interference level estimation is of utmost importance in link adaptation procedure. In practical

systems, the SINR is mapped to an indicator called Channel Quality Indicator (CQI) (e.g., 15 CQI indexes

for LTE). This indicator is used by the BSs to determine the modulation and coding schemes (MCS) and

consequently the transmission rate. Actually, the level of interference varies from one location to another

in the same cell. Practically cell edge users experience high interference level compared to users that are

close to the BS in the cell middle or cell center. To this purpose, one can consider three range of CQI

indexes with a constant interference level for each range. The first range (i.e., low CQI indexes) stands

for bad channel quality with high interference level, the second range (i.e., medium CQI indexes) stands

for low interference level and the last range (i.e., high CQI indexes) refers to good channel quality with

a negligible interference level.

Furthermore, when interference level is non negligible, we use the notion of interference margin (IM)

or Noise Rise in link budget. IM is defined as the increase in the thermal noise level caused by other-cell

interference and it can be expressed in the linear scale as

IM =
I + σ2

σ2
(6)

In the remainder of this study, we evaluate interference level by using three margins for each region

of the studied cell. We consider three regions in s coverage area: the cell center that stands for the disk

having a radius of R
3

, the cell middle that represents the region between the disk B(0,R
3

) and the disk

B(0,2R
3

). Finally, the cell edge refers to the region of the cell where the distance to s is above 2R
3

.

III. PRESENTATION OF THE DIMENSIONING APPROACH

Dimensioning process consists in evaluating the required radio resources that allow to carry a forecast

data traffic given a target QoS. The QoS can be measured by the congestion probability metric or even by

a target average user throughput. The present approach assesses the congestion probability as a function

of many key parameters, in particular, the number of PRBs M and the cell throughput τ . To characterize

this congestion probability, we need to evaluate the total requested PRBs by all users. In the remainder

of this section, we will state some analytical results regarding the explicit expression of the congestion
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probability under the system model presented in the previous sections.

A. Qualification of the total number of requested PRBs

As we have mentioned in section II, outdoor users are distributed along each road Lj according to a

linear PPP of intensity δ. Now, if we consider a disk B(0,dn) of radius dn, the number of users in the

portion of Lj that lies inside B(0,dn) is a Poisson random variable (this comes from the definition of the

linear PPP) with mean 2δ
√

d2n − r2j (Pythagoras’ theorem). Hence, conditionally on φ, the mean number

of users αn(Y ) inside B(0,dn) is the sum over all roads Lj that intersect with B(0,dn) and it can be

expressed by

αn(Y ) = 2δ

Y
∑

j=1

1(dn>rj)

√

d2n − r2j . (7)

Moreover, the number of users in the portion of Lj that lies between two rings B(0,dn) and B(0,dn−1)

is also a Poisson random variable with parameter (i.e, the mean number of users) 2δ(
√

d2n − r2j −
√

d2n−1 − r2j ). Finally, the mean number of users µn(Y ) in all the roads that lie between the rings B(0,dn)

and B(0,dn−1) can be expressed by

µn(Y ) = αn(Y )− αn−1(Y ). (8)

Similarly, the mean number of indoor users, that are distributed according to a spatial PPP of intensity

κ can be expressed by

µ̃n = κπ(d̃2n − d̃2n−1). (9)

To qualify the number of requested PRBs by outdoor and indoor users, we consider two independent

Poisson random variables denoted respectively by Xn and X̃n with parameters µn(Y ) and µ̃n. Xn and

X̃n represent the number of users (outdoor and indoor) that request n PRBs with 1 ≤ n ≤ N .

Finally, we define the total number of requested PRBs in the cell as the sum of demanded PRBs by

outdoor and indoor users in each ring. It can be expressed as

Γ = F + F̃ , (10)
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where F =
∑N

n=1 nXn and F̃ =
∑N

n=1 nX̃n are the total demanded PRBs by outdoor and indoor users

respectively.

