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Abstract—Physically unclonable functions (PUF) have been
used in various applications, such as device authentication,
secure storage of sensitive data, and anti-counterfeiting. Different
applications require various levels of reliability from the PUF.
However, as of today, no predictive model to characterize the PUF
reliability has been developed. This is particularly a problem for
PUFs with low error rates, because the lower the error rate, the
larger the number of measurements required to obtain a good
estimate.

In this paper, we develop a predictive framework, which
enables us to derive a closed-form expression of both entropy
and reliability for several families of delay PUFs: the ring
oscillator (RO) PUF, the RO sum PUF as well as the Loop PUF.
Improving reliability with bit-filtering, we provide an explicit
tradeoff between complexity, reliability and entropy. Error rates
as low as 10−9 or even lower can be achieved. Our theoretical
results are validated by experiments on Loop PUFs implemented
in 65 nm CMOS ASIC technology, also used to simulate the
behavior of the RO PUF and the RO sum PUF.

I. INTRODUCTION

Designing a PUF involves a three-way tradeoff between
entropy, reliability and complexity (e.g., circuit size). Firstly, en-
tropy is increased by adding more elements such as RAM cells
or oscillators, at the expense of an increased circuit size. Also,
reliability is enhanced by error-correcting codes (ECC), but
their redundancy generally decreases the entropy. For a given
PUF design, it is not obvious how to precisely characterize the
tradeoff between these three parameters (entropy, reliability and
circuit complexity). For instance, fuzzy extraction [7] using
error-correcting codes is implemented in the PUFKY [14]
based on the ROPUF [3]. However, for this design, and fuzzy
extraction in general, it is very hard to determine the bit
error rate (BER) theoretically. Therefore, the actual parameter
selection for the fuzzy extractor is not straightforward. Bit-
filtering [18] can also improve the reliability but since the
number of output bits is reduced as a result of the filtering, this
technique also decreases the entropy of the PUF. Thus, this
technique, similar to fuzzy extraction, is subject to a tradeoff
between reliability and entropy.

The aim of this paper is to build a framework to analyze this
tradeoff for delay PUFs. Maes [13] proposed such a framework
for the reliability of SRAM PUFs which was ad hoc for a
given PUF architecture and where the parameters’ identification

was performed on experimental data. Bhargava et al. [2] also
perform filtering to improve the reliability of their PUF design,
but provide no theoretical model to predict the reliability that
might be obtained. In contrast, we aim at deriving a generic
model using elementary assumptions, where the three-way
tradeoff is not fully determined by real measurements, but
given instead by closed-form expressions involving the signal-
to-noise ratio (SNR). In this way, additional estimations of the
SNR yield new predictions for the tradeoff.

Our framework is applied to three popular delay PUFs: the
RO-PUF [19], the RO sum PUF [20] and the Loop PUF [4].
Bit-filtering is the technique chosen here to improve reliability,
in a manner similar to the η-out-of-λ scheme of Škoric et
al. [18]. Our contributions are as follows:

• a generic tradeoff analysis framework for delay PUFs;
• closed-form expressions for the BER and entropy for these

PUFs, with and without bit-filtering;
• an analysis of the RO-PUF, the RO sum PUF and the

Loop PUF, using this framework;
• real measurements of the delay PUFs on ASIC confirming

our theoretical results.

The remainder of this article is organized as follows.
Section II presents a theoretical model for the delay PUFs.
Closed-form expressions for reliability and entropy are derived
in Section III. This framework is applied to various delay PUFs
in Section IV. Section V provides an experimental validation
on silicon. Section VII concludes.

II. DELAY PUF MODEL

In this section, we provide a black-box analysis for a
generic delay PUF. Throughout this paper we use the following
notations.

n number of delay elements in the circuit
i index of a delay element
t index of a measurement
T total number of measurements
M total number of challenges
m index of a challenge
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J number of circuits
j index of a circuit
cmi i-th challenge bit
Cm m-th challenge Cm = (cmi )i
djC,t total delay for challenge C (at measure t, for

circuit j)
δjC,t δjC,t = djC,t − dj¬C,t

δjC δjC = 1
T

∑T
t=1 δ

j
C,t

∆C random variable modeling δC
Z additive Gaussian measurement noise

For simplification, sub- and superscripts (such as m, t, or j)
may be dropped when this does not introduce any confusion.

