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Abstract—A physically unclonable function (PUF) is a hard-
ware device that can generate intrinsic responses from challenges.
The responses serve as unique identifiers and it is required
that they be as little predictable as possible. A loop-PUF is an
architecture where n single-bit delay elements are chained. Each
PUF generates one bit response per challenge.

‘We model the relationship between responses and challenges in
a loop-PUF using Gaussian random variables and give a closed-
form expression of the total entropy of the responses. It is shown
that n bits of entropy can be obtained with n challenges if and
only if the challenges constitute a Hadamard code. Contrary
to a previous belief, it is shown that adding more challenges
results in an entropy strictly greater than n bits. A greedy code
construction is provided for this purpose.

I. INTRODUCTION

Having a unique identifier for each electronic chip allows to
use them in a secure way. If, for example, the chip is used in a
smartphone, the identifier can be used to associate the device
with a specific service. The identifier can also be used to thwart
overbuilding since it can be recorded at fabrication and can
later be checked against a whitelist—in this way, overproduced
or counterfeited chips can be detected.

However, for the identifier to be trusted, it must meet some
security properties: essentially, it must be unique and it must
not be tamperable. Physically Unclonable Functions (PUFs)
are known as technical solutions [1]-[3]. A PUF consists
in a hardware design (blueprint) such that every instance
behaves differently after fabrication. Indeed, fabrication is not a
deterministic process and the elements like transistors are built
slightly different each time. In a PUF design, identical elements
at blueprint level are compared once fabricated, the comparison
results appear to be random. The elements’ behavior after
fabrication can thus be considered as unique. Moreover, as
these elements are fragile, any tampering attempt is doomed
to failure (e.g., destruction of the PUF).

The unique behavior after fabrication stems from a static
randomness due to technological dispersion. It is a well known
source of mismatch in electronics circuits design and was
characterized by Pelgrom [4] to follow a normal distribution.

The PUF responses are also subject to dynamic randomness
due to measurement noise, which is detrimental to the reliability
of the PUF measurement. For this reason, it is important in
practice to increase the signal-to-noise ratio (SNR). In a so-
called SRAM-PUF [5] which consists in one SRAM memory
bit which boots up at either value 0 or 1, it seems difficult to
improve the SNR except by repeating measurements, which

demands a power down between each measurement. In a delay-
PUF [6], n elements are chained, and the total delay of the
chain is measured. The SNR is then increased by a factor n
as the signal power grows linearly with n. Because of this
property, we focus on delay-PUFs in a loop-PUF structure [7],
in which the delay chain is looped to form a ring oscillator
by means of an inverter in order to measure time delays with
high accuracy.

Problem Statement. A unique identification number can be
obtained by querying the loop-PUF for M challenges. The
quality of randomness of the responses depends on the choice
of the challenges. This raises two questions:

« what is the best choice of challenges to get maximum
entropy when reading a PUF?
« how many bits of entropy can be expected from one PUF?

Contributions. In this paper, we give a partial answer to both
questions. For M challenges, we prove that the maximum
possible value of entropy = M bits can be obtained with as
few as n = M delay elements provided that the challenges are
designed to form a Hadamard code. In addition, given n delays
elements, we show that with M > n challenges, an entropy
strictly greater than n bits (albeit < M) can be obtained. We
give a greedy algorithm to increase the entropy as much as
possible beyond n bits as M increases.

Outline. The remainder of this paper is organized as follows.
Section II provides a probabilistic model for the loop-PUF
responses, which allows to express the amount of entropy
of the responses as a function of the various challenges.
Section III lists as a preliminary some known results on
“orthant” probabilities. In Section IV, the least number of
elements required to get an entropy of M bits is proved to
be n = M, and the optimal set of the n = M challenges is
determined. Section V shows how to make the entropy grow
beyond n bits by choosing more than n challenges. Section VI
concludes and raises new perspectives.

