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Abstract—Almost-Gaussian (AG) and almost-lossless (AL)
properties are used to derive almost trivial proofs of almost-
achievable corner points of the capacity region of Gaussian
interference channels. For the missing corner point, the proof
is almost complete.

I. INTRODUCTION

This paper is about the determination of the corner points
of the capacity region of the two-user memoryless Gaussian
interference channel. The channel is depicted in Fig. 1 in
standard form [1]. Because the joint distribution of the Gaussian
noises (Z1, Z2) at the decoder sides is not relevant for the
communication problem, we find it notationally convenient
to set Z1 = Z2 = Z. In standard form, we may assume
unit noise powers N1 = N2 = 1, but we keep the notations
N1 = N2 = N to stay with dimensionally homogeneous
expressions—e.g., we write log(1+P/N) instead of log(1+P ).

Sender i = 1, 2 produces a uniformly distributed Mi-ary
message Wi, where1 W1 ⊥⊥ W2. Encoder i maps Wi to a
random vector Xi ∈ Rn of dimension n which satisfies the
power constraint ‖Xi‖2 ≤ nPi. Decoder i maps the output Yi
to an Mi-ary decoded message Ŵi.
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Fig. 1: Gaussian interference channel.

The capacity region of the channel is classically defined as
the closure of the set of all achievable rate pairs (R1, R2). We
prefer to define it as the set of all almost achievable rate pairs,
which are limit points of all sequences2 (R1, R2) for which the
corresponding sequence of encoding and decoding functions
with Mi = enRi are such that P{Ŵi 6=Wi} (i = 1, 2) tend to
0 as n → +∞. It is easily seen that the two definitions are
equivalent. The capacity region is a subset of the rectangle
R1 ≤ C1, R2 ≤ C2, where Ci = 1

2 log(1 + Pi/Ni). A typical
shape is shown in Fig. 2, where the two corner points (C1, C

′
2)

and (C ′
1, C2) are marked with circles.

1We use the notation ⊥⊥ to denote independence.
2For notational convenience we have dropped the index n when writing R1, R2,
W1, W2, X1, X2, Y1, Y2, Z1, Z2. However, P1, P2 and N are constants.
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Fig. 2: Corner points of the capacity region.

Because n is taken arbitrarily large, it is convenient to use the
following notation.

Definition 1 (Asymptotic Almost Inequalities). Let ε(n) denote
any positive function of n which tends to 0+ as n → +∞
(thus we can write, for example, ε(n) + ε(n) = ε(n)). Given
real number sequences an, bn, we write an . bn (an is almost
less than bn) if an ≤ bn + nε(n) ⇐⇒ bn ≥ an − nε(n). We
also write bn & an (bn is almost greater than an).

That (C1, C
′
2) is a corner point is established by showing

that it is almost achievable and that for any (R1, R2) for which
the associated probability of error tends to 0 as n→ +∞,

nR1 & nC1 =⇒ nR2 . nC ′
2. (1a)

That (C ′
1, C2) is a corner point is similarly characterized by:

nR2 & nC2 =⇒ nR1 . nC ′
1. (1b)

Achievability is generally not a problem and is done using
classical ingredients such as random coding, onion peeling and
rate splitting. Therefore, in this paper, we focus exclusively on
the derivation of the converse, that is, of (1). We provide exact
proofs for corner points in all situations except for the case
of the “missing corner point” for which our proof is almost
complete. All these proofs rely on the following notions.

II. ALMOST GAUSSIANNESS AND LOSSLESSNESS

Throughout the paper we assume that the average powers
of the considered random vectors are bounded by constants
(independent of n). Thus, to any random vector X ∈ Rn we
assume that P = supn

1
n E{‖X‖2} is finite. The maximum

entropy (MaxEnt) property states that h(X) ≤ n
2 log(2πeP )

with equality iff X is white Gaussian with power P .