We model an ideal (noiseless) delay PUF as a deterministic
algorithm PI that takes a challenge C as input, and outputs a
delay difference δC :

PI : C "→ δC .

This delay is then, in general, discretized in order to extract
one (or more) bit(s). Thus, the final output is some function
of the measured delay difference. For the sake of simplicity,
we consider the sign function as the bit-output of the PUF:

b = sign(δC).

The delay difference δC for a given challenge stems from
a multitude of small delay variations caused by technology
dispersion, and is thus seen as a realization of a random
variable ∆C . Similarly to Lim et al. [12], we model this random
PUF variable as Gaussian ∆C ∼ N (0,Σ2) for some positive
deviation Σ > 0.

Such a delay PUF model is ideal since in practice, measure-
ment noise is always present. Following e.g., [12] we model
this noise as additive and independent Gaussian. Our PUF
model becomes a probabilistic algorithm:

P : C "→ δC + Z b = sign(δC + Z) (1)

where Z ∼ N (0,σ2) for some σ > 0. Since P(C) is the sum
of a "signal" ∆C and noise Z, the signal-to-noise ratio (SNR)
can be defined

SNR =
E[∆2

C ]

E[Z2]
=

Σ2

σ2
. (2)

and the bit error rate is defined as

BER(δC) = P(sign(δC + Z) %= sign(δC)). (3)

To simplify the reliability analysis, we make the additional as-
sumption that all PUF responses δC are mutually independent.
In general this will only be satisfied approximately. As shown
below for each specific PUF, the independence assumption will
hold accurately for specific sets of challenges (at the order of
n).

In the model proposed by Maes [13], δC would correspond
to the process variables and Z to the noise variable. However,
the output bits from a delay PUF do not precisely correspond
to a measurement of the process variables and further analysis

is needed to apply the Maes model to delay PUFs. Furthermore,
rather than estimating the BER from experimental data and then
find the parameters using a top-down approach, we find it more
convenient to derive the BER from measures of simple system
parameters such as the SNR, in a bottom-up approach, as
described in the next section. We feel that such a determination
is better theoretically justified since it requires less ad hoc
assumptions.

III. DELAY PUF RELIABILITY AND ENTROPY

When considering n challenges to generate n response bits,
there is a high probability that unreliable response bits are
obtained. Katzenbeisser et al. [11] showed that there is 2%
to 15% unreliable bits, depending on the environment. Here
we consider the proportion of faulty bits, or, equivalently,
the average probability that a PUF bit flips, as a metric to
characterize the PUF reliability. In contrast to an SRAM PUF,
for which only the output bit values are available, delays can
be measured in a delay PUF to detect unreliable bits, as we
will explain in the next sections.

A. Reliability Assessment

The reliability of a delay PUF is directly related to the
absolute value |δC | of the delay difference δC associated to
each challenge C. Indeed, the larger the value, the smaller the
probability to have a bit flip of the measured δC sign due to
measurement error. More formally, if we consider the Gaussian
noise Z ∼ N (0,σ2) added to δC , the BER is the probability
to have a bit flip for challenge C, and is given by the following

Lemma 1. One has

BER(δC) = P
(
sign(δC + Z) %= sign(δC)

)
= Q

( |δC |
σ

)
, (4)

where Q(x) = 1
2 erfc(

x√
2
).

Proof. Let Z ∼ N (0,σ2) and δC be a fixed value. Then

BER = P[sign(δC + Z) %= sign(δC)]

= P[(δC + Z > 0, δC < 0)] + P[(δC + Z < 0, δC > 0)]

= P[Z > |δC |, δC < 0] + P[−Z > |δC |, δC > 0]

= P[Z > |δC |] = Q
( |δC |

σ

)

since Z is symmetrically distributed.

