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Abstract—A major practical limitation of the Maddah-Ali-
Niesen coded caching techniques is their high subpacketization
level. For the simple network with a single server and multiple
users, Yan et al. proposed an alternative scheme with the so-called
placement delivery arrays (PDA). Such a scheme requires slightly
higher transmission rates but significantly reduces the subpack-
etization level. In this paper, we extend the PDA framework
and propose three low-subpacketization schemes for combination
networks, i.e., networks with a single server, multiple relays,
and multiple cache-aided users that are connected to subsets
of relays. One of the schemes achieves the cutset lower bound
on the link rate when the cache memories are sufficiently large.
Our other two schemes apply only to resolvable combination
networks. For these networks and for a wide range of cache
sizes, the new schemes perform closely to the coded caching
schemes that directly apply Maddah-Ali-Niesen scheme while
having significantly reduced subpacketization levels.

I. INTRODUCTION

Caching is a promising approach to alleviate current net-
work traffics driven by on-demand video streaming. The idea
is to pre-fetch contents during off-peak hours before the actual
user demands, so as to reduce traffic at peak hours when the
demands are made. Therefore, the communication takes place
in two phases: content placement at off-peak hours and content
delivery at peak hours.

In their seminal work [1], Maddah-Ali and Niesen modeled
the content delivery phase by a shared error-free link from
the single server to all users, and they showed that delivery
traffic in this shared-link setup can be highly reduced through
a joint design of content placement and delivery strategy that
exploits multicasting opportunities. The scheme is known as
coded caching and has been extended to various settings, e.g.,
Gaussian broadcast channels [2], multi-antenna fading chan-
nels [3]–[5], or combination networks [6]–[11] as considered
in this paper. In a (h, r)-combination network, a single server
communicates over dedicated error-free links with h relays
and these relays in their turn communicate over dedicated
error-free links with

(
h
r

)
users that have local cache memories.

Each user is connected to a different subset of r relays. Ji
et al. first investigated this network [6] for the case when r
divides h (denoted by r|h), and the achievable bound was
improved in [7]. In [8], Wan et al. tightened the lower bound
under the constraint of uncoded placement, and the achievable
bound for the case when the memory size is small. In [10]–
[12], Maxmimum Distance Separable (MDS) codes are applied

before placement. In particular, [10], [11] show that the upper
bound in [7] is achievable for any (h, r) combination network,
and [12] shows that even lower delivery rates are achievable.
As the results of our work require memory size larger than
that of [8] and is uncoded placement, we only compare our
results with those from [7].

A key factor that limits the application of all forms of coded
caching in practice, is the required high subpacketization level
[13], i.e., the number of subpackets must grow exponentially
with the number of users. In contrast, [14]–[18] proposed
new caching schemes that have much lower subpacketization
levels but slightly increased transmission rate. A useful tool
for representing these new schemes is placement delivery
array (PDA) introduced in [14]. PDAs characterize both the
(uncoded) placement and delivery strategies with a single array
[14], and thus facilitate the design of good caching schemes.

In this paper, we first introduce combinational PDAs (C-
PDA) to represent uncoded placement and delivery strategies
for combination networks in a single array. We also deter-
mine the rate, memory, and subpacketization requirements
of the caching scheme corresponding to a given C-PDA.
Then, for the case when r|h, we describe how any standard
PDA with

(
h−1
r−1
)

columns can be transformed into a C-
PDA for a (h, r)-combination network. With this transforma-
tion and the previous low-subpacketization schemes for the
single-shared link setup, two low-subpacketization schemes for
(h, r)-combination networks are obtained. The performances
of the new schemes are close to the scheme in [7], but have
significantly lower subpacketization level. Finally, for arbitrary
(h, r), we propose a C-PDA for which the corresponding
caching scheme achieves the cut-set lower bound for suffi-
ciently large cache sizes.

Due to the space limitation, we only provide sketches of
the proofs. For details, see [19].