Definition 2 (AG). X is almost (white) Gaussian (AG) if

h(X) &
n

2
log(2πeP ). (2)



Let Z,Z ′, Z ′′, . . . be mutually independent (not necessarily
Gaussian) vectors, independent of X and consider the Markov
chain of cumulative additions:

X—(X + Z)—(X + Z + Z ′)—(X + Z + Z ′ + Z ′′)— · · ·

By the data processing inequality (DPI), each addition decreases
mutual information, e.g., I(X;X + Z + Z ′) ≤ I(X;X + Z).

Definition 3 (AL). The addition of Z ′ in X+Z+Z ′ is almost
lossless (AL) with respect to X if mutual information is almost
nondecreasing:

I(X;X + Z + Z ′) & I(X;X + Z). (3)

We say that X+Z+Z ′ is almost lossless compared to X+Z
with respect to X , or more briefly that (X + Z) + Z ′ is AL
(w.r.t. X).

Lemma 1 (Fork Lemma). Let X1, X2 and Z be independent.
If X1 +X2 + Z is AL compared to X1 + Z w.r.t. X1, then it
is also AL compared to X2 + Z w.r.t. X2.

Proof of Lemma 1: I(X2;X1 +X2 +Z)− I(X2;X2 +Z) =
h(X1+X2+Z)−h(X1+Z)−h(X2+Z)+h(Z) = I(X1;X1+
X2 + Z)− I(X1;X1 + Z).

Letting Y = X1 +X2 + Z, this means that if adding X1

is almost lossless with respect to the transmission from X2 to
Y , then adding X2 is also almost lossless with respect to the
transmission from X1 to Y .

The usefulness of the AG and AL properties for determining
corner points is given by the following proposition.

Proposition 1. The condition nR1 & nC1 in (1a) implies3

(a) X1 + Z is AG;
(b) adding interference bX2 in Y1 = X1 + bX2 + Z is

AL compared to X1 + Z w.r.t. X1;

The symmetrical proposition holds for transmission 2.

Proof of Prop. 1: By the classical derivation of the converse
theorem:

nR1 = H(W1) . I(W1;Y1) (Fano) (4a)
≤ I(X1;Y1) (DPI) (4b)
≤ I(X1;X1 + Z) (DPI again) (4c)
= h(X1 + Z)− h(Z) (4d)
≤ nC1 (MaxEnt) (4e)

Thus nR1 & nC1 amounts to saying that all quantities in (4) are
at distance ≤ nε(n). This implies, in particular, (a) from (4e)
and (b) from (4c). The only remaining condition is I(W1;Y1) &
I(X1;Y1) which holds (with equality) if the encoder mapping
is invertible.

Notice that (b) becomes vacuous in the case of no inter-
ference (b = 0). If b 6= 0, by the fork lemma (Lemma 1),
condition (b) is equivalent to

(b′) adding X1 in Y1 = X1 + bX2 + Z is AL compared
to bX2 + Z w.r.t. X2;

3Equivalence holds if encoder 1 is invertible.

In the following, we examine the case of a Gaussian Z-
interference channel with one of the interference parameters
(e.g., b) equal to zero, illustrated in Fig. 3. The general
determination of corner points will follow in the general case of
two-sided interference by noting that removing an interference
link can only enlarge the capacity region, as explained in [2,
Table I].
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Fig. 3: Gaussian Z-interference channel.

The very strong interference case (a2 ≥ 1+P2/N ) is well-
known [3]. One has (C ′

1 = C1, C
′
2 = C2) and in this case

there is no need to prove (1).

III. THE STRONG INTERFERENCE CASE

For strong interference (1 ≤ a2 ≤ 1 + P2/N ) the corner
points are known and given by (5) below. The usual derivation
follows from that of the capacity region of the multiple access
channel and from the result of Han and Kobayashi [4] and
Sato [5], who showed that both receivers should be able
to decode both messages W1 and W2. In comparison, the
following (converse) proof is almost trivial.

