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Abstract—High computational demands of today’s wireless
communication standards require the design of highly flexible
Software Defined Radio (SDR) platforms like the OpenAirInter-
face ExpressMIMO platform. A DSP engine of major importance
is the Front-End Processor (FEP) which deals with the different
air-interface operations at the transceiver side. In this paper
we propose an Application Specific Instruction-Set Processor
(ASIP) architecture for front-end processing and compare it to a
programmable DSP engine as well as to other ASIP solutions. For
design comparison we mainly focus on architectural differences
and the run-time performance in terms of processing time. The
synthesis results are provided for different target technologies.1

I. INTRODUCTION

Recently, we have witnessed a significant change in the
use of mobile phones and other mobile devices. A few
years ago these devices focused solely on providing voice
communication. In contrast, today’s smartphones support a
wide range of applications and high data-rate access becomes
of major importance. In addition, the requirements of different
applications and the variable environment requests the support
of multiple wireless communication standards. For example,
available smartphones typically include GSM, 3GPP UMTS,
WLAN 802.11a/b/g, Bluetooth and most likely LTE in the
near future. It is expected that this number increases due to
upcoming standards, like LTE Advanced and WiMAX, while
at the same time updates of existing standards need to be
supported as well.

The high computational demands of such wireless com-
munication standards, especially in the physical-layer (PHY-
layer), have been commonly answered by a dedicated subsys-
tem per standard. To allow the execution of the different modes
of the given standard, each of them has been implemented by
a set of configurable hardware accelerators. By nature, these
systems have limited flexibility and can mostly support only
the standards they were intended for. Therefore, changes in
existing standard specifications or the implementation of new

1The research work leading to this paper has been supported by the
European FP7 project ACROPOLIS (Advanced coexistence technologies for
radio optimization and unlicensed spectrum)

standards require a time-consuming and costly redesign of the
hardware architecture.

These issues have given birth to the concept and idea of
Software Defined Radio (SDR). Key idea is to provide a
flexible SDR platform that can support multiple wireless com-
munication standards in a multimodal fashion. Unfortunately,
adding flexibility to a hardware design usually comes with the
cost of increased area, increased energy-consumption and/or
reduced computational performance. Earlier investigations [1]
have illustrated that a large amount of computational complex-
ity can be efficiently implemented by a vector processing unit
and SIMD (Single Instruction Multiple Data) instructions. This
paradigm is also visible in recently released SDR platforms
in commercial products like Femtocells from TI [2] and
Freescale [3], as well as in SDR platforms from academia [4].
In contrast to these solutions, the baseband processing of
the OpenAirInterface ExpressMIMO platform [5] is split over
several independent subsystems, as seen in Fig. 1.

In this paper we focus on the design of a flexible Front-End
Processor (FEP) for the ExpressMIMO platform. For this pur-
pose, a thorough comparison between a programmable tool-
based Application Specific Instruction-Set Processor (ASIP)
denoted as the A-FEP, a previously designed programmable
DSP engine (the Custom FEP (C-FEP) in the following) and
two other ASIP solutions from academia ([6], [7]) is carried
out.

For our ASIP design we used the Language for Instruction-
Set Architecture (LISA) [8] which has gained commercial
acceptance over the last years. Like the C-FEP, the A-FEP
achieves the required real time requirements of latest wireless
communication standards when executing the front-end
processing part of the physical-layer.

The paper is structured as follows: After presenting the
related work in Section III and a brief introduction of the
underlying front-end processing algorithms and the functional
specification of the A-FEP in Section IV-A, the architecture of
the A-FEP is enhanced in Section IV-B. Usually, architectures
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Fig. 1. ExpressMIMO Platform - System Overview

are evaluated in terms of frequency, area, power consumption
and the number of MOPS / MIPS (millions of operations /
instructions per second). As the latter does not provide a clear
information about the processing time of different operations
executed on ASIPs, we will provide processing time results
based on the actual amount of cycles instead. Two recent
academic solutions providing this information are the ASIP
developed by ETH Zürich [7] and the one designed by the
Cairo University [6]. In Section III, the architectures chosen
for comparison are shown before we finally focus on the
results of the run-time comparison in Section V.