Figure 1 illustrates the distribution of ∆C and the noise
distribution around the value δC associated to the challenge C.
In this example, an error occurs when δC + Z is negative.

|δC |/σ value 0 1 2 3 4
BER 0.5 1.6 10−1 2.3 10−2 1.3 10−3 3.2 10−5

|δC |/σ value 5 6 7 8 9
BER 2.9 10−7 9.9 10−10 1.3 10−12 6.2 10−16 1.1 10−19

Table I
BER FOR ONE BIT ACCORDING TO THE |δC |/σ VALUE.
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δCError area

δC + Z ∼ N (δC,σ2)

∆C ∼ N (0,Σ2)

PUF values (δC) distribution

Measurement (δC,t) distribution

Error probability

Figure 1. pdf of ∆ and noise for a given challenge C.

Table I gives the BER one can expect for a given challenge.
For a set of challenges, the BER has to be assessed on all the
δC values, which are assumed to be independent.

The average proportion of bit flips is the expectation of the
BER over ∆C , and is given by the following

Lemma 2. One has

B̂ER = E[BER(∆C)] =
1

π
arctan(

1√
SNR

). (5)

Proof. As shown in the proof of Lemma 1,

B̂ER = P[sign(∆C + Z) %= sign(∆C)]

= P[Z > |∆C |]

= P[Z
σ

> |∆C

Σ
|
√
SNR].

Note that this probability is taken jointly over ∆C , Z
and that these are independent Gaussian variables, ∆C ∼
N (0,Σ2), Z ∼ N (0,σ2). Therefore, X = ∆C

Σ and Y = Z
σ

are independent and follow standard normal distributions, and
the formula becomes

B̂ER = P[Y > |X|
√
SNR].

Since the probability distribution of (X,Y ) is isotropic, it is
easily seen that B̂ER equals the proportion of the hatched area
on Fig. 2. This proportion is simply 2θ/2π, where tan(θ) =
1/
√
SNR by the geometric definition of the tan function. Thus,

we simply have that

B̂ER =
1

π
arctan(

1√
SNR

).

The expected BER is represented as a function of the SNR
in Fig. 3. Although the expected BER (III-A) vanishes with
the noise:

lim
SNR→+∞

B̂ER = 0,

it is easily seen that the expected BER remains quite high,
> 10−3, even for large values of SNR (several thousands).

X

Y

θ = arctan( 1√
SNR

)

(1,
√
SNR)

Y > |X|
√
SNR

Figure 2. Polar representation of X and Y.

Figure 3. Expected BER as a function of the SNR.

B. Reliability Enhancement by Delay Knowledge
A classical and efficient method to enhance (reduce) the BER

is to take advantage of ECCs, like the secure sketch methods
presented by Dodis [7] and exploited by reliable architectures
like PUFKY [14]. With this method, an enrollment phase takes
place once, just after manufacturing, in order to build a public
"helper data". The helper data, also called "secure sketch", can
be either a n bit code-offset or a n− k bit syndrome. During
PUF usage, noise might corrupt the PUF value, but thanks to
the secure sketch, the potential errors can be corrected by the
ECC decoder.

We will investigate here another method to improve the
reliability of the PUF that uses the knowledge of the δC
values to filter out unreliable bits. Therefore, ECC may not
be necessary or at least less complex, which helps to reduce
circuit complexity.

The BER can be decreased discarding the challenges which
generate unreliable bits. These challenges are recorded during
the enrollment phase in the helper data. This helper data is
then used during the reconstruction phase of the PUF. This
construction resembles the η-out-of-λ scheme by Škoric et al.
[18]. However, to make the computations tractable, instead
of removing a fixed number of challenges, we remove bits
that whose reliability is lower than a given threshold. Below
we compute the resulting average reliability in terms of mean
BER, and the average remaining entropy after bit-filtering.
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From the security point of view, this helper data does not
unveil any information of the response bits, since the PUF
responses to challenges are assumed independent. However, if
an attacker could modify the helper data, she could reconstruct
the PUF response, for example using an attack similar to the
one described by Hiller et al. [10]. Therefore, we have to
assume that the helper data can only be read by an attacker,
but cannot be modified. This can, for example, be achieved by
storing it on ROM memory on the PUF.