Notations: We denote the set of positive integers by N+. For
n ∈ N+, denote the set {1, 2, · · · , n} by [n]. The Exclusive
OR operation is denoted by ⊕. For a positive real number x,
dxe is the least integer that is not less than x.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

Consider the (h, r)-combination network illustrated in
Fig. 1, where h and r are positive integers and r ≤ h. The



network comprises of a single server, h relays:

H = {H1, H2, · · · , Hh},

and K =
(
h
r

)
users labeled by all the r-dimensional subsets

of relay indices [h]:

T ,
{
T : T ⊂ [h] and |T | = r

}
. (1)

Each user has a local cache memory of size MB bits. The
relays have no cache memories. The server can directly access
a library W of N files,

W = {W1,W2, · · · ,WN},

where each file Wn consists of B independent and identically
uniformly distributed (i.i.d.) random bits. The server can send
RB bits to each of the h relays over an individual error-free
link. Here, R is the link rate (or rate for brevity). Each relay
can communicate with some of the users. Specifically, user T
is connected through individual error-free links of rate R to
the r relays with index in T , i.e., to relays {Hi : i ∈ T}.

Fig. 1: A (4, 2)-combination caching network.

We now describe the storage and communication operations.
The system operates in two consecutive phases.
1. Placement Phase: In this phase, each user T directly
accesses to the file library W and can store an arbitrary
function thereof in its cache memory, subject to the space
limitation of MB bits. Denote the cached content at user T by
ZT , and the set of all cached contents by Z , {ZT : T ∈ T}.
2. Delivery Phase: In this phase, each user T arbitrarily
requests a file WdT from the server, where dT ∈ [N ]. The
users’ requests d , {dT : T ∈ T} ∈ [N ]K are revealed to all
parties, i.e., to server, relays, and users. For each i ∈ [h], the
server sends RB bits to relay Hi:

Xi = φi(W1, . . . ,WN ,Z,d),

for some function φi : FB·N2 ×FB·M ·K2 ×[N ]K → FB·R2 . Relay
Hi forwards the signal Xi to all connected users.1

At the end of this phase, each user T ∈ T, decodes its
requested file WdT based on all its received signals XT ,
{Xi : i ∈ T}, its cache content ZT , and demand vector d:

ŴdT = ψT (XT , ZT ,d),

1Previous works on combination networks allow the relay to send different
arbitrary functions to their connected users. But since the rate of relay-to-users
links needs not exceed the rate of the server-to-relays, this apparently more
general setup does not allow for better communication strategies.

for some function ψT : FB·R·r2 × FB·M2 × [N ]K → FB2 .
The optimal worst-case rate R?(M) is the smallest delivery

rate R for which there exist some placement and delivery s-
trategies so that the probability of decoding error ŴdT 6=WdT

vanishes asymptotically as B → ∞ at all the users and for
any possible demand d.

Special focus will be given to (h, r)-combination networks
with r|h. In this case, the users can be partitioned into subsets
so that in each subset exactly one user is connected to a given
relay, see [7].
Definition 1 (Resolvable Networks). A combination network
is called resolvable if the user set T can be partitioned into
subsets P1,P2, · · · ,PK̃ so that for all i ∈ [K̃] the following
two conditions hold:
• If T, T ′ ∈ Pi and T 6= T ′, then T ∩ T ′ = ∅.
•
⋃
T :T∈Pi

T = [h].
Subsets P1,P2, · · · ,PK̃ satisfying these conditions are called
parallel classes.

B. Preliminaries: Shared-link Setup and PDAs

For the purpose of this subsection, consider the original
coded caching setup [1] with a single server and K users each
having a cache memory of MB bits. The server is connected
to the users through a shared error-free link of rate R.

Yan et al. [14] proposed to unify the description of uncoded
placement and delivery strategies for this shared-link setup in
a single array, called the placement delivery array (PDA).
Definition 2 (PDA, [14]). For positive integers K,F,Z and
S, an F ×K array A = [aj,k], j ∈ [F ], k ∈ [K], composed
of a specific symbol “ ∗ ” and S ordinary symbols 1, · · · , S,
is called a (K,F,Z, S) placement delivery array (PDA), if it
satisfies the following conditions:
C1. The symbol “ ∗ ” appears Z times in each column;
C2. Each ordinary symbol occurs at least once in the array;
C3. For any two distinct entries aj1,k1 and aj2,k2 , we have

aj1,k1 = aj2,k2 = s, an ordinary symbol only if
a. j1 6= j2, k1 6= k2, i.e., they lie in distinct rows and

distinct columns; and
b. aj1,k2 = aj2,k1 = ∗, i.e., the corresponding 2 ×

2 sub-array formed by rows j1, j2 and columns
k1, k2 must be of the following form[

s ∗
∗ s

]
or
[
∗ s
s ∗

]
. (2)

