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Abstract 

Purpose: This work presents our contribution to a data challenge organized by the French 

Radiology Society during the Journées Francophones de Radiologie in October 2018. This 

challenge consisted in classifying MR images of the knee with respect to the presence of tears 

in the knee menisci, on meniscal tear location, and meniscal tear orientation.  

Materials and methods: We trained a mask region-based convolutional neural network (R-

CNN) to explicitly localize normal and torn menisci, made it more robust with ensemble 

aggregation, and cascaded it into a shallow ConvNet to classify the orientation of the tear.  

Results: Our approach predicted accurately tears in the database provided for the challenge. 

This strategy yielded a weighted AUC score of 0.906 for all three tasks, ranking first in this 

challenge. 

Conclusion: The extension of the database or the use of 3D data could contribute to further 

improve the performances especially for non-typical cases of extensively damaged menisci or 

multiple tears. 

Keywords: Knee meniscus; Artificial intelligence; Mask region-based convolutional neural 

network (R-CNN); Meniscal tear detection; Orientation classification 

 

Introduction 

Meniscal lesions are a frequent and common cause of knee pain, responsible for 

approximately 700,000 arthroscopic partial meniscectomies per year in the United States [1]. 

They are defined as a tear within the meniscus, and can lead to articular cartilage degeneration 

over time, further necessitating surgical treatment. Magnetic resonance imaging (MRI) plays a 

central role in the diagnosis of meniscus lesions, the preoperative planning and the 

postoperative rehabilitation of the patient [2,3]. As meniscal lesions are very frequent, their 

diagnosis could certainly benefit from a quantitative and automated solution giving more 

accurate results in a faster way. Computer-aided detection systems for meniscal tears were 

thus proposed whereby regions of interest in the image are extracted and classified based on 

handcrafted image features [4-8].  
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 The Journées Francophones de Radiologie was held in Paris in October 2018. For the 

first time, the French Society of Radiology organized an artificial intelligence (AI) 

competition involving teams of industrial researchers, students and radiologists.  

 This paper presents our contribution to the knee meniscus tear challenge, where 

participants had to classify sagittal MRI slices cropped around the knee depending on the 

presence of tears in anterior and posterior menisci and on their orientation (horizontal or 

vertical). We proposed a method that takes advantage of recent advances in deep learning [9, 

10]. More precisely, we propose to localize, segment, and classify healthy and torn menisci 

using a mask region-based convolutional neural network (R-CNN) approach that is cascaded 

into a shallow ConvNet to classify tear orientation. 

Method 

Knee meniscus tear challenge 

Sagittal MR images centered around the knee were provided with the following annotations: 

(i), position of the image (medial or lateral); (ii ), presence of a tear in the posterior meniscus; 

(iii ), presence of a tear in the anterior meniscus; (iiii ), orientation of the tear in the posterior 

meniscus (if any); (v), and orientation of the tear in the anterior meniscus (if any). 

 Two training batches were provided; the first made of 257 images was shared one 

month before the conference and the other, made of 871 images, 2 days before the end of the 

challenge. The first batch contained 55/257 (21.4 %) images with horizontal posterior tears, 

46/257 (17.9 %) with vertical posterior tears, 13/257 (5.1 %) with horizontal anterior tears and 

8/257 (3.1 %) with vertical anterior tears. The second batch contained 107/871 (12.3 %) 

images with horizontal posterior tears, 60/871 (6.9 %) with vertical posterior tears, 8/871 (0.9 

%) with horizontal anterior tears and 3/871 (0.3 %) with vertical anterior tears. The classes 

were imbalanced, with horizontal tears and posterior meniscus tears being more frequent, and 

a low number of anterior tears were available for training. We reviewed the database and 

removed any ambiguous annotations from the training set. 

 Images of size 256 × 256, either of the medial or of the lateral plane of the knee, were 

provided, as illustrated in Figure 1a,b. The femur was always on the left and the tibia on the 

right, with the anterior meniscus at the top and the posterior meniscus at the bottom of the 

image. Horizontal tears appeared vertical and vice versa. The grey level scale was in an 



 3

arbitrary unit scaled between 0 and 1, and the images did not have consistent brightness and 

contrast. 