The declaration of "unreliability" is given at enrollment phase
when the delay |δC | for a challenge C is below a threshold Th,
which has to be chosen to take into account the noise level σ.
In what follows, we set Th = W · σ, where W expresses the
capacity to filter the unreliable bits. Increasing W decreases
the BER, but reduces the number of bits, hence the entropy.

Figure 4 illustrates the distributions of ∆C and the noise. It
points out the unreliable area in the window [−Th,+Th] of
width 2Wσ.

δC

δC + Z ∼ N (δC,σ2)

δC ∼ N (0,Σ2)

Unreliable area

-Th Th

2Wσ

Reference values (δC) distribution (static randomness)

PUF delay distribution (with dynamic randomness)

Figure 4. Unreliable area vs distributions of ∆C and the noise Z.

The average BER reduction after filtering the unreliable bits
depends directly on Th = Wσ and is given by the following

Lemma 3.

B̂ERfilt =
2

erfc( W√
2
√
SNR

)

(
T (W,

1√
SNR

) +

1

4
erf(

W√
2
√
SNR

)(erf(
W√
2
)− 1)

)
(6)

where T represents Owen’s T function:

T (h, a) =
1

2π

∫ a

0

e−
1
2h

2(1+x2)

1 + x2
dx.

Proof. For the sake of simplicity, we will drop the subscript
C from the random variable ∆C .

By definition of the filtered BER, we have that:

B̂ERfilt =

∫ +∞

−∞
p(∆ | |∆| > Th) · BER(∆) d∆.

This generic formulation, or very similar ones, have already
been found before, for example by Delvaux [5] (Eq 4.41).
However, we will apply it here to a specific PUF, and can
therefore derive a more explicit formulation. Indeed, we can
find a closed form of E(BERfilt) after filtering the bits as:

B̂ERfilt =

∫ +∞

−∞
p(∆ | |∆| > Th)BER(∆) d∆

=

∫ +∞

−∞
|∆|>Th(∆)

p(∆)

P(|∆| > Th)
BER(∆) d∆

=
2

P(|∆| > Th)

∫ +∞

Th
p(∆) · BER(∆) d∆

=
2

P(|∆| > Th)

1

2
√
2πΣ

∫ +∞

Th
e
−∆2

2Σ2 erfc(
∆

σ
√
2
) d∆.

Using the following integral value for x, k > 0:
∫

e−x2

erfc(kx) dx =

− 1

2

√
π(4T [

√
2kx,

1

k
] + erf(x)(erf(kx)− 1) + 1) + constant

(where T is Owen’s T function, first introduced by Owen [16]),
and using a change of variables, we get that

B̂ERfilt =
2

P(|∆| > Th)
(T (

Th

σ
,

1√
SNR

)+

1

4
erf(

Th√
2Σ

)(erf(
Th√
2σ

)− 1))

or, since P(|∆| > Th) = erfc( W√
2
√
SNR

) and
Th

Σ
=

Wσ

Σ
=

W√
SNR

,

B̂ERfilt =
2

erfc( W√
2
√
SNR

)

(
T (W,

1√
SNR

) +

1

4
erf(

W√
2 ·
√
SNR

)(erf(
W√
2
)− 1)

)
.