Proposition 2. For the strong Z-interference Gaussian channel,

C ′
1 =

1

2
log2

(
1 +

a2P1 + P2

N

)
− C2

=
1

2
log2

(
1 +

a2P1

P2 +N

)
(5a)

C ′
2 =

1

2
log2

(
1 +

a2P1 + P2

N

)
− C1

=
1

2
log2

(
1 +

(a2 − 1)P1 + P2

P1 +N

)
. (5b)

Lemma 2. Let X ⊥⊥ Z where Z is Gaussian. For any a2 ≥ 1,

h(aX + Z) ≥ h(X + Z), (6a)

that is,
I(X; aX + Z) ≥ I(X;X + Z). (6b)

Proof: Let Z ′ be an independent copy of Z and set a′ such that
1/a2 + 1/a′

2
= 1. By the DPI, I(X; aX + Z) = I(X;X +

Z/a) ≥ I(X;X +Z/a+Z ′/a′) = I(X;X +Z) since Z/a+
Z ′/a′ is identically distributed as Z.

Proof of Proposition 2: First suppose that nR1 & nC1. From
Proposition 1, X1+Z is AG. Therefore, from (4a)–(4b) where
index 1 is replaced by 2,

nR2 . I(X2;Y2) (7a)
= h(X2 + aX1 + Z)− h(aX1 + Z) (7b)
≤ h(X2 + aX1 + Z)− h(X1 + Z) (Lemma 2) (7c)
. h(X2 + aX1 + Z)− h(Z)− nC1 (AG) (7d)
≤ nC ′

2 (MaxEnt) (7e)



which proves that nR2 . nC ′
2 (cf. (1a)).

Next suppose that nR2 & nC2. From Proposition 1 written
for transmission 2, X2+Z is AG and adding interference aX1

in Y2 = aX1 + X2 + Z is AL w.r.t. X2. Since a 6= 0, by
Lemma 1, this implies that adding X2 in Y2 = aX1 +X2 +Z
is AL w.r.t. X1. Therefore, from (4a)–(4b),

nR1 . I(X1;Y1) = I(X1;X1 + Z) (8a)
≤ I(X1; aX1 + Z) (Lemma 2) (8b)
. I(X1; aX1 +X2 + Z) (AL) (8c)
= h(aX1 +X2 + Z)− h(X2 + Z) (8d)
. h(aX1 +X2 + Z)− h(Z)− nC2 (AG) (8e)
≤ nC ′

1 (MaxEnt) (8f)

which proves that nR1 ≤ nC ′
1 (cf. (1b)).

IV. A CONSEQUENCE OF THE EPI ON AGNESS

In terms of its entropy power, the AG condition for X is
easily shown to be equivalent to

1
2πee

2
nh(X) ≥ P − ε(n). (9)

Proposition 3. If X,Y are independent and AG, then X + Y
is also AG.

Proof: Assume (9) and the corresponding condition for Y with
average power Q. Since the average power constraint associated
to X + Y is P +Q, the assertion follows from the EPI:

1
2πee

2
nh(X+Y ) ≥ 1

2πee
2
nh(X) + 1

2πee
2
nh(Y ) (10)

≥ P +Q− ε(n) (11)

where we have used that ε(n) + ε(n) = ε(n).

Prop. 3 will be essentially useful in the following particular
case, which is essentially the almost obvious fact that adding
white Gaussian noise preserves the AG property.

Corollary 1. Let X ⊥⊥ Z where Z is Gaussian. For any a2 ≤ 1,
if X + Z is AG then X + Z/a is also AG.

Proof: The AG property depends on the random vector only
through its distribution. Let Z ′ be an independent copy of Z
and set a′ such that 1/a2 = 1 + 1/a′

2. Then X + Z/a is
identically distributed as X + Z + Z ′/a′ and the assertion
follows from Proposition 3.

V. SATO’S CORNER POINT

For weak interference a2 ≤ 1, Sato [6] has found that the
first corner point is given by (12) below. The usual derivation
follows from the equivalence between Gaussian Z-interference
channel and a “fully” degraded version proved in [2], the
fact that it can be considered as a broadcast channel with
input power given by P1 + P2 [6], and Bergmans’ derivation
of the capacity region of the Gaussian (degraded) broadcast
channel [7]. In comparison the following proof is almost trivial.