The random variable Γ is the sum of weighted Poisson random variables and it is called compound

Poisson sum. The evaluation of its distribution requires extensive numerical simulation. It is important

to mention that the parameter µn of Xn depends on Y , which is a Poisson random variable. Hence all

calculations should be done conditionally on φ. The following proposition gives the explicit expression

of the first-order moment (i.e., the mathematical expectation) of Γ .

Proposition 1. Let Γ be a compound Poisson sum as in (10). Let φ be a PLP defined as in section II.A

with Y is the Poisson random variable that represents the number of roads that lie inside s coverage

area.

The first-order moment of Γ is given by

E(Γ ) =
4δω

3R

N
∑

n=1

n
d3n − d3n−1

R
+ κπ

N
∑

n=1

n(d̃2n − d̃2n−1), (11)

with ω = 2πλR is the mathematical expectation of Y .

Proof. See appendix A.

B. Congestion probability and dimensioning approach

The congestion probability, denoted by Π , is defined as the probability that the number of the total

requested PRBs in the cell is greater than the available PRBs fixed by the operator. In other words, it

measures the probability of failing to achieve an output number of PRBs M required to guarantee a

predefined quality of services:

Π(M, τ) = P(Γ ≥ M). (12)

The following proposition gives the explicit expression of the congestion probability for a given process

of users.
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Proposition 2. Let Λ be a random variable such that Λ =
∑N

n=1 nVn, with Vn are Poisson random

variables of intensity wn. The probability that Λ exceeds a threshold M is

P(Λ ≥ M) = 1−
1

π
e−

∑N
n=1 wn×

∫ π

0

epn(θ)
sin(Mθ

2
)

sin( θ
2
)

cos(
M − 1

2
− qn(θ))dθ, (13)

where

pn(θ) =

N
∑

n=1

wn cos(nθ) and qn(θ) =

N
∑

n=1

wn sin(nθ).

Proof. See appendix B.

This formula is valid for every process of user distribution including the spatial PPP which represents

here the distribution of indoor users. The congestion probability P(F̃ ≥ M) in this case can be explicitly

determined by taking wn = µ̃n and using
∑N

n=1 µ̃n = κπR2 in (13). Similarly, for outdoor users

process which is a Cox point process, conditionally on the PLP φ, by taking wn = µn(Y ) and using
∑N

n=1 µn(Y ) = αN(Y ), proposition 2 remains valid. The explicit expression of the congestion probability

P(F ≥ M) in this case is calculated by averaging over the PLP φ.

Moreover, from the superposition theorem of Poisson process, the congestion probability, considering

the combination of outdoor and indoor users, can be calculated by applying proposition 2 to the ran-

dom variable Γ =
∑N

n=1 nVn, with Vn = Xn + X̃n is a Poisson random variable having a parameter

wn = µn(Y ) + µ̃n.

The congestion probability expressions above can be developed even further by introducing a mathe-

matical tool from combinatorial analysis called the exponential Bell polynomials [21] and [22]. This tool

is widely used for the evaluation of integrals and alternating sums. In appendix C, we introduce some key

results of Bell Polynomials.

The following proposition gives the expression of the congestion probability as a function of the

exponential complete Bell Polynomials.

Proposition 3. Let Λ be a random variable such that Λ =
∑N

n=1 nVn, with Vn are Poisson random

variables of intensity wn. Let xj be defined as
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xj =



























wjj! if 1 ≤ j ≤ N ,

0 otherwise.

The probability that Λ exceeds a threshold M can be expressed as a function of the exponential complete

Bell polynomials by

P(Λ ≥ M) = 1−H

M−1
∑

k=0

Bk(x1, ..., xk)

k!
(14)

with H = e−
∑N

n=1 wn .

Proof. See appendix D.