C. Entropy After Filtering Out Unreliable Bits

The proportion of unreliable bits is given by

P(Bit unreliable) = P(|∆| < Th) = erf(
Th√
2Σ

)

= erf(
W√
2SNR

). (7)

In other words, the average remaining entropy of a circuit with
n elements (thus, of complexity proportional to n) is equal to

H(n,W )SNR = n · erfc( W√
2SNR

). (8)

With this method, it is necessary to increase the number of
elements to generate a given entropy. The expected number of
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elements n, with n > h, to consider in order to obtain h bits
of entropy is given by:

n =
h

1− P(Bit unreliable)
=

h

erfc( W√
2SNR

)
. (9)

Figure 5 represents the average remaining entropy for a circuit,
depending on the SNR and the target BER. This characterizes
the tradeoff between reliability and entropy.

Figure 5. Remaining average entropy after filtering unreliable bits as a function
of the BER to reach.

If ever it is not possible to reach the required entropy, the
device is discarded. The probability of this happening can
also be computed. Since the obtained delays are independent
(when choosing a Hadamard matrix for the challenges), the
number of unreliable bits is given by a binomial distribution
B(n, erf( W√

2SNR
)) on a PUF with n elements. Thus,

pdiscard =
n∑

i=n−h+1

(
n

i

)
erf(

W√
2SNR

)i erfc(
W√
2SNR

)n−i

= Ipd(n− h+ 1, h) (10)

where Ix(a, b) is the regularized incomplete beta function and
pd is the probability of discarding a bit, pd = erf( W√

2SNR
).

IV. TRANSLATION FOR VARIOUS PUF ARCHITECTURES

When applying our results on real PUF architectures, we
must suppose that the output bits are independent and non-
biased. By restricting the set of possible challenges, we
can prove, under the assumption that the theoretical model
describing the PUF is accurate, that the remaining output bits
are indeed independent and non-biased. However, this is no
longer true when the PUF behavior deviates from that predicted
by its model. It is possible to ensure that the output bits are not
biased and uniform using standard test suites, for instance those
provided by NIST [1]. If these tests fail, bias and correlation
can be corrected by applying fuzzy extractor techniques [6]
prior to bit filtering.

A. RO-PUF
The RO-PUF has been first described by Suh and Devadas

[19]. In the general case, it uses a certain number of oscillating

loops for which the oscillation frequencies are measured and
compared. In the setting that we will analyze, and that had
already been described in this seminal work, we will use 2n
ring oscillators to generate n bits. To describe this PUF in
our unified framework, we will define a challenge C as any
n-bit string with Hamming weight exactly 1. If Cm is such
that cmi = 1 iff m = i, then the delay difference δCm will
correspond to the frequency difference between oscillators 2m
and 2m + 1. Thus, the δCm will be mutually independent.
Therefore, our framework can be directly applied in order to
estimate the reliability-entropy tradeoff in case filtering is used.

B. RO sum PUF
The RO sum PUF, or recombined oscillator, has been

proposed by Yu and Devadas [20]. Instead of comparing the
oscillator frequencies, they are measured, added or subtracted,
before one bit is generated from the sign. More precisely, the
2n oscillators are divided into n pairs. Let C = (ci)i be a
challenge of length n. If di is the delay difference for the two
oscillators of the i-th pair, then the total delay is obtained as

δC =
n∑

i=1

di(−1)ci .

Here, di should be modeled as a realization from a normal
law, with variance Σ2

0. Therefore, we will have that ∆C ∼
N (0, nΣ2

0 = Σ2). There are 2n possible challenges, however,
the delays for all these challenges will not be independent.
It has been shown by Rioul et al.[17], for a different PUF
but the same delay model, that the challenges are mutually
independent if, when converted to {±1} vectors instead of
{0, 1} vectors, they are orthogonal. We can therefore find a
subset of n challenges that are independent if a Hadamard
matrix of rank n exists. This is always the case if n is a power
of two or a multiple of 4 smaller than 668 [15]. Assuming this
is the case, we can choose any such subset of challenges for
the n possible challenges. Our framework can then be applied
to this PUF.