Proposition 4. For the weak Z-interference Gaussian channel,

C ′
2 =

1

2
log
(
1 +

P2

a2P1 +N

)
. (12)

Proof: Suppose that nR1 & nC1. From Proposition 1, X1 +Z
is AG. Multiplying by a, aX1 + aZ is AG. By Corollary 1,
aX1 + Z is also AG. Therefore, from (4a)–(4b) written for
i = 2,

nR2 . I(X2;Y2) = h(Y2)− h(aX1 + Z) (13a)
. h(Y2)− n

2 log(2πe(a2P1 +N)) (AG) (13b)
≤ nC ′

2 (MaxEnt) (13c)

which proves that nR2 . nC ′
2 (cf. (1a)).

VI. A CONSEQUENCE OF THE EPIC ON ALNESS

Let Zt =
√
tZ. The entropy power inequality of concavity

(EPIC) [8] states that if t′ = λt+ (1− λ)t′′, then

e
2
nh(X+Zt′ ) ≥ λe 2

nh(X+Zt) + (1− λ)e 2
nh(X+Zt′′ ). (14)

We first rewrite this in terms of mutual informations.

Lemma 3. For any fixed t ≤ t′ ≤ t′′, there exists µ ∈ [0, 1]
independent of n such that

e
2
n I(X;X+Zt′ ) ≥ µe 2

n I(X;X+Zt)+(1−µ)e 2
n I(X;X+Zt′′ ) (15)

Proof: Writing h(X+Z) = I(X;X+Z)+h(Z) in (14) gives
t′e

2
n I(X;X+Zt′ ) ≥ λte

2
n I(X;X+Zt) + (1 − λ)t′′e 2

n I(X;X+Zt′′ ).
The result follows by letting µ = λt/t′ ∈ [0, 1].

Despite appearances, this lemma does not imply that
exp
(

2
nI(X;X + Zt)

)
is concave in t since in general

µt+ (1− µ)t′′ will not be equal to t′.

Again let Z,Z ′, Z ′′ be independent Gaussian, independent of X .

Proposition 5. If X + Z + Z ′ + Z ′′ is AL compared to X +
Z + Z ′, then it is also AL compared to X + Z.

In other words, the AL property is preserved if we “remove”
Gaussian noise of finite power.

Proof: Let t ≤ t′ ≤ t′′. Since the mutual information
I(X;X + Z) depends on Z only through its distribution, it is
easily seen that it is equivalent to prove that I(X;X +Zt′′) &
I(X;X + Zt′) implies I(X;X + Zt′) & I(X;X + Zt).
Taking exponentials it suffices to prove that e

2
n I(X;X+Zt′′ ) ≥

e
2
n I(X;X+Zt′ )− ε(n) implies e

2
n I(X;X+Zt′ ) ≥ e 2

n I(X;X+Zt)−
ε(n). But this is a trivial consequence of Lemma 3.

The following particular case is related to our problem.

Corollary 2. Let a2 ≤ 1. If aX1 +X2 + Z is almost lossless
compared to aX1 +Z, and if X2 +Z is white Gaussian, then
aX1+X2+Z is almost lossless compared to X1+Z w.r.t. X1.

Proof: Since X2 + Z is white Gaussian and a2 ≤ 1, aX1 +
X2 + Z is AL compared to aX1 + aZ, that is, AL compared
to X1 + Z.

We shall use the following almost identical version of
Corollary 2, which differs from it only by the addition of the
word “almost”:

Conjecture 1 (Almost-Conjecture). Let a2 ≤ 1. If aX1+X2+
Z is almost lossless compared to aX1 + Z, and if X2 + Z is
almost white Gaussian, then aX1 +X2 +Z is almost lossless
compared to X1 + Z w.r.t. X1.



VII. THE ALMOST MISSING CORNER POINT

For weak interference a2 ≤ 1, Costa [2] has stated that
the second corner point is given by (16) below. A problematic
issue in the proof was detected by Sason [9] and the corner
point has since been dubbed “missing” [10]. We provide an
almost trivial proof, but based on the Almost-Conjecture.