We refer to the parameter F as the subpacketization level.
Specially, if each ordinary symbol s ∈ [S] occurs exactly g
times, A is called a g-(K,F,Z, S) PDA, or g-PDA for short.

Any PDA can be transformed into a caching scheme having
the following performance [14]:
Remark 1. A (K,F,Z, S) PDA corresponds to a caching
scheme for the shared error-free link setup with K users that
is of subpacketization level F , requires cache size M = Z

FN ,
and delivery rate R = S

F .
Two low-subpacketization schemes were proposed in [14]:



Lemma 1 (PDA for N
M ∈ N+, [14]). For any q,m ∈ N+, q ≥

2, there exists a (m + 1)-(q(m + 1), qm, qm−1, qm+1 − qm)
PDA, with rate R = N

M − 1 and subpacketization level F =

(NM )
KM
N −1.

Lemma 2 (PDA for N
N−M ∈ N+, [14]). For any q,m ∈

N+, q ≥ 2, there exists a (q − 1)(m + 1)-(q(m + 1), (q −
1)qm, (q − 1)2qm−1, qm) PDA, with rate R = N

M − 1 and

subpacketization level F = M
N−M ·

(
N

N−M
)K(1−M

N )−1
.

III. C-PDAS FOR COMBINATION NETWORKS

A PDA is especially useful for a combination network, if for
any coded packet, all the intended users are connected to the
same relay. This allows the server to send each coded packet
only to this single relay. The following definition ensures the
desired property.

Definition 3. Let h, r ∈ N+ with r ≤ h, and K =
(
h
r

)
. A

(K,F,Z, S) PDA is called (h, r)-combinational, for short C-
PDA, if its columns can be labeled by the sets in T in a way
that for any ordinary symbol s ∈ [S], the labels of all columns
containing symbol s have nonempty intersection.

The following example presents a (6, 6, 2, 12) C-PDA for
h = 4 and r = 2, and explains how this C-PDA leads to a
caching scheme for the (4, 2)-combination network in Fig. 1.

Example 1. Let h = 4 and r = 2. The following table
presents a C-PDA combined with a labeling of the columns
that satisfies the condition in Definition 3.

TABLE I: A C-PDA for the setting in Fig. 1.

{1, 2} {3, 4} {1, 3} {2, 4} {1, 4} {2, 3}
∗ ∗ 1 4 2 5
1 7 ∗ ∗ 3 6
2 8 3 6 ∗ ∗
∗ ∗ 7 10 11 8
4 10 ∗ ∗ 12 9
5 11 9 12 ∗ ∗

The above C-PDA implies the following caching scheme
for the (h = 4, r = 2) combination network in Fig. 1.
1. Placement phase: Each file is split into 6 packets (i.e., the
number of rows of the C-PDA), i.e., Wn = {Wn,i : i ∈
[6], n ∈ [N ]}. Place the following cache contents at the users:

Z{1,2} = Z{3,4} = {Wn,1,Wn,4 : n ∈ [N ]}
Z{1,3} = Z{2,4} = {Wn,2,Wn,5 : n ∈ [N ]}
Z{1,4} = Z{2,3} = {Wn,3,Wn,6 : n ∈ [N ]}

2. Delivery phase: Table II shows the signals X1, . . . , X4 the
server sends to the four relays when users U{1,2}, U{3,4},
U{1,3}, U{2,4}, U{1,4}, U{2,3} request files W1, W2, W3, W4,
W5, W6, respectively. Each of the coded signals consists of
B/6 bits, and thus the required rate is R = 1/2.

Table II also indicates the users that are actually interested
by each coded signal. In the problem definition, we assumed
that each relay forwards its entire received signal to all its

TABLE II: Delivered signals in Example 1.