C. Loop PUF
The Loop PUF, described by Cherif et al. [4], strongly

resembles the RO sum PUF, with the exception that one
configurable ring oscillator is used, instead of 2n simple
ROs for the RO sum PUF. For the Loop PUF, each RO
comprises n configurable and balanced delay element pairs.
During delay measurement, the signal only passes through one
half of the delay elements, this half being determined by the
input challenge. The same measurement is then done for the
complementary challenge, so that the signal passes through the
other half of the delay elements, and the delay difference is
then computed. The mathematical model is thus very similar
to that of the RO sum PUF, with some minor differences. For
example, in the RO sum PUF, the delays for the individual
ring oscillators are first quantified and then added, which might
lead to some rounding errors. This is less the case for the Loop
PUF, since a total delay is directly measured. Thus, there are
only two delay quantifications for the Loop PUF.
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As shown by Rioul et al. [17], in order to obtain independent
delay differences, and thus independent bits, the challenges
need to be orthogonal, in the same sense as before. Thus, an
entropy of n bit can be obtained by choosing a n×n Hadamard
matrix for the challenges, if a Hadamard matrix of this size
exists.

V. EXPERIMENTS AND VALIDATION WITH REAL SILICON

A. Architecture of the Test Circuit

We used Loop PUFs with n = 64 delay cells for our
experiment. The cells use 65 nm CMOS technology, and each
test chip contains 49 PUFs, embedded in a 7× 7 matrix. We
performed the delay measurements during L = 214 oscillation
periods of the reference clock at fref = 100 MHz. This allows
us to simulate:

• 49 Loop PUFs with 64 delay elements, or
• 64 RO-PUFs with 24 delay elements, or
• 64 RO sum PUFs with 48 delay elements.
Following [17], we choose a 64× 64 Hadamard matrix as

the challenge matrix to control the 49 Loop PUFs. The 64
challenge responses can therefore be considered independent.
We perform T = 1000 measurements for each challenge and
each PUF per chip. This directly yields the responses for the
Loop PUF. In order to simulate a RO-PUF, we fix a challenge
index m and consider the 24× T response delays:

{
δ2jm,t − δ2j−1

m,t , j ∈ [1, 24]
}
.

In a similar fashion, for the RO sum PUF we choose a
48× 48 Hadamard matrix C̃. For a fixed challenge index m
of the Loop PUF, we then obtain 48× T response delays:





C̃ ·





δ1m,t

δ2m,t
...

δ48m,t









.

B. BER and Entropy Measurement

1) Results: Six test chips have been analyzed, and the
measured BER and remaining entropy have been plotted in
Fig. 6.

The error bars represent the range of values obtained among
the tested chips. Although they do not share the exact same
SNR, a middle value has been chosen, so that a simple
comparison is possible. The SNR was calculated by estimating
the variance of ∆C and Z from the delay measurements of the
test chips. Moreover, the range of measured SNRs is relatively
small (between 180 and 250).

2) Discussion: For the remaining entropy, the measured and
predicted values match quite closely. This seems to confirm
the hypothesis of a Gaussian distribution for the average delay
values. For the bit error rate however, the interpretation of the
results seems more complicated. Indeed, while the BER for
small filtering thresholds, and thus "large" BERs, seems to
match our prediction, this is not the case for larger thresholds,

Figure 6. Experimental validation of the SNR and remaining entropy.

at least for the RO-PUF simulation and the Loop PUF. We can
see two explanations for this:

First, the sample size is probably not large enough to reliably
estimate probabilities around 10−8. Indeed, for each chip, we
record about 3 million samples, and thus, even one bit error
would yield a BER, for that circuit, of more than 3 · 10−7.
Therefore, the BERs for parameters W ≥ 4 come with a fairly
large uncertainty.

The small sample size does not explain everything, however.
When further analyzing the delay measurements, we notice
that the noise distribution does not perfectly follow a Gaussian
distribution. Indeed, on some chips, we observe multiple
measurements that are more than 7σ away from the computed
mean delay value, as taken over 1000 measurements. This
should not happen more than once in about 500 million
measurements, if the noise was truly Gaussian. Thus we must
admit that the noise is not exactly Gaussian. More exactly, it
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seems to be more heavy-tailed than a Gaussian noise. This
could be an artifact of our experimental setup. Indeed, it forces
us to wait a relatively long time span between measures, and
the outliers could be explained, for example, with voltage
fluctuations (the Loop PUF is relatively sensible to supply
voltages changes). On the other hand, it should not come to
a great surprise that a physical phenomenon does not exactly
follow a Gaussian distribution. In order to derive a more precise
model, other types of noise distributions need to be considered.