II. PROBABILISTIC MODEL FOR THE LoOP-PUF

Fig. 1 illustrates one delay element in the chain of n elements.
For each ¢+ = 1,2,...,n, element 7 can have two delays
(theoretically equal at blueprint level), chosen according to one
challenge bit! ¢; € {—1,1}. Let d(c;) be the corresponding

1t is convenient to consider signed bits equal to 1 (instead of the usual
0, 1) throughout this paper.
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Fig. 1. Element ¢ in a delay-PUF. In this blueprint, the triangle elements ([>)
represent buffers, the triangle with circle elements (Do) represent inverters,
and the 2 — 1 rectangle ([I) represent multiplexers. The output y; is equal
to the input x;, but occurs after a delay d(c;), conditioned by challenge bit
c; € {*1, 1}‘

delay. As time is an extensive physical quantity, we have

d(e) dl +dP> =dTP if ¢ = —1,
¢) = .
dPr 4 d> = dPT if ¢ = +1.

The delays d7'P and dPT are modeled as i.i.d. normal random
variables selected at fabrication [4]. Fig. 2 illustrates the
Gaussian nature of the propagation delay distribution.
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Fig. 2. Monte-Carlo simulation (with 500 runs) of the delays in a chain of
60 basic buffers implemented in a 55 nm CMOS technology. The mean value
is 12938 ps, and the standard deviation is 115 ps.

The n delay elements are chained by connecting y; to
Xi+1, for ¢ = 1,...,m — 1. The principle of the loop-
PUF is to measure the difference A, of cumulative delays
d(c) = Y1, d(c;) for a challenge ¢ = (c1,...,c,) and its
complementary value —c = (—cy, ..., —Cy):

Ac = id(ez) —d
i=1

Since d7'P and dPT are i.i.d. normal, the random variables
A, =dl'P — (i=1,2,...,n) )
are themselves i.i.d. normal and have zero mean. Each A;

represents the delay difference from x; to y; in the path through
first top/second bottom and first bottom/second top buffers.

n

—ci) =Y _ei(d P —aP").

=1

ey

dBT

As the delay measurement requires a great accuracy, the delay
chain is looped to form a ring oscillator and the delay A, =
>, ¢iA\; is obtained by inverting the measured frequency of
the ring oscillator, hence the name “loop-PUF”. It is the sign
of the cumulative delay difference A, that yields one bit of
unique identifier. The overall loop-PUF function is summarized
in Fig. 3. A unique identification number can be obtained
by querying the loop-PUF for M different challenges ¢ =
(c1,¢2, .-y Cn).

Loop-PUF:
n i.i.d. normal
random variables A;

Challenge ¢ € {£1}" Response B, € {£1}

B, =sign(}> 1, i)

Fig. 3. Operation of a loop-PUF

Definition 1. A challenge c is a vector of n control bits
¢ = (c1,c9,...,¢,) € {£1}". Let Ay, Ag,..., A, be iid.
zero-mean normal (Gaussian) variables characterizing the
technological dispersion. A bit response to challenge c is
defined as

B, =sign(A,) € {£1} 3)

where

Ac = CIAI + CQAQ + -+ CnAn- (4)

Definition 2. A challenge code C is a set of M n-bit challenges
that form a (n, M) binary code. We shall identify C with the
M x n matrix of £1’s whose lines are the challenges.

The M codewords and their complements are used to
challenge the PUF elements. The corresponding identifier is
the M -bit vector

B = (BC)CEC- 5)

The entropy of the PUF responses is denoted by H = H(B).

To increase uniqueness of the PUF response—the fact that
it should be intrinsic for a given device—we aim at finding
the best code C such that the resulting entropy H = H(B) of
the different responses over different devices is maximal.

III. ORTHANT PROBABILITY OF A MULTIVARIATE NORMAL

The determination of the entropy H(B) requires that of
the joint probabilities of signs of Gaussian variables. Let
X4, Xo,..., X, be zero-mean, jointly Gaussian (not necessar-
ily independent) and identically distributed. As a prerequisite
to the derivations that follow, we wish to compute the orthant
probability

P(X;>0,X2>0,...,X, >0).

The probabilities associated to other sign combinations can
easily be deduced from it using the symmetry properties of
the Gaussian distribution.