Signal Symbol s Coded Signal Intended Users
1 W1,2 ⊕W3,1 U{1,2}, U{1,3}

X1 2 W1,3 ⊕W5,1 U{1,2}, U{1,4}
3 W3,3 ⊕W5,2 U{1,3}, U{1,4}
4 W1,5 ⊕W4,1 U{1,2}, U{2,4}

X2 5 W1,6 ⊕W6,1 U{1,2}, U{2,3}
6 W4,3 ⊕W6,2 U{2,4}, U{2,3}
7 W2,2 ⊕W3,4 U{3,4}, U{1,3}

X3 8 W2,3 ⊕W6,4 U{3,4}, U{2,3}
9 W3,6 ⊕W6,5 U{1,3}, U{2,3}
10 W2,5 ⊕W4,4 U{3,4}, U{2,4}

X4 11 W2,6 ⊕W5,4 U{3,4}, U{1,4}
12 W4,6 ⊕W5,5 U{2,4}, U{1,4}

connected users. From Table II, it is obvious that it would
suffice to forward only a subset of the bits to each user.

We now present a general way to associate a (K,F,Z, S)
C-PDA to a caching scheme for a (h, r)-combination network
where h, r are positive integers with r ≤ h.

Placement phase: Label the columns of the C-PDA with
the set T so that the condition in Definition 3 is satisfied.
Placement is the same as for standard PDAs. That means,
split each file Wd into F subpackets (Wd,1, . . . ,Wd,F ) each
consisting of B/F bits. Place subfiles {Wn,i}Nn=1 into the
cache memory of user T , if the C-PDA has entry “ ∗ ” in row
i and the column corresponding to label T . This placement
strategy requires a cache size of M = N · ZF .

Delivery phase: The server first creates the coded signals
pertaining to each ordinary symbol s ∈ [S] in the same way
as for standard PDAs. It then delivers the coded signal created
for each ordinary symbol s ∈ [S] to one of the relays whose
index is contained in the labels of all columns containing s.
The average rate required on the h server-to-relay links is
Ravg = S

Fh .
When in the described scheme the server sends the same

number of bits to each relay, then the following theorem
follows immediately from the above description. In fact, in
this case subpacketization level F is sufficient. Otherwise, the
rate on each server-to-relay link has to be made equal by first
splitting each file into h subfiles and then applying a caching
scheme with the same C-PDA but a different shifted version
of the column labels to each of the subfiles.

Theorem 1. Given a (K,F,Z, S) C-PDA. For any (h, r)
combination network with K =

(
h
r

)
, it holds that

R?
(
M = N ·Z

F

)
≤ S

Fh . This upper bound is achieved by a
scheme of subpacketization level not exceeding hF .

IV. TRANSFORMING PDAS INTO LARGER C-PDAS

We present a way of constructing C-PDAs for resolvable
(h, r)-combination networks (i.e., when r|h) from any smaller
PDA that has K̃ =

(
h−1
r−1
)

columns. We start with an example.

Example 2. Reconsider Example 1, where h = 4 and r = 2,
and notice that for this resolvable network (see Definition 1),
a possible partition of T is P1 = {{1, 2}, {3, 4}},P2 =



{{1, 3}, {2, 4}} and P3 = {{1, 4}, {2, 3}}. Consider now the
(3, 3, 1, 3) PDA of the Maddah-Ali & Niesen scheme with
K̃ = 3 users:

A =

 ∗ 1 2
1 ∗ 3
2 3 ∗

 .
One can verify that the C-PDA in Table I is obtained from
above PDA A by replicating each column of A first hor-
izontally and then each column of the resulting array also
vertically, and by then replacing the 3 replicas of each ordinary
symbol with 3 new (unused) symbols. The column labels are
obtained by labeling the first two columns of A with the two
elements of P1, the following two columns with the elements
of P2, and the last two columns with the elements of P3.

We now present the general transformation method. We use
the following notations. For a given user T , let δ(T ) indicate
the parallel class that T belongs to, i.e., δ(T ) = j iff T ∈ Pj .
Let T [i] be the i-th smallest element of T . For example, if
T = {2, 4}, then T [1] = 2, T [2] = 4. Likewise, denote the
inverse map by T−1, i.e., T [i] = j iff T−1[j] = i.