Proposition 6 (conjectural). For the weak Z-interference
Gaussian channel,

C ′
1 =

1

2
log
(
1 +

a2P1

P2 +N

)
. (16)

Proof Using the Almost-Conjecture: Suppose that nR2 & nC2.
From Proposition 1 written for transmission 2, X2 + Z is AG
and adding interference aX1 in Y2 = aX1 + X2 + Z is AL
w.r.t. X2. Since a 6= 0, by the Fork Lemma (Lemma 1), this
implies that adding X2 in Y2 = aX1+X2+Z is AL compared
to aX1+Z w.r.t. X1. Using the Almost Conjecture, this would
imply that aX1+X2+Z is AL compared to X1+Z w.r.t. X1.
Therefore, from (4a)–(4b),

nR1 . I(X1;Y1) = I(X1;X1 + Z) (17a)
. I(X1; aX1 +X2 + Z) (AL) (17b)
= h(aX1 +X2 + Z)− h(X2 + Z) (17c)
. h(aX1 +X2 + Z)− h(Z)− nC2 (AG) (17d)
≤ nC ′

1 (MaxEnt) (17e)

which proves that nR1 . nC ′
1 (cf. (1b)).

Notice that this proof is almost identical to the one given
above in the strong interference case. The only difference
is the problematic step that I(X1;Y1) = I(X1;X1 + Z) .
I(X1; aX1 +X2 + Z) = I(X1;Y2).

VIII. TOWARDS A PROOF OF THE ALMOST-CONJECTURE

Let a2 ≤ 1 and assume, as above, that X2 + Z is AG
and aX1 + X2 + Z is AL compared to aX1 + Z, that is,
I(X1; aX1 + X2 + Z) & I(X1; aX1 + Z). Also let XG

2 be
white Gaussian of variance P2, independent of the other random
vectors. The fact that X2 + Z is AG amounts to saying that

h(XG
2 + Z) . h(X2 + Z) ≤ h(XG

2 + Z). (18)

On the other hand, we have the following, which is essentially
the content of [11, § 3].

Lemma 4. If aX1+X2+Z is AL compared to aX1+Z w.r.t.
X1, then I(X1; aX1 +X2 + Z) & I(X1; aX1 +XG

2 + Z).

Proof: I(X1; aX1+X2+Z) & I(X1; aX1+Z) ≥ I(X1; aX1+
XG

2 + Z) where the latter inequality is a DPI.

What we need to prove the Almost-Conjecture is, in fact, the
opposite almost inequality, which is essentially the problematic
Lemma 1 in [2]:

Conjecture 2 (Entropy-Conjecture). If X2 + Z is AG, then

h(aX1 +X2 + Z) . h(aX1 +XG
2 + Z), (19)

that is, I(X1; aX1 +X2 + Z) . I(X1; aX1 +XG
2 + Z).

This conjecture essentially states that adding aX1 almost
does not increase the difference of the differential entropies
between X2 + Z and XG

2 + Z.

Proposition 7. The Entropy-Conjecture implies the Almost-
Conjecture.

Proof: With the above assumptions, I(X1; aX1 +XG
2 + Z) &

I(X1; aX1 +X2 +Z) & I(X1; aX1 +Z). Since XG
2 is white

Gaussian, it follows from Corollary 2 that I(X1; aX1 +XG
2 +

Z) & I(X1; aX1+aZ) = I(X1;X1+Z). But from Lemma 4,
I(X1; aX1+X2+Z) & I(X1; aX1+X

G
2 +Z) & I(X1;X1+

Z). Therefore, aX1 +X2 + Z is almost lossless compared to
X1 + Z w.r.t. X1, which proves the assertion of the Almost-
Conjecture.

Some partial results towards proving the Entropy-Conjecture
are given in [12]. On the other hand, a direct proof of the Almost
Conjecture would perhaps require an extension of the EPIC in
the form of Lemma 3 for almost Gaussian Z.
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