II. SYSTEM OVERVIEW

The ExpressMIMO platform is flexible SDR platform that
supports a wide range of different wireless communication
standards like GSM, UMTS, WLAN or DAB. To simplify
upgrades to future standards like LTE the baseband processing
implemented on a Xilinx Virtex 5 LX330 FPGA is split over
different independent programmable DSP engines that are con-
nected via a generic Advanced Virtual Component Interface
(AVCI) crossbar [9]. The platform further embeds a SPARC
LEON3 processor from Gaisler - Aeroflex [10] running on
a Xilinx Virtex 5 LX110 FPGA. LEON3 is responsible for
the scheduling of the different baseband tasks as well as for
the data transfer between the PHY layer implemented on the
baseband engine and the MAC layer running on a host PC.
The chosen Operating System (OS) is MutekH [11] whose flat
function call convention, flat registers and simplified interrupt
handling reduce the latencies significantly when compared to
other OS like eCos or RTEMs.

The design of each DSP engine on the baseband FPGA
follows the general structure shown in Fig. 2. This standard-
ized DSP shell is composed of a Control Sub-System (CSS),
a DMA engine, a processing unit (PU) and the Memory Sub-
System (MSS). MSS and PU are custom defined and depend

on the functionality of the DSP. Currently all DSP engines
are controlled by the LEON3 processor which results in a
centralized control flow on the platform. To decrease the
resulting communication overhead, optionally a 8 bit micro-
controller (UC) coming with a 2 kB data memory can be
included in the DSP shell to enable a distributed control flow.
During our ongoing work we experienced, that for standards
operating on small vector length like IEEE 802.11a where one
OFDM symbol includes 80 sub-carriers, the communication
overhead leads to a significant performance drop. Therefore
we decided to extend the functionality of the A-FEP by a
set of General Purpose (GP) instructions to overcome this
drawback. The UC can still be kept in the design but only
for the programming of the DMA engine.
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III. RELATED WORK

In the context of SDR platforms, one promising design so-
lution are ASIPs that can be seen as a class of microprocessors
coming with a specialized Instruction-Set Architecture (ISA).
For SDR platform design, ASIPs tend to be suitable candidates
as they are meant to fill the gap between General Purpose
Processors (GPPs) and Application Specific Integrated Circuits
(ASICs) [12]. Being tailored to a specific application, ASIPs
exhibit a lower energy consumption than GPPs or Digital
Signal Processors (DSPs) while offering a higher flexibility
than ASICs at the same time. During the past years, different
solutions for front-end processing ASIPs have been proposed.
Some of the the architectures focus only on some air-interface
algorithms like packet synchronization or channel estimation
(e.g. [13] or [14]) while other designs are tailored to the
processing of a specific group of standards. One example is
[15] where the proposed ASIP solution supports the execution
of the 802.15.4a standard only.

Instead, the A-FEP presented in this paper supports a wide
range of different air-interface operations like packet / timing
synchronization, channel estimation, carrier / coarse frequency
offset estimation or data detection for different air-interfaces
like OFDM/A or SDMA and is not tailored to a specific
standard but to wireless communication standards in general.

For performance evaluation, the A-FEP is compared to three
different solutions in Section V:
• The C-FEP is a programmable DSP version of the FEP

and the ancestor of the ASIP. The comparison of C-FEP
and A-FEP is used to highlighten the performance gain
obtained on the ExpressMIMO platform when using the
latter instead.

• The IEEE 802.11a/n ASIP solution for single and multi-
ple antennas implemented at ETH Zürich and presented
in [7] is a well known ASIP architecture of high perfor-
mance. It is further denoted as ASPE A.

• The recently published ASIP solution developed by the
Cairo University [6] used for synchronization and acqui-
sition in OFDM receiver systems which is called Sync-
ASIP.

As the run-time performance analysis carried out is based
on the execution time, the different solutions will briefly be
described in the following and differences to the presented
ASIP architecture are highlighted.