Transformation 1. Given a (K̃, F̃ , Z̃, S̃) PDA C̃ = [c̃j,k]. Let
the following (F̃ r)-by-(K̃ h

r ) array C be the outcome applied
to PDA C̃ for parameters (h, r):

C =


c1,T1

c1,T2
· · · c1,TK

c2,T1
c1,T2

· · · c2,TK

...
...

. . .
...

cr,T1 cr,T2 · · · cr,TK

 ,
where T1, . . . , TK are the elements of the user set T in (1),
and ci,Tk

= [ci,j,Tk
]F̃j=1 is a single-column array of length F̃ ,

with j-th entry

ci,j,Tk
=

{
∗, if c̃j,δ(Tk) = ∗,
c̃j,δ(Tk) + (T−1k [i]− 1)S̃, if c̃j,δ(Tk) 6= ∗.

Theorem 2. Let h, r be positive integers so that r|h, and K̃ =(
h−1
r−1
)
. Applying Transformation 1 with parameters (h, r) to a

(K̃, F̃ , Z̃, S̃) PDA yields a (K,F,Z, S) C-PDA, where

K =

(
h

r

)
, F = rF̃ , Z = rZ̃, and S = hS̃.

With the resulting C-PDA, subpacketization level F = rF̃ is
sufficient to achieve the rate R = S

Fh .

Proof: Array C satisfies C1, C2, and C3 and is thus a
PDA. It also satisfies the condition in Definition 3, because
ci,j,Tk

= ci′,j′,Tk′ = s ∈ [S] implies that T−1k [i] = T−1k′ [i
′],

and thus the labels of all columns containing a given symbol
s must have non-empty intersection. The statement on rate
and subpacketization follows by Theorem 1 and the discussion
before it.

The coding scheme for resolvable combination networks in
[7] can be represented in form of a C-PDA, and this C-PDA
can be obtained by applying Transformation 1 to the PDA of
the Maddah-Ali & Niesen scheme. Theorem 2 thus allows to

recover the following result from [7].

Corollary 1. For a (h, r)-combination network where r|h,
when M ∈ {0, NhKr ,

2Nh
Kr , · · · , N}, there exists a caching

scheme that requires rate RTR , K(1−M/N)
h(1+KMr/(Nh)) and has

subpacketization level FTR , r
(

Kr/h
KMr/(Nh)

)
.

We apply Transformation 1 to the reduced versions (so
as to have the right number of columns) of the low-
subpacketization PDAs in Lemmas 1 and 2. This yields the
first low-subpacketization C-PDAs and caching schemes for
resolvable combination networks.

Theorem 3 (C-PDA construction from Lemma 1). For any
(h, r)-combination network with r|h and cache sizes M ∈
{ 1q · N : q ∈ N+, q ≥ 2}, the following upper bound is
achieved by a scheme with subpacketization level FLSub1 ,

r
(
N
M

)dKMr
Nh e−1:

R?(M) ≤ RLSub1 ,
1

r
·
(
N

M
− 1

)
.

(Here, subscript “LSub" stands for “low-subpacketization".)

Proof: By Lemma 1, there exists a PDA with d K̃q eq
columns. Delete any d K̃q eq−K̃ of the columns. Since each or-

dinary symbol occurs in d K̃q e distinct columns, some ordinary

symbols can be completely deleted whenever d K̃q eq − K̃ ≥
d K̃q e. In this case, the reduced PDA has rate smaller than
N
M − 1. The theorem is concluded by Theorems 1 and 2.

Theorem 4 (C-PDA construction from Lemma 2). For any
(h, r)-combination network with r|h and cache sizes M ∈
{ q−1q · N : q ∈ N+, q ≥ 2}, the following upper bound is
achieved by a scheme with subpacketization level FLSub2 ,
rM
N−M · (

N
N−M )d

Kr
h (1−M

N )e−1:

R?(M) ≤ RLSub2 ,
1

r
·
(
N

M
− 1

)
.

Proof: Similarly to the proof of Theorem 3, except that
deleting d K̃q eq−K̃ columns does not delete any of the ordinary

symbols, as each of them occurs d K̃q e(q − 1) times.