Now, to derive the expression of the congestion probability, we can apply proposition 3 to the random

variable Γ defined in (10) as the superposition of two independent discrete random variables F and F̃ .

Γ can be written as

Γ =
N
∑

n=1

nVn, (15)

with Vn = Xn + X̃n is a Poisson random variable of parameter wn = µn(Y ) + µ̃n. Hence, by using

proposition 3, the congestion probability conditionally on φ (PLP) can be expressed as

P (Γ ≥ M |φ) = 1−H

M−1
∑

k=0

Bk(x1, ..., xk)

k!
, (16)

where xj = (µj(Y ) + µ̃j)/j! and H = e(−αN (Y )−κπR2).

Once again, the final expression of the congestion probability is calculated by averaging over the PLP

φ as

Π(M, τ) = Eφ[P(Γ ≥ M |φ)]. (17)

Once we have the expression of the congestion probability, we set a target value Π∗ and then, the

required number of PRBs M is written as a function of τ through the implicit equation Π(M, τ) = Π∗.

The output M of the implicit function constitutes the result of the dimensioning process.
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Figure 3: Congestion probability theoretical vs simulation for two values of τ

IV. NUMERICAL RESULTS

For numerical purpose, we consider a cell of radius R = 0.7km with a transmit power level P = 60dBm

(corresponds to 43dBm from the transmitter power amplifier and 17dBm for the antenna gain of the

transmitter) and operating in a bandwidth of 20MHz. The downlink thermal noise power including the

receiver noise figure is calculated for 20MHz and set to σ2 = −93dBm. For outdoor environment, the

propagation parameter is a = 130dB and for deep indoor environment we take ã = 166dB. The path

loss exponent is considered to be 2b = 3.5. We assume also that we have 8Tx antennas in the BS and

2Rx antennas in users’ terminals. So, the number of possible transmission layers is at most 2. The SINR

threshold is set to Θ∗ = −10dB.

In Fig. 3, we simulate the described model in MATLAB for two values of cell throughput τ = 14Mbps

and τ = 30Mbps. We notice that the explicit expression of the congestion probability fits the empirical

one obtained by using Monte-Carlo simulations. Moreover, it is obvious that an increase in cell throughput

τ generates an increase of the congestion probability because τ is related to the number of users in the

cell and depends on 3 intensities: outdoor users’ intensity δ, roads’ intensity λ and indoor users’ intensity

κ. When those intensities increase, the number of the required PRBs by users in the cell coverage area

increases, thus the system experiences high congestion. An other important factor that can impact system

performance is the path loss exponent. The variations of this parameter has tremendous effect on the

congestion probability: when 2b goes up, radio conditions become worse and consequently the number of

demanded PRBs to guarantee the required QoS increases.
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Figure 4: Comparison between different user distributions

To see how the random distribution of users impacts performance, we plot in Fig. 4 the congestion

probability first, considering only outdoor users in a random system of roads according to Cox process with

roads intensity λ = 9km/km2 and users’ intensity δ = 6users/km, and we compare it to the congestion

probability of a spatial PPP outdoor users model with an equivalent intensity of λδ = 54users/km2.

We observe that the number of requested PRBs by users is always higher, for every target value of the

congestion probability, when users are modeled by Cox process driven by PLP. In other words, even if the

mean number of users in the cell is the same, the random tessellation of roads i.e., the geometry of the area

covered by the cell has a significant impact on performance. Also, one can notice that if we consider a Cox

model with high roads intensity, users appear to be distributed every where in the cell as in spatial PPP

model with higher intensity. In this case, Cox process driven by PLP can be approximated by a spatial PPP.

Also in Fig. 4, we compare the congestion probability of indoor users modeled according to a spatial

PPP and the one of outdoor users modeled according to a spatial PPP having the same intensity. We notice

that indoor users required more PRBs than outdoor users and this comes from the difference between

outdoor and indoor environment. Actually, signal propagation in indoor environment suffers from high

attenuation and delay factors because of the presence of obstacles such as buildings and walls. Hence,

indoor users always experience high path loss and bad performance in terms of SINR, which means that

they need always more PRBs than outdoor users to achieve a required transmission rate.