Since the value of the orthant probability does not depend
on the common variance of the random variables we may
assume without loss of generality that each X; has unit variance:



X; ~ N(0,1). The orthant probability will depend only on
the correlation coefficients

pij = E(X: X;) (i # 7). (6)

For n = 1 we obviously have P(X; > 0) = % For n = 2, we
have the following known result [8] which dates back at least
to Hermite [9].

Lemma 1 (Quadrant probability of a bivariate normal).

P(X) > 0, X > 0) = & 4 2CsMAL2. %)
4 2
Neither [8] nor [9] contains a proof. For completeness we
provide a simple argument.

Proof: Let = arcsin p o € [~7/2,7/2] and let X; be
an independent copy of X;. Then Xy = X;sinf — X; cosf is
also normal A/(0, 1) with E(X1X2) = sin @ = p; 5. Therefore,
(X1, X5) has the same distribution as (X1, X;) and

P(X; >0,X5 > 0) =P(X; > 0,X, > 0)

: ®)
=P(X; >0, X, < X tan6).

Since (X7, X 1) is isotropic, by the Box-Muller transformation
in polar coordinates [10] we can write X; = RcosU, X; =
Rsin U where U is uniformly distributed in [—, 7]. Therefore,

P(X; > 0,Xs > 0) =P(cosU > 0,tanU < tan#)
6+ m/2
2m

which is the announced formula. [ |
For n = 3, we have the lesser known extension [11].

©))
=P(|U| <7/2,U < 0) =

Lemma 2 (Orthant probability of a trivariate normal).

]P(Xl >0,X9 >0,X3 > 0)
1~ arcsin pq o + arcsin ps 3 + arcsin py 3

=- .
8+ 4am (10)

Again for completeness we provide a simple proof.
Proof: The complementary probability is

1—]P’(X1>0,X2>0,X3>0)
:P(X1<OOIX2<OOFX3<O)
:P(X1>OOI'X2>OOI’X3>O)

an

by symmetry of the Gaussian. By the inclusion-exclusion

principle, this equals

P(X;> 0) + P(X2> 0) + P(X3> 0) — P(X;> 0, X > 0)
—P(X2>0,X3>0)—P(X3>0,X;>0)
+P(X1>0,X2>0,X3>0)

hence
1-2P(X; > 0,X5 > 0,X35 >0)
3 3 arcsinpyp arcsinpgz arcsinpz (12)
2 4 2m B 27 B 27
which yields the announced formula. ]

Unfortunately, no such closed-form formula seems to exist
for n > 4 and one has then recourse to numerical computa-
tion [12].

IV. MINIMUM NUMBER OF ELEMENTS REACHING AN
ENTROPY OF M BITS

In this section we find the optimal (n, M) code of length n
such that the entropy H(B) corresponding M-bit vector B
attains its maximum possible value H(B) = M bits.

Lemma 3. The signs of two jointly Gaussian identically
distributed zero-mean variables are independent if and only if
the two variables are independent.

Proof: One direction is obvious. For the other, let X7, Xo
be zero-mean Gaussian with correlation factor p; o and assume
that sign(X;) and sign(Xs) are independent. Since X7, Xo
have zero mean, sign(X ), sign(X5s) are each equiprobable +1
with probability 1/2, hence

1

P(X; >0,X2 >0)=P(X; > 0)P(X2 >0) = 1 (13)

From Lemma 1 this implies arcsin p; 2 = 0 hence p; 2 = 0.

Since X1, Xo are uncorrelated and jointly Gaussian, they are

independent. ]

As an example, when n = 2, the code Cy; = G _1)
generates responses

Bl = sign(A1 + AQ),
BQ = sign(Al — Ag)

Since A; and A, are i.i.d. normal, A1 + Ay and A1 — Aq
are also i.i.d. normal, and the entropy of B = (B1, Bs) equals
2 bits. By lemma 3, it follows that up to equivalence (trivial
permutations), Cs is the only code achieving H(B) = 2 bits.
The general case is given by the following

Theorem 1. Up to equivalence, the only code of minimum
length n such that the corresponding M-bit vector B has
maximum entropy H(B) = M bits is the Hadamard (n,n)
code of length n = M.