 On MRI, meniscal tears appear as thin, hyperintense lines that cut across the menisci, 

but we can observe various hyper-intense signals in the menisci (Figure 1). For instance, 

hyper-intense lines that only partially cut across the menisci should not be classified as tears 

(Figure 2a). Moreover, the menisci may be barely visible (Figure 2b) or have multiple tears 

(Figure 2c). In the latter case, the provided orientation may be ill-defined. 

 Menisci are small structures and tears present as thin abnormalities within menisci on 

MRI. To facilitate tear detection, we first localized the menisci. However, the localization of 

the menisci was not part of the provided annotations. To efficiently perform this annotation, 

we chose to approximate menisci by triangles resulting in a coarse segmentation of menisci 

(Figure 3). 

 To detect tears in both menisci and identify their orientation, we opted for a cascaded 

approach. First, menisci were localized and tears were identified. Then the orientation of torn 

menisci was classified. For both tasks, we applied a morphological pre-processing, as 

described below, to enhance the relevant structures in the image. 

Morphological pre-processing of images 

In a first attempt to better understand the dataset and the classification task at hand, we trained 

simple neural network classifiers on the training dataset in order to classify the posterior (resp. 

anterior) meniscus into healthy and torn cases. Both networks were based on a simplified 

VGG-like architecture: the whole image is taken as the input, on which four 2D-convolution/ 

ReLu/Maxpool layers are applied followed by two dense layers and a final softmax-activated 

output layer [11]. Note that these neural networks were only meant to explore the given 

dataset.  

 An accuracy of 83% could readily be obtained (precision, 0.76; recall, 0.8). However, 

when analyzing the interpretation of the ConvNet classification, it appeared that the network 

used non-relevant features in the image to provide the result (Figure 4). This phenomenon was 

consistently observed on other images in the dataset and is probably attributed to the 

variability of the images. Given that the dataset is small, the network is not able to properly 

generalize on so few samples. This prompted us to consider pre-processing the images in 
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order to bring robustness to the classification. The approach we propose is close to that for 

detecting white matter hyper-intensities in brain MRI [12].  

 Since meniscus tears are primarily characterized by distinct morphological features, it 

seems reasonable to assume that any image pre-processing step that would retain these 

characteristics while limiting the influence of other structures may be beneficial. Figure 4c 

shows the result of applying a black top-hat morphological filter on the image of Figure 4a. A 

black top-hat filter outputs an image wherein the bright regions correspond to regions in the 

original image which are smaller than the structuring element and darker than their 

surroundings. As can be clearly observed, the torn posterior meniscus can still be identified. A 

ConvNet classifier trained on black top-hat filtered images shows performance similar to the 

initial one (accuracy, 83%; precision, 86%; recall, 67%) but is able to focus precisely on the 

meniscus region (Figure 4d). In this case, the saliency map clearly indicates that only the 

meniscus region is relevant for the classification. 

Meniscus localization and tear detection 

To localize both menisci and identify tears in each meniscus, we used the Mask R-CNN 

framework, a state-of-the-art approach for Instance Segmentation. It performs object 

detection, segmentation and classification in a single forward pass [13]. We trained the model 

to detect and segment four objects: (i) healthy anterior meniscus; (ii), torn anterior meniscus; 

(iii ) healthy posterior meniscus, and (iiii ), torn posterior meniscus. In this way, we obtained 

the localization of each meniscus, the classification of healthy vs. torn, and a classification 

score. We chose to perform the classification of tear orientation independently on the 

segmented meniscus region only, as explained below because the classes would have been too 

imbalanced otherwise (only 11 vertical tears in the anterior meniscus for instance).  

 We used a Mask R-CNN model pre-trained on the common object in context (COCO) 

dataset [14] whose input is a three channel image. We applied three white top-hat filters (the 

dual of the black top-hat filters described above) on original MRI slices with square 

structuring elements of size 5×5, 11×11 and 21×21 (Figure 5) to generate network inputs. 