During resource dimensioning process, the operator starts by defining a target congestion probability
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Figure 5: Required PRB M as a function of cell Throughput τ , for fixed transmission rate

C∗ = 500kbps.

that can be tolerated for a given service. For different traffic forecasts, the number of PRBs is set to ensure

that the congestion probability never exceeds its target value. Fig. 5 shows the number of required PRBs

that the operator should make it available, when the expected cell throughput is known, for two target

values of the congestion probability (Π∗ = 1% and Π∗ = 5%) and for two road intensities (λ = 2km/km2

and λ = 10km/km2) with a fixed transmission rate of 500kbps. We can observe that for each forecast cell

throughput value, the threshold number of resources required in the cell decreases when road intensity

increases. For instance, when λ increases from 2km/km2 to 10km/km2 (i.e., from 9 expected roads to 44),

the number of the dimensioned PRBs decreases by 32, for the same cell throughput value τ = 25Mbps.

Also, for a given value of τ , we can notice from (5) that the user intensity on roads δ is inversely

proportional to roads’ intensity λ. Thus for fixed τ , if λ increases, δ decreases and consequently the

number of required PRBs decreases.

Moreover, in Fig. 6 we compare the dimensioning results for 3 models: Outdoor users according to Cox

process driven by PLP, outdoor users according to a spatial PPP model and indoor users with spatial PPP

model (having the same intensities). We notice that the number of dimensioned PRBs for outdoor users is

always higher when users are modeled according to Cox process driven by PLP than spatial PPP model.

Also, we can see that indoor users need more PRBs than outdoor users (when the both are modeled by

the spatial PPP) which is in agreement with the previous results. Besides, we have mentioned previously

that when λ is very high, the distribution of users becomes similar to the one of a spatial PPP. Thus, with
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Figure 6: Dimensioned PRBs comparison: outdoor users with Cox model, outdoor users with spatial

PPP and indoor users with spatial PPP, for a fixed transmission rate C∗ = 500kbps

a spatial PPP model, one can have small values of the dimensioned PRBs, which is optimistic compared

to the real geometry of the area covered by a cell in dense urban environment, where more PRBs are

required to guarantee the desired quality of services.

To see interference impact on the dimensioning process, we divide, as we have mentioned previously,

the cell into 3 regions: cell center with a radius of R/3, cell middle represented by the ring between R/3

and 2R/3 and cell edge characterized by a distance from the BS that exceeds 2R/3. Each region of the

cell experiences a given level of interference evaluated in terms of IM (Interference Margin or Noise

Rise). Cell edge users always experience high interference level and IM is set to be 15dB. In cell middle

we consider an interference margin of 8dB, whereas in the cell center where users perceive good radio

conditions, the interference margin is set to IM = 1dB.

Fig. 7 shows the congestion probability in a noise-limited scenario (Interference level is neglected) and

its comparison with the one where interference is taken in consideration as we have described above. We

consider a scenario with 50% of outdoor users modeled according to Cox process driven by the PLP and

50% of indoor users modeled according to a spatial PPP, with an average cell throughput of 30Mbps and

a fixed transmission rate of 500kbps. As expected, interference has a tremendous impact on the number of

required PRBs. For instance, when the target congestion probability is set to 5%, the number of required

PRBs increases by almost 80 because of the presence of interference. Similarly in Fig. 8, we plot the
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Figure 8: Interference impact on dimensioned PRBs M.

dimensioning curves i.e., the threshold number of PRBs in the cell as a function of the forecast average

cell throughput, for a noise-limited environment and an environment with interference. As we can see,

the number of PRBs that the operator should make it available is higher when interference impact is

considered. For instance, for a forecast average cell throughput of 26Mbps and a target QoS Π∗ = 5%,

the number of dimensioned PRBs increases by almost 50 PRBs when the three interference margins are

considered.