A. C-FEP
A first architecture of the manually designed C-FEP has

already been presented in [16]. Since then, its design has
been continuously improved to get a higher performance and
a higher run-time flexibility. Like for the A-FEP, the C-
FEP is embedded in the standardized DSP shell shown in
Fig. 2. Instead of using a Program Memory, the DSP engine
is programmed through the control registers being part of the
CSS. Other differences compared to the A-FEP are listed in
the following:
• Processing Unit: Besides the vector processing unit the

C-FEP additionally embeds a DFT / IDFT unit and

supports a component-wise look up table operation to
approximate non-linear operations like invert, log, square
root, sine, cosine, etc. . The processing core is split over
two identical processing units, each embedding twenty-
four 25 x 18 bit signed multipliers and twelve 43 bit
accumulators, which can either be used to implement
two radix-4 butterflies for DFT / IDFT computation or
to execute the different vector operations. The resulting
pipeline consists of 15 stages and has to be emptied
before the next vector operation can be executed. This
results in an overhead of 11 to 16 cycles needed for
initialization and termination of each vector operation.

• MSS: For DFT / IDFT support, the MSS is extended by
twiddle factor and temporary data memories for DFT /
IDFT computation with an overall size of 52 kB.

On large vectors the ratio between the communication
overhead and the processing time is close to zero while it
results in a significant performance drop when processing
short data sets. In [17] we recently investigated in these
effects by considering a centralized control flow using the
LEON3 processor. Overcoming this drawback was the main
motivation in designing the A-FEP solution being presented
in the context of this paper.

The current target architecture of the baseband processing
engine on the ExpressMIMO platform is a Xilinx Virtex 5
LX330 FPGA with a speed grade of -2. Although, an ASIC
target technology may be considered for a future release2.
For the FPGA target, processing engine and MSS of the C-
FEP have been synthesized with Precision RTL from Mentor
Graphics. The design obtains a frequency of 96 MHz by
requiring 20119 function generators, 5030 CLB slices, 10945
DFFs, 33 block RAMs and 24 DSP48E slices.

For the ASIC target, only the processing engine of the C-
FEP has been synthesized as the new design of the MSS is still
part of our ongoing work. The maximum achievable frequency
in this case is about 450 MHz and the area is 0.48 mm2.

B. ASPE A

The ASIP solutions presented in [7] are based on the
Adaptive Stream Processing Engine (ASPE) [18] which is
a coarse-grained ASIP architecture being optimized for data
processing. Main advantages are the shortened design time and
the limited run-time reconfigurability for bug fixes resulting
in lower costs than other solutions. The ASPE is connected
to a GPP taking care of the control and of performance
uncritical tasks. In contrast to the ExpressMIMO platform,
ASPE includes three different types of building blocks whose
number and type can be selected from a library at design time.

1) Functional Units (FU) contain the arithmetic operations
and can be combined to implement more complex ones.
The number of internal pipeline stages is flexible and
can be chosen at design time.

265nm target library, low power and high voltage threshold, characterized
for a typical manufacturing process at 1.2 Volts power supply and 25◦C
temperature



2) Storage Units (SU) are used for local data storage. They
are connected to the FUs via a run-time configurable
network.

3) Sequencer Units (SEQ) are used to control the con-
figurable network between FUs and SUs. They further
support control related tasks like zero-overhead loops or
data dependent control flow.

In [7], two different ASIP solutions are presented that
are both tailored to the processing of the IEEE 802.11a/n
standard. The first one is a Single Input Single Output (SISO)
receiver called ASPE A while the second one supports a
2x2 MIMO (Multiple Input Multiple Output) configuration.
In addition, the design of the 2x2 MIMO receiver has further
been extended by a second ASPE ASIP (called ASPE B) re-
sponsible for MMSE (minimum mean square error) estimation
and MIMO detection to achieve a higher performance of the
overall design.
Table I illustrates the ASPE A configuration for both designs.