One can further notice that the divergence from the expected
BER is almost absent from the RO sum PUF simulation. This
can be easily explained. A simulated delay measurement for the
RO sum PUF corresponds to the sum of 48 independent Loop
PUF delay measurements. If only one Loop PUF measure is an
outlier relative to the expected Gaussian noise distribution, this
will less affect the whole sum. This also explains why the RO-
PUF exhibits less divergent behavior than the Loop PUF, as any
outlier will be summed with another delay measurement. These
results, however, are possibly artifacts of our experimental setup,
if we suppose that external factors cause these outlier measures.
Indeed, in a real RO-PUF or RO sum PUF, all measures would
certainly be done in parallel, and might be affected by the same
glitch at the same time. Therefore, this does not say anything
about the intrinsic robustness of these three PUF types.

VI. EFFECT OF ENVIRONMENTAL CHANGES: TEMPERATURE

PUFs are not necessarily used in the same environmental
conditions they were enrolled at. Mainly two factors seem
to be able to affect their behavior: temperature and input
voltage [8]. We will assume that the input voltage can be
controlled, via an voltage regulator for instance, and not further
investigate in this direction. However, it is more complicated
to control the temperature at which the PUF will be used,
and it would therefore be helpful if it was possible to model
the PUF-response dependency on temperature. In this section,
we propose and test such a model. A similar model has been
proposed by Maes [13], but for delay PUFs, it is possible to
more directly test the model and make more straightforward
predictions.

A. Assumptions

Given our experiments, we think that it is safe to make the
following assumption: The delay response of a given oscillator
is linearly dependent on the temperature, but the proportional
constant might vary among ring oscillators. Testing on the
Loop PUF circuits yielded a linear regression R2 score above
0.999 for every oscillator. In addition, we will assume that
this proportional constant follows a normal law. The curve for
different oscillators in Figure 7 seems to validate this kind of
distribution. Since in general, only the differences between ring
oscillators are being considered (for the RO-PUF as well as the
RO sum PUF), we can suppose that the probability distribution
is centered. More formally, let’s denote the temperature by
θ, and the linear dependency coefficient by ', where ' is a

24.0 24.5 25.0 25.5
Oscillations increase per ◦C (domain [0◦C, 80◦C])
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Figure 7. Distribution of temperature dependency coefficients (for 49 distinct
oscillators, as well as 64 challenges of the same oscillator, for three different
oscillators)

realization of a random variable L ∼ N (0,σθ) . We therefore
have the model for the temperature dependent PUF:

Pθ : C "→ δC + Z + 'θ, b = sign(δC + Z + 'θ) (11)

B. Average BER

We can now try to compute the average bit error rate over
all average delays δC and dependency coefficients '. As a
reminder, the BER is defined here as

B̂ERθ = P [sign(∆+ Z + Lθ) %= sign(∆)] (12)

Since Z and Lθ are two centered independent Gaussian random
variables, with variance respectively σ2 and θ2σ2

θ , the sum is
also a Gaussian random variable with variance σ2 + θ2σ2

θ .
Therefore, the result for the average BER obtained in III-A
can be directly applied, by replacing σ with

√
σ2 + θ2σ2

θ :

B̂ERθ =
1

π
arctan(

√
σ2 + θ2σ2

θ

Σ
) (13)

Thus, for the average BER, using the PUF at a temperature that
is different from the enrollment temperature is equivalent to
a loss of SNR. Of course, for individual delay measurements,
this is not true, as the BER can exceed 0.5 if an inversion of
the average sign happens due to the temperature difference,
but it remains true for the average BER.