Note that we did not constrain the model to return exactly one result for each meniscus 

because the two menisci were correctly detected in almost all cases. We illustrate in Figure 6 

the output of the Mask R-CNN. In Figure 6a, the two healthy menisci are properly detected. 

In Figure 6b, the posterior meniscus is appropriately identified as torn. However, the posterior 

meniscus is too widely segmented and incorrectly labeled as torn (Figure 6). 
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Training 

We fine-tuned a Mask R-CNN with a ResNet-101 backbone, pretrained on COCO dataset) 

[13-15]. The training was done using an Adam optimizer, 1.10 −3 learning rate and batches of 

8 images, during 1000 epochs of 100 batches. 

Ensemble aggregation 

To improve the robustness of our model, we applied ensemble aggregation. We trained five 

models on random folds of the full training data set (1128 images) and retained five additional 

models trained on random folds of the first training batch only (the first 257 images). We 

aggregated the results differently for anterior and posterior menisci. We classified the anterior 

meniscus as torn when at least one network had detected a torn anterior meniscus, with a 

probability Pant(F) equal to the mean classification score of all detected torn anterior menisci 

by the ensemble. We classified the posterior meniscus as torn when the strict majority of the 

networks had detected a torn posterior meniscus. The probability Ppost(F) is equal to the mean 

classification score of all detected torn posterior menisci by the ensemble. We used different 

aggregation methods as a large majority of anterior menisci are healthy. Some networks may 

not have seen enough torn anterior menisci in order to recognize them. 

Tear orientation classification 

To classify the orientation of torn menisci as horizontal or vertical, we trained a neural 

network on images cropped to the bounding boxes of detected torn menisci, resized to 47 × 47 

pixels. This network was fed with pre-processed patches, each input having five channels 

illustrated in Figure 7: 1) unprocessed patch, 2) local orientation map, computed with σ = 3 

(see below), 3) local orientation map, computed with σ = 1, 4) black top-hat transform, with a 

disk structuring element of radius 4 pixels, and 5) black top-hat transform, with a disk 

structuring element of radius 8 pixels. The local orientation map represents the angle of the 

smallest eigenvector of the Hessian matrix at each pixel. The Hessian matrix was computed 

with the second derivative of a Gaussian kernel, whose standard deviation σ is a parameter.  

Only 300 torn menisci were provided for training. Therefore, we trained a very shallow CNN 

based on a VGG-like architecture:  

• Convolution, 3 × 3 kernel, 8 filters, ReLU activation, 

• Max-pooling, 2 × 2, 
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• Convolution, 3 × 3 kernel, 16 filters, ReLU activation, 

• Max-pooling, 2 × 2, 

• Convolution, 3 × 3 kernel, 32 filters, ReLU activation, 

• Max-pooling, 2 × 2, 

• Dense Layer with 1024 units, ReLU activation, P = 0.5 dropout, 

• Dense Layer with 1024 units, ReLU activation, P = 0.5 dropout, 

• Dense Layer with 2 units and a softmax activation. 

We trained this network on 246 torn menisci of the training database with a Stochastic 

Gradient Descent, 1.10 −3 learning rate and batches of 32 images, during 800 epochs 

(approximately 5 min). We validated the method on the remaining 54 cases and selected the 

model with the highest validation accuracy. 

Results 

Score and ranking 

Teams were ranked according to a weighted average of the area under the ROC curves (AUC) 

of the tear detection task Det (tear in any meniscus), the tear localization task Loc (anterior or 

posterior) and the orientation classification task Or (horizontal or vertical), according to 

Equation 1 (E1): 

E1   Score = 0.4 × AUC(Det) + 0.3 × AUC(Loc) + 0.3 × AUC(Or) 

The organizers therefore removed from the database cases where both menisci had tears and 

the following values were submitted for each image: 

• Probability of a tear in any meniscus P(F), 

• Probability that the tear (if any) is in the anterior meniscus P(Ant), 

• Probability that the tear (if any) is horizontal P(H). 