For fair comparison, we compare the new schemes with
the scheme in [7] (Corollary 1) when K ≤ N for the same
memory size. We start with a comparison of the required rates.
If M = N

q for some integer q ≥ 2, then KMr
KMr+Nh ≤

RTR
RLSub1

≤
1. Similarly, if M = (q−1)N

q for some integer q ≥ 2, then
KMr

KMr+Nh ≤
RTR
RLSub2

≤ 1. As a consequence, if M = N
q or

M = (q−1)N
q for some integer q ≥ 2, then

lim
K→∞

RTR

RLSub1
= 1 or lim

K→∞

RTR

RLSub2
= 1.

On the other hand, for large values of K � 1, by
Corollary 1 and [14, Lemma 4], the subpacketization levels



of the schemes satisfy

FTR ∼

√
N2hr

2πKM(N −M)
· e

Kr
h (M

N ln N
M +(1−M

N ) ln N
N−M ),

and

FLSub1 ≤ re
Kr
h ·

M
N ln N

M ,

FLSub2 ≤
rM

N −M
e

Kr
h ·(1−

M
N ) ln N

N−M .

As a consequence, if M = N
q or M = (q−1)N

q for some
integer q ≥ 2, then

lim
K→∞

FTR

FLSub1
=∞ or lim

K→∞

FTR

FLSub2
=∞.

V. ACHIEVING THE CUTSET BOUND WITH LOW
SUBPACKETIZATION LEVEL

Throughout this section, r, h denote positive integers with
r ≤ h. But r does not necessarily divide h.

Let S1, . . . , S( h
r−1)

denote all the subsets of [h] of size r−1.

Define B as the
(
h
r−1
)
-by-

(
h
r

)
dimensional array with element

bj,T in row j ∈ {1, . . .
(
h
r−1
)
} and column T ∈ T, where

bj,T =

{
∗, if Sj 6⊂ T,
T\Sj , if Sj ⊂ T.

(3)

Notice that the set of arrays B forms a subset of the PDAs in
[15]. They can be proved to be C-PDAs.

Example 3. For h = 4 and r = 2, the C-PDA B is:

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
2 3 4 ∗ ∗ ∗
1 ∗ ∗ 3 4 ∗
∗ 1 ∗ 2 ∗ 4
∗ ∗ 1 ∗ 2 3

The caching scheme corresponding to the C-PDA B, allows
to determine the optimal rate R?(M) for large cache sizes M .

Theorem 5. For an (h, r)-combination network:

R?(M) =
1

r

(
1− M

N

)
, M ∈

[
N
K − h+ r − 1

K
, N

]
.

This can be achieved with subpacketization level F =
(
h
r−1
)

when M = N K−h+r−1
K .

Proof: The converse follows from the cutset lower bound
in [6]. For M = N

(
1− h−r+1

K

)
, the upper bound follows

by Theorem 1 and the caching scheme corresponding to the
C-PDA B in (3). For M > N

(
1− h−r+1

K

)
, the upper bound

follows by time/memory sharing arguments.
The optimal rate R?(M) is in general not achieved by

the uncoded placement scheme in [7] (see Corollary 1). In
fact, at the point M = N ·

(
1− h−r+1

K

)
, the scheme in [7]

requires rate RTR = 1
r

(
1− M

N

)
· Kr
Kr−(r−1)(h−r) , which is

strictly larger than R?(M) whenever r ≥ 2. Moreover, it has
a subpacketization level r

((h−1
r−1)
r−1

)
, which is significantly higher

than the one in Theorem 5.

VI. CONCLUSION

We introduced the C-PDAs (a subclass of PDAs) to charac-
terize caching schemes with uncoded placement for combina-
tion networks. We also proposed a method to transform certain
PDAs to C-PDAs for resolvable networks. This allowed us to
obtain the first low-subpacketization schemes for resolvable
combination networks with a rate that is close to the rate of
the uncoded placement schemes in [7]. We also proposed C-
PDAs for general combination networks. These C-PDAs have
low subpacketization level and achieve the cut-set lower bound
when the cache memories are sufficiently large.
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