TABLE I
ASPE A CONFIGURATIONS FOR THE IEEE 802.11A/N RECEIVER

Ressource Quantity Comments
SEQ 1 Program Memory (512 words a 192 bit)

storage of the program control flow
storage of the 16 bit command words

FU 1 complex-valued multiply and accumulate unit
2 complex-valued arithmetic logic units

SU 1 Registerfile (16 registers)
1 input data buffer (64x32 bit)
6 data storage (256x32 bit)

By combining the different FUs, the functionality of the
ASPE A has been enhanced by a set of different vector
operations like CORDIC for instance.

The Synthesis results of both ASIPs are the following:
For a 0.13 µm CMOS target process, the SISO receiver
configuration obtains a frequency of 160 MHz and requires
a silicon-area of 1.9 mm2. Instead the MIMO receiver has
been synthesized for a 0.18 µm CMOS target process. For
a target frequency of 160 MHz the silicon area is 7.6 mm2,
although the maximum achievable frequency is 250 MHz

C. Sync-ASIP

The ASIP solution presented in [6] covers synchronization
and acquisition of different OFDM standards like HIPER-
LAN/2, IEEE 802.11a or LTE. The design includes six 12 bit
real adders, three 13 bit real multipliers, two 12 bit rounders,
two 24 bit accumulators, ten 13 bit multiplexers and two 24 bit
shifters that are distributed over three different pipeline stages.
The maximum vector length supported is 256 and a maximum
of one operation / cycle can be processed. Like ASPE A, the
design allows the processing of the CORDIC algorithm as well
as maximum likelihood or correlation functions. The MSS is
built of 286 word dual-port banks à 24 bit, based on the choice
of the maximum correlation length of 256 required for IEEE
802.16e and LTE. The instruction-set is composed of program
flow instructions (conditional / unconditional jumps, move, ...),

optimized instructions to facilitate the implementation of the
synchronization tasks and vector instructions.
For a a 0.18 µm CMOS target process, the obtained frequency
is 120 MHz and the area is 1.1 mm2.

IV. A-FEP ARCHITECTURE

A. Processing Engine Requirements

The front-end processing requirements for the support of
OFDM/A, SC-FDMA, W-CDMA and SDMA have already
been detailed in [1] and [16]. These papers state that operations
to be performed by the FEP on the transceiver side comprise
channel estimation, synchronization, carrier / coarse frequency
offset estimation and data detection and can be build up from
component-wise vector operations and a DFT / IDFT unit.
The latter is neglected for the A-FEP and kept as a separate
processing engine in the baseband design of the ExpressMIMO
platform.

The basic set of vector operations to be supported by the
A-FEP is listed in Table II.

TABLE II
A-FEP VECTOR OPERATIONS

Component-Wise Addition Z[i] = X[i] + Y [i]
Component-Wise Product Z[i] = X[i]× Y [i]
Component-Wise Square Absolute Z[i] = |X[i]|2
Move (MOV) Z[i] = X[i]
Component-Wise Division Z[i] = X[i]/Y [i]
Vector Sum Z =

∑
X[i]

Besides, shift, max/min and argmax/argmin operations are
provided that can operate independently on the real and
imaginary parts of the complex or integer vector elements
being processed. In addition, pre- and post-processing value
modifications are applied, comprising absolute value, negation,
zeroing, rescaling and saturations. The input and output vector
elements can be of four different data types: 8 or 16 bit signed
integers and complex numbers where real and imaginary parts
are 8 or 16 bit signed integers. Type conversions between them
are possible and specified through parameters being part of the
instruction word.

One major challenge when supporting a wide range of
different standards with different properties is to ensure an
efficient processing so that all of them meet their real-time
constraints. Therefore, the A-FEP comes with a sophisticated
and programmable Address Generation Unit (AGU) that al-
lows to build input vectors from non-contiguous data sets in
the connected MSS. Symmetrically, the AGU can also be used
to store result vectors at non-contiguous locations, allowing
component skipping or (periodic) value repetition. Moreover,
programmable self-wrapping mechanisms allow to turn MSS
sections into circular buffers. Major parts of the MSS are
the 4 kB program memory (PM) and the input-output data
space which has been designed for the support of standards
operating on large vector sizes like LTE or DAB. It is split over
four different memory banks, each with a size of 4096 32 bit
entries. The maximum vector length that can be processed
depends on the data type. For vector elements with a size of
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32 bit the maximum length is 4096, for vector elements with
a size of 16 bit it is 8192 and for vector elements with a size
of 8 bit it is 16384.