Besides, interference level varies from one location to another in the same cell. Practically cell edge
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Figure 9: Comparison between dimensioned PRBs M for cell edge, cell middle and cell center users.

users experience high interference level compared to users that are close to the BS in the cell middle or

cell center. Fig. 9 shows a comparison between resource dimensioning results for the three regions of the

cell: cell center, cell middle and cell edge. As we can observe, the high demand on PRBs comes especially

from cell edge users that perceive bad radio conditions because of the far distance from the BS and the

presence of interference. Hence, for a predicted average cell throughput, the number of dimensioned PRBs

should be set always by considering a probable presence of traffic hotspots at the cell edge.

Dimensioning phase is very important because it gives the operators a vision on how they should

manage the available spectrum. If the dimensioned number of resources exceeds the available one, the

operator can for instance:

• aggregate fragmented spectrum resources into a single wider band in order to increase the available

PRBs,

• activate capacity improvement features like carrier aggregation or dual connectivity between 5G and

legacy 4G networks in order to delay investment on the acquisition of new spectrum bands,

• change the TDD (Time Division Duplexing), configuration to relieve the congested link,

• or even buy new spectrum bands.

V. CONCLUSIONS

In this paper, we have presented a resource dimensioning model for OFDM based systems that can

be applied also for scalable OFDM based 5G NR interface. We have considered two spatial random
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distributions in order to distinguish between outdoor users distributed along a random system of roads in

a typical cell coverage area (Cox Point Process driven by PLP) and indoor users distributed in buildings

according to the widely used spatial PPP. The comparison between the two spatial distributions showed

that results are more optimistic when spatial PPP is used. Also, we have shown that the geometry of the

area covered by a cell can impact the results. Moreover, we have derived an analytical model to qualify the

number of required PRBs in a typical cell with two explicit formulas of the congestion probability. Also,

we have established an implicit relationship between the required resources and the forecast traffic given

a target congestion probability. This relationship translates the dimensioning problem that an operator can

perform to look for the amount of necessary spectrum resources to satisfy a predefined QoS. Finally, a

comparison between an interfered environment and a noise-limited one has been provided. Besides, we

have shown that the high requirement in terms of radio resources comes from cell edge users that perceive

bad radio conditions.

APPENDIX A

PROOF OF PROPOSITION 1

Let Γ be defined as in (10). Xn and X̃n are two Poisson random variables with parameters µn(Y ) and

µ̃n. The random variable Xn is dependent on the PLP φ i.e., depends on Y . Hence, the mathematical

expectation of Γ can be written as

E(Γ ) = Eφ(Γ |φ)

=

N
∑

n=1

nEφ(µn(Y )) +

N
∑

n=1

nµ̃n (18)

To evaluate equation (18), we need to calculate first the mathematical expectation of µn(Y ). Let ω =

2πλR be the mathematical expectation of the Poisson random variable Y . Eφ(µn(Y )) can be expressed

as

Eφ(µn(Y )) = 2δ
+∞
∑

k=1

ωke−ω

k!

k
∑

j=1

Erj

[

1(dn>rj)

√

d2n − r2j

]

−

Erj

[

1(dn−1>rj)

√

d2n−1 − r2j

]

(19)

{rj} follow a uniform distribution in the cell coverage area. Thus

Erj

[

1(dn>rj)

√

d2n − r2j

]

=
2

R2

∫ dn

0

√

d2n − r2rdr. (20)
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Finally, by using a change of variable x = r2 and the expression of µ̃n, we get the result of proposition

1, which completes the proof.