Proof: Let A € R™ be the zero-mean Gaussian (column)
vector (A1, Ag,...,A,)t. Without loss of generality, we
assume that its components are i.i.d. ~ A(0,1). Let C be
the M x n matrix of +1’s whose lines are the challenges
(codewords). The product CA is a Gaussian vector with
covariance matrix CC?, and the M -bit vector B is the vector of
signs of the components of CA. Each of these signs B, is an
equiprobable binary variable € {£1} with one bit of entropy.
Therefore,

H(B) <Y H(B.) = M bits
ceC

(14)

with equality if and only if the B.’s are independent. Now
suppose that H(B) = M. Since the B.’s are pairwise
independent, by Lemma 3 it follows that the components of
CA are (pairwise) uncorrelated. Thus CC* = nl. Because CC?
has full rank, it follows that n > M, hence the minimal value
of n is n = M. In this case all lines of the n X n matrix C of
+1s are mutually orthogonal, hence C is an Hadamard matrix
whose lines form the (n,n) Hadamard code. ]



Remark 1. Any Hadamard matrix (not necessarily of Sylvester
type) can be used for the (generalized) Hadamard code. Thus
in Theorem 1, n is necessarily one of n = 1,2, or a
multiple of 4 (up to at least 662 in 2005—cf. Hadamard’s
conjecture [13]). For instance, for n = 12, the unique (up to
equivalence) Hadamard matrix which can be found in Magma
HadamardDatabase list is

11 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1-1-1-1-1-1-1
1 1 1-1-1-1 1 1 1-1-1-1
1 1-1 1-1-1 1-1-1 1 1-1
1 1-1-1 1-1-1 1-1 1-1 1
Coo — 1 1-1-1-1 1-1-1 1-1 1 1
2=-f1-1-1-1 1 1 1 1-1-1 1-1
1-1 1 1-1-1-1 1-1-1 1 1
1-1 1-1-1 1 1-1-1 1-1 1
1-1-1 1-1 1-1 1 1 1-1-1
1-1-1 1 1-1 1-1 1-1-1 1
1-1 1-1 1-1-1-1 1 1 1-1

which gives H = 12 bits.

Remark 2. The elementary delay-PUF structure in Fig. 1
consists of two stages. Thus, irrespective of the challenge bit
¢;, the path from x; to y; travels through the same number
of top and bottom buffers. In a previous work [14], [15],
the considered structure was simpler as it had only one
stage. However, the counterpart is that challenges had a fixed
Hamming weight (globally, or by subsets). Now considering
the Hadamard code where the all-one codeword is removed, all
remaining codewords have Hamming weight n/2. Therefore,
in this specific case, the complexity of the PUF can be halved
by cutting one stage for all elements of Fig. 1.

V. INCREASING ENTROPY WITH ADDITIONAL CHALLENGES

Theorem 1 states that for n delay elements, only the first n
challenges can bring up to n bits of entropy. However, one can
always use M > n challenges to further increase the entropy.
Of course each additional challenge will only bring strictly
less than one bit of information so that n < H(B) < M. This
is to be contrasted with the state-of-the-art for other kinds of
delay-PUFs (e.g., [5] for an SRAM-PUF and [16] for a delay-
PUF based on ring oscillators) for which the obtained entropy
was always smaller than n bits irrespective of the number of
challenges.

A. Casen =3

In this case there is no (3,3) Hadamard code. To compute
the maximal possible entropy for M challenges, we proceed
as follows.

For M = 1, we consider without loss of generality the
codeword ¢ = (1,1,1). The entropy of B, is 1 bit.