B. HW Architecture and Instruction-Set

The instruction-set of the A-FEP comprises three different
instruction types:

1) AGU configuration instructions: These instructions
carry the necessary parameters for programming the
AGU. In total, six different instructions have been im-
plemented whose number in the program code may vary
depending on the amount of parameters to be modified
for the subsequent vector processing instruction.

2) Arithmetic Vector Processing (AVO) instructions: To
fulfill the processing engine requirements, the ASIP sup-
ports nine different AVO instructions which are vector
multiplication, addition, square, square modulus, sum,
shift, move, division and max,min. Maximum supported
vector length is 16384 entries for a vector composed of
8 bit vector elements.

3) General Purpose (GP) instructions: The GP
instruction-set is based on a load-store architecture and
supports common instructions like compare, branch or
ALU operations. It comes with a registerfile possessing
a size of 16 x 32 bit. Further included is a IRQ
instruction used to signal to the LEON3 processor the
end of a scheduled tasks. Tasks can represent a single
instruction or more complex algorithms like packet

synchronization. Letting the main control to LEON3
comes with the advantage of a simplified scheduling
when processing different standards in a multimodal
fashion.

The resulting pipeline structure is illustrated in Fig. 3. It
consists of eleven stages and comes with a throughput of
two vector elements per cycle. Usually, one instruction per
cycle is fetched from the program memory. An exception
are the multicycle AVO instructions which may operate on
vectors with variable length. During the execution of these
instructions, the pipeline registers between PRE-FETCH,
FETCH and DECODE are stalled.

Synthesizing the A-FEP for the same FPGA target as the C-
FEP, the A-FEP obtains a frequency of 105 MHz by requiring
13122 function generators, 3281 CLB slices, 6433 DFFs, 17
block RAMs and 8 DSP48E slices. For the ASIC target, only
the processing engine of the A-FEP has been synthesized as
the new design of the MSS is still part of our ongoing work.
The maximum achievable frequency in this case is about 550
MHz with an area of 0.18 mm2.

V. RUN-TIME PERFORMANCE COMPARISON

The run-time performance depends on two different factors:
the necessary processing time required for the communication
between the LEON3 processor and the baseband DSP engines
and the pure data processing time or execution time of the
DSPs. For a standard operating on small vector lengths (e.g.



IEEE 802.11a/p), the first factor is of major importance while
it is more or less negligible for standards like DAB or LTE
that operate on large vector lengths. Table III lists the A-FEP
execution times for different front-end processing algorithms
of a IEEE 802.11p receiver for a frequency of 100 MHz.
Packet structure and the applied OFDM decoding procedure
have recently been presented in [17] and [19].

TABLE III
A-FEP EXECUTION TIMES FOR A IEEE 802.11P RECEIVER

algorithm cycles execution time
energy detection 302 3.06 µs
channel estimation 141 1.41 µs
data detection (16-QAM) 159 1.59 µs
data detection (64-QAM) 273 2.73 µs

For demonstration and to compare the performance of C-
FEP, A-FEP, ASPE A and Sync-ASIP, we will take the
example of two different packet detector algorithms for OFDM
signals.

A. Auto-correlation Based Packet Detection Algorithm

In [7], packet detection is performed over the Short Training
Sequence (STS) of the IEEE 802.11a/n receiver whose packet
structure is illustrated in Fig. 4. The STS is composed of ten
repetitions of a 16 samples sequence.

STS LTS SIGNAL DATA_1 DATA_N...

t1 t10...