C. Effect on delay PUFs
The RO-PUF and RO sum PUF are equally affected by

the temperature dependency of the ring oscillators on the
temperature. Indeed, for the RO-PUF, the delay difference is
simply the difference of delay among two oscillators, and the
model can be directly applied as is. For the RO sum PUF, the
total delay difference is actually the sum of a larger number of
ring oscillator-pair delays. However, since the sum of Gaussian
random variables still follows a Gaussian distribution, the same
formula applies for the RO sum PUF, where σ, σθ and Σ are
simply multiplied by the square root of the number of ring
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oscillator pairs. Since the average BER only depends on the
ratio between these quantities, the BER formula is unchanged.

The case of the Loop PUF is a little different. Indeed,
the delay differences are measured on the same oscillator,
and different challenges should have a similar temperature
dependency. However, as Figure 7 shows, this is not exactly
the case. While the temperature dependency coefficients vary
less between challenges of the same oscillator than between
oscillators, the variance is not zero. The model seems also
applicable to the Loop PUF, albeit with a lower standard
deviation σθ.

VII. CONCLUSION

This paper first presents the formalism to express the entropy
and reliability of multiple delay PUFs: the RO-PUF, the RO
sum PUF and the Loop PUF. We obtained a closed-form
expression of the reliability which shows that the BER cannot
go lower than about 10−3 even with large SNRs. The gain
provided by the bit-filtering method that discards unreliable
bits at enrollment phase has been formalized, giving a BER
which can go to less than 10−10.

The tradeoff between BER, entropy and complexity has
been characterized. The resulting parameter selection for a
given application is quite straightforward and simple. Practical
experiments on few hundred PUFs designed in 65 nm CMOS
process validate the theory. Testing the effect of temperature
on the different types of PUFs is difficult when simulating
with Loop PUFs. Tests with "native" PUFs might be necessary
for a more thorough validation.

The Gaussian model for process and noise variables are
validated by these experiments up to a certain threshold.
Beyond, the Gaussian model may not be valid at the far tail
of the noise distribution, and an adequate model for the noise
distribution is a subject for future work. Such a model would
allow more efficiently designs of PUFs with very low error
rates. In particular, this model for reliability (also sometimes
termed steadiness) is a suitable metric for stochastic models
being developped in ISO/IEC 20897 project [9].

VIII. ACKNOWLEDGEMENTS

This work was partly supported by Institute for Information
& communications Technology Promotion (IITP) grant funded
by the Korea government (MSIT) (No. 2016-0-00399, Study
on secure key hiding technology for IoT devices [KeyHAS
Project]) and the ANR CHIST-ERA project SECODE (Secure
Codes to thwart Cyber-physical Attacks). Alexander Schaub
acknowledges the financial support from the Direction Générale
de l’Armement (DGA).

REFERENCES

[1] Lawrence E Bassham III, Andrew L Rukhin, Juan Soto, James R
Nechvatal, Miles E Smid, Elaine B Barker, Stefan D Leigh, Mark
Levenson, Mark Vangel, David L Banks, et al. Sp 800-22 rev. 1a.
a statistical test suite for random and pseudorandom number generators
for cryptographic applications. 2010.

[2] Mudit Bhargava and Ken Mai. An efficient reliable PUF-based
cryptographic key generator in 65nm CMOS. In Proceedings of the
conference on Design, Automation & Test in Europe, page 70. European
Design and Automation Association, 2014.

[3] Lilian Bossuet, Xuan Thuy Ngo, Zhoua Cherif, and Viktor Fischer. A
puf based on a transient effect ring oscillator and insensitive to locking
phenomenon. Emerging Topics in Computing, IEEE Transactions on,
2(1):30–36, March 2014.

[4] Zouha Cherif, Jean-Luc Danger, Sylvain Guilley, and Lilian Bossuet. An
easy-to-design PUF based on a single oscillator: The loop PUF. In 15th
Euromicro Conference on Digital System Design, DSD 2012, Çeşme,
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