APPENDIX B

PROOF OF PROPOSITION 2

To prove proposition 2, we calculate at first the moment generating function (i.e., Z-Transform) f(z)

of the discrete random variable Λ.

f(z) = E(zΛ) =
+∞
∑

k=0

zkP(Λ = k)

=
N
∏

n=1

+∞
∑

k=0

znkP(Vn = k). (21)

Since Vn is a Poisson random variable with parameter wn, (21) is simplified to

f(z) = e−
∑N

n=1 wne
∑N

n=1 z
nwn, (22)

It is obvious that f is analytic on C and in particular inside the unit circle ω. Cauchy’s integral formula

gives then the coefficients of the expansion of f in the neighborhood of z = 0:

P(Λ = k) =
1

2πi

∫

ω

f(z)

zk+1
dz. (23)

In (23), replacing f by its expression (22) and parameterizing z by eiθ lead to

P(Λ = k) =
1

2π
e−

∑N
n=1 wn

∫ 2π

0

e
∑N

n=1 wneinθ

eikθ
dθ. (24)

Since the congestion probability is defined by the CCDF (Complementary Cumulative Distribution

Function) of Λ, then

P(Λ ≥ M) = 1−
M−1
∑

k=0

P(Λ = k)

= 1−
1

2π
e−

∑N
n=1 wn

∫ 2π

0

e
∑N

n=1 wneinθ

M−1
∑

k=0

e−ikθdθ. (25)

The sum inside the right hand integral of (25) can be easy calculated to get the explicit expression of

(13) after some simplifications.
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APPENDIX C

KEY BACKGROUND ON THE EXPONENTIAL BELL POLYNOMIALS

The exponential complete Bell polynomials Bp are defined by

Bp(x1, x2, ...., xp) =
∑

k1+2k2+...=p

p!

k1!k2!....
(
x1

1!
)k1(

x2

2!
)k2 ....

and verify the following formula given by the generating function

e
∑+∞

j=1
xj

tj

j! =

+∞
∑

p=0

tp

p!
Bp(x1, x2, ...xp). (26)

Also, if we consider the following matrix Ap = (ai,j)1≤i,j≤p defined by



















































ai,j =
(

p−i
j−i

)

xj−i+1 if i ≤ j,

ai,i−1 = −1 if i ≥ 2

ai,j = 0 if i ≥ j + 2,

such that
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0 0 0 . . . −1 x1



























then the complete exponential Bell Polynomial Bp(x1, ....xp) can be define as the determinant of this

matrix.

Bp(x1, .., xp) = det(Ap). (27)
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For instance, the first few Bell Polynomials are given by

B0 = 1

B1(x1) = x1

B2(x1, x2) = x2
1 + x2

B3(x1, x2, x3) = x3
1 + 3x1x2 + x3

B4(x1, x2, x3, x4) = x4
1 + 6x2

1x2 + 4x1x3 + 3x2
2 + x4

...

Also, the Complete Bell polynomials satisfy the binomial type relation:

Bp(x1 + y1, .., xp + yp) =

p
∑

i=0

(

p

i

)

Bp−i(x1, .., xp−i)Bi(y1, .., yi). (28)

APPENDIX D

PROOF OF PROPOSITION 3

By using the definition of xj , the Z-Transform of Λ given in appendix B by equation (22) becomes

f(z) = He
∑+∞

j=0
zj

xj

j! , (29)

with H = e−
∑N

n=1 wn .

The second exponential term in (29) can be evaluated by using the generating function of the complete

Bell Polynomials given in equation (26), it follows that

f(z) = H

+∞
∑

p=0

zp

p!
Bp(x1, ..., xp) (30)

On the other hand, by using the definition of Z-Transform of Λ and the Taylor expansion of f(z) in 0,

it follows that

P(Λ = p) =
H

p!
Bp(x1, ..., xp). (31)

Finally, from the definition of the CCDF (Complementary Cumulative Distribution Function), we get

P(Λ ≥ M) = 1−

M−1
∑

k=0

P(Λ = k), (32)

which completes the proof.
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