160 samples 160 samples 80 samples 80 samples 80 samples

Fig. 4. IEEE 802.11a Packet Structure

The applied algorithm correlates L samples of the received
sample stream r[d] (d is the time index) with the subsequent
L ones. For a single antenna receiver this can be expressed
via the auto-correlation function

PL[d] =
L−1∑
m=0

(r∗[d+m] · r[d+m+ L]). (1)

To obtain a higher accuracy, L is set to half of the size of the
STS which corresponds to a vector length of 80 samples. In
a next step, the average energy of the received sample stream
in the actual window is calculated as

RL[d] =
L−1∑
m=0

|r[d+m+ L]|2. (2)

In case

|PL[d]|2 > |RL[d]|2

2
(3)

the beginning of the packet is found. Otherwise the window
over the incoming sample stream is shifted by a predetermined
number of samples.
Extending this algorithm to the 2x2 MIMO case, (1) and (2)

are performed for both receive chains obtaining two different
results. The comparison is performed over the average results
stated as

PL,avg[d] =
1
2

2∑
j=1

PjL[d] (4)

and

RL,avg[d] =
1
2

2∑
j=1

RjL[d] (5)

For the A-FEP, the set of instructions to be executed and
the cycle count of each of them for the SISO case is shown
in Table IV.

TABLE IV
A-FEP INSTRUCTIONS FOR AUTO-CORRELATION BASED PACKET

DETECTION

instructions cycles
PL[d] agu cfg (6x) 9

vec move L/2 + 4
agu cfg (4x) 4
vec mult L/2 + 4
agu cfg (2x) 2
vec sum L/2 + 4

RL[d] agu cfg (2x) 2
vec square modulus L/2 + 4
agu cfg (2x) 2
vec sum L/2 + 4
agu cfg (2x) 2
vec square modulus L/2 + 4

|PL[d]|2 > |RL[d]|2
2

nop (7x) 7
lw 5
nop 1
lw 5
nop 1
bgt 8

This results in a total amount of 6 · L
2 +72 cycles including

the communication overhead and 6 · L
2 + 24 cycles if only the

data processing time is taken into account. When using the
C-FEP instead the implementation can be simplified and the
code can be written more dense as illustrated in Table V.

TABLE V
C-FEP OPERATIONS FOR AUTO-CORRELATION BASED PACKET

DETECTION

operations cycles
PL[d] vector move L/2 + 11

vector multiplicaton + sum L/2 + 12
RL[d] vector square modulus + sum L/2 + 12

|PL[d]|2 > |RL[d]|2
2

vector square modulus + sum L/2 + 11

Considering only the pure data processing time without the
communication overhead, the resulting amount of cycles is
4 · L

2 + 46.
To get an idea about how much time is required for control
flow processes, different measurements have been carried out
on the ExpressMIMO platform operating at a frequency of
100 MHz.
• The time required by the LEON3 to program one vector

operation of the C-FEP takes 420 ns. The communication



TABLE VI
AUTO-CORRELATION BASED PACKET DETECTION COMPARISON

Solution cycles cycles execution time communication overhead execution time communication overhead
(SISO) (MIMO) (SISO) (SISO) (MIMO) (MIMO)

ASPE A 296 650 2.96 µs - 6.5 µs -
A-FEP 264 572 2.64 µs 0.48 µs 5.72 µs 0.64 µs
C-FEP 312 465 3.12 µs 1.2 µs 4.65 µs 1.2 µs

overhead can be reduced when programming the sub-
sequent vector processing during the processing of the
previous one. In case the data processing time of this
operation is larger than the 420 ns required for processing,
the communication overhead has no effect in the overall
processing time.

• Using polling, the time till LEON3 reacts on the end of
a vector operation in the C-FEP is 436 ns.

• The time necessary for a value comparison including the
memcopy of the values to compare from the C-FEP to
LEON3 takes 350 ns.

To sum up, Table VI gives the resulting cycles counts and
processing times for the A-FEP, the C-FEP and ASPE A for
a frequency of 100 MHz. Based on these results it can be
observed that for this algorithm, the A-FEP performs slightly
better than ASPE A although the architecture of the latter is
optimized for the processing of the IEEE 802.11a/n standard.
Compared to the C-FEP, the A-FEP reduces the communi-
cation overhead significantly due to reduced pipeline delays
and due to the GP instructions that reduce the communication
overhead with the LEON3 processor. For that reason the A-
FEP performs even better for the MIMO case. Considering
only the data processing time, the C-FEP performs better as
the sum is not an extra operation but included in the last
stage of the C-FEP pipeline. In general it can be stated, that
the development of algorithmic implementations is simplified
using the A-FEP as no explicit synchronization between the
processing unit and the LEON3 processor is needed.