For M = 2, appending the opposite codeword (—1,—1,—1)
does not increase entropy. However, all other non trivial
solutions with one or two —1 are equivalent (they yield the
same code up to permutation). Consider for example

11 1
02—<1 1 1)'

Using Lemma 1, it is easily found that the corresponding
orthant probability is

1 arcsini

3
4 2m
so that the resulting entropy is

p:

1
H(B) = —2plogp — (1 —2p) 1og(5 — p) ~ 1.966 bits.

For M = 3, we can add one of the two codewords (—1, 1, 1)
or (—1,1,—1), yielding a code equivalent to

11 1
C3 = 11 —1].
-1 1 1

It is easily checked using Lemma 2 that the entropy of B =
(.B]7 B2, B3) is then

1 arcsini 1 arcsin i
H(B) = -6 <8+4ﬂ3) log <8+ o 3)
1 arcsin + 1 arcsin %
-2(=-3 3 )log (= -3 3
(8 4m > o8 (8 4m >

~ 2.875 bits.

For M = 4, the entropy can still be increased by appending
(=1,1,-1), yielding

1 1
11 -1
C4 = 11 1
-1 1 -1

As there is no closed-form expression we found by Monte-Carlo
simulation that
H(B) ~ 3.666 bits,

which is strictly greater that n = 3. It is easily seen that adding
more codewords does not increase the entropy anymore, hence
this value is the maximum possible entropy.

B. Casesn=4and n =28

In these cases there is an (n,n) Hadamard code. It is
clear that for any M < n, the expurgated Hadamard code
of parameter (n, M) yields H(B) = M bits. The interesting
question is the computation of H(B) for M > n.

For this purpose, we have carried out a greedy search,
detailed in Algorithm 1. Obviously, in the cases n = 4,8,
the algorithm can easily be adapted to start from the (n,n)
Walsh-Hadamard code.

The result of Algorithm 1 is plotted in Fig. 4. One observes
several regimes. For M < n, the entropy grows linearly as
H(B) = M as proved in Theorem 1. For n < M < 2n, the
entropy continues to grow linearly with a smaller slope. For
n = 4, the appended codewords at iterations m = 5,6, 7 and
8 are respectively (—1,1,1,1), (1,—-1,1,1), (1,1,—1,1), and
(1,1,1,—1). Finally, when n = 4, for M > 2n, the entropy
remains unchanged, at a maximal value ~ 6.251 bits.

For n = 8, we observe more regimes. The slopes are 1,
0.558, 0.311 and 0.143 bit per new challenge, when M is in
the range [0, 8], [8,16], [16,24], and [24, 32] respectively. We
observed that in each region, the challenges added to the code
are pairwise orthogonal.



input :Length n, number of challenges M
output : Code C of parameters (n, M) and entropy H(B)

C+ 0
for me {1,...,M} do
Cbest<_(1’~--71) 5 Hbesl<—0

for c € {£1}" do
ifcZC and —c ¢ C then // Optimization
C'+CU{c}
H = H(B) where B = (B.)cec
if H > Hyey then
L Cpest <= C Hbest — H

o N A R W N =

v | C+CuU {chest} // Saving best codeword
11 return (C, Hpes)

Algorithm 1: Greedy algorithm for increasing the entropy as
the number of challenges increases.

Region 1 i ! ! ! i ! ! !
6 | I p e S m— —
2 s
Qo
£ 4
>
Q
g 3
c
2 2
T
1
Region 2 Region 3
O n
0 4 8 12 16
M
(@n=4
16 g
Region 1
14 v
T 12
e}
s 10
=
g— 8
g 6
T 4
2 .
Region 2
o gl
0 8 16 24 32
M
b)yn=28

Fig. 4. Entropy given by Alg. 1 for n elements as a function of the number
M of challenges.

VI. CONCLUSION

It was previously believed [16] that a PUF made up of n
elements can only provide less than n bits of entropy (the
entropy of the whole cannot be greater than the sum of the
entropies of its parts). This would be the case for the SRAM-
PUF where each element is independent from the others. In
contrast, we have shown that by aggregating n PUF elements
together as in delay-PUFs, it is possible to attain higher values
of entropy > n. This is especially important as the state-of-the-
art attacks against PUFs [17], [18] were set up to predict the

response of a PUF only from a few pairs of known challenges
and responses.
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