B. Energy Based Packet Detection Algorithm

For the first example, we compared the A-FEP to two
powerful ASPE A solutions that are able to execute the whole
baseband processing of the applied IEEE 802.11a/n standard.
In this example, the A-FEP will be compared to a specialized
ASIP for synchronization and acquisition, the Sync-ASIP,
that has recently been published in [6]. The applied packet
detection algorithm is slightly different than the previously
presented one. To get a first estimate of the probability that
the beginning of the packet is detected, two energy values
an and bn are calculated over L = 64 elements and divided
through each other. In case the result is beyond a certain
threshold, the exact beginning of the packet is detected using
auto-correlation functions.

The energy values can be computed as

an =
L−1∑
m=0

|rn−L|2 (6)

and

bn =
L−1∑
m=0

|rn+L|2 (7)

while their relation is expressed as

mn =
an

bn
(8)

For the A-FEP, the set of instructions to be executed and
the cycle count of each of them is illustrated in Table VII.

TABLE VII
A-FEP INSTRUCTIONS FOR ENERGY BASED PACKET DETECTION

instructions cycles
an,bn agu cfg (6x) 9

vec abs square L/2 + 4
agu cfg (2x) 2
vec abs square L/2 + 4
agu cfg (2x) 2
vec sum L/2 + 4

mn agu cfg (4x) 2
vec cwl 7
agu cfg (3x) 3
vec mult 4
nop (7x) 7
lw 5
nop 1
lw 5
nop 1
bgt 8

This results in a total amount of 3 · L
2 +68 cycles including

the communication overhead and 3 · L
2 + 12 cycles if only the

data processing time is taken into account. When using the
C-FEP instead the implementation can be simplified and the
code can be written more dense as illustrated in Table VIII.

TABLE VIII
C-FEP OPERATIONS FOR ENERGY BASED PACKET DETECTION

instructions cycles
an,bn vec abs square + sum L/2 + 12

vec abs square + sum L/2 + 12
mn vec cwl 15

vec mult 11

Table IX gives the resulting cycles counts and processing
times for the A-FEP, the C-FEP and Sync-ASIP for a fre-
quency of 100 MHz. As expected, the typcial phenomenon
can be observed that a weakly programmable ASIP specialized
for a specific tasks performs far better than a flexible ASIP
solution that is capable to perform a wide range of different
operations. Comparing the A-FEP with the C-FEP solution it
can be seen, that the A-FEP drastically reduces the commu-
nication overhead when processing short data sets.



TABLE IX
ENERGY BASED PACKET DETECTION COMPARISON

Solution cycles execution time communication
overhead

Sync-ASIP 31 0.31 µs -
A-FEP 108 1.08 µs 0.56 µs
C-FEP 114 1.14 µs 2.29 µs

VI. CONCLUSION

In this paper we focused on the comparison of two new
designs for the Front-End Processor for the OpenAirInter-
face ExpressMIMO platform with existing ASIP solutions.
Comparing the A-FEP to the C-FEP, we have shown that
the A-FEP performs better in terms of processing time due
to the reduced communication overhead with the host sys-
tem and due to reduced internal latencies. This makes this
design the appropriate solution for standards with short data
sets where the communication overhead plays an important
role in the overall system performance. Although the A-FEP
supports a wide range of different wireless communication
standards, we have shown that it performs slightly better for
a packet detection algorithm than a solution presented by
ETH Zürich that is tailored to the processing of the IEEE
802.11a/n standard. On the other hand the performance is
still worse when compared to an ASIP solution designed for
synchronization and acquisition that commes with a reduced
instruction-set and is therefore less flexible than the presented
A-FEP. Future work includes the design analysis with regards
to energy consumption and power dissipation as well as the
final integration of the A-FEP on the ExpressMIMO platform.
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