The Mask R-CNN ensemble outputs a probability Pant(F) that the anterior meniscus is torn, 

and a probability Ppost(F) that the posterior meniscus is torn, both being independent a priori. 

This results in Equation 2 (E2) 

E2  P(F) = Ppost(F) + Pant(F) - Ppost(F)Pant(F) 
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where P(Ant) is defined by Equation 3 (E3) 

E3  P(Ant) = Pant(F)/(Pant(F )+Ppost(F)).  

To obtain P(H), we applied the orientation classifier on the anterior meniscus when P(Ant) > 

0.5 and on the posterior meniscus otherwise. 

 A test set of 700 images was used for ranking. We obtained a score of 0.906 and 

shared the first place with another team (score 0.903).  

Visual inspection 

In most cases, the prediction was in line with our interpretation as illustrated in Figure 8, but a 

few cases seemed suspicious. The resulting classification scores were almost binary, either 

very close to 1 or very close to 0, especially P(F). However, for some images, the predictor 

returned classification scores close to 0.5 (Figure 9).  

Discussion 

The knee meniscus tear challenge posed an image classification problem. Image classification 

tasks in computer vision aim to discriminate many classes from the prominent object in the 

image [16]. However, in this problem, the classification result should be based on thin details 

at a specific location in the image. Moreover, only a small database was available. Training a 

standard classifier from the image may therefore result in sub-optimal performances as 

observed in our initial experiments. 

 We chose to localize and segment the menisci and perform the classification within 

the anterior and posterior menisci. We opted for a Mask R-CNN approach as it can perform 

both tasks jointly [13]. Due to the class imbalance, we did not classify the tear orientation 

using this approach, but cascaded the Mask R-CNN into a shallow ConvNet to classify tear 

orientation [17]. Moreover, we provided pre-processed images to the networks to focus on 

relevant parts of the images by enhancing the tears. 

 In conclusion, our approach ranked first in the challenge by predicting accurately tears 

in the database provided for the challenge. The extension of the database or the use of 3D data 

could contribute to further improve the performances especially on untypical cases such as 

very damaged menisci or multiple tears.  
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Figure legends 

Figure 1. Database contains either medial e.g. (a) or lateral e.g. (b) MR images of the knee. (a-b) 

MR images shows healthy menisci. (c-f) MR images shows examples of tears as present in the 

database. (c) Horizontal tear in posterior meniscus, (d) Horizontal tear in anterior meniscus, (e) 

Vertical tear in posterior meniscus and (f), Vertical tear in anterior meniscus. Arrows point out 

tears.  

Figure 2. MR images illustrate challenging cases. (a) Potentially misleading lesion. (b) Barely 

visible meniscus. (c) Multiple tears in the same meniscus.  

Figure 3. Figure shows two MR images from the training database illustrating the menisci 

annotation process. Each colored dot is a vertex of a triangle that approximates the segmentation 

of a meniscus.  

Figure 4. (a) Image from the training database with a clearly visible torn posterior meniscus that 

was correctly classified by the ConvNet. (b) Same image with a superimposed saliency mask 

indicating that the network focuses on non-relevant regions and barely considers the posterior 

meniscus itself. (c) Image (a) after applying a black top-hat filter with a disk structuring element 

of radius 5 pixels. (d) Saliency map for the processed image. 

Figure 5. Pre-processing of the data used as input of the Mask R-CNN. (a) Original image. (b) 5 × 

5 white top-hat. (c) 11 × 11 white top-hat. (d) 21 × 21 white top-hat.  

Figure 6. Output of Mask R-CNN. (a-b) Correct results. (c) Posterior meniscus incorrectly 

segmented and labeled as torn.  

Figure 7. Patch extraction for orientation classification. (a) Extracted patch, resized to 47 × 47. 

(b) Local orientation map, σ = 3. (c) Local orientation map, σ = 1. (d) Black top-hat, r = 4. (e) 

Black top-hat, r = 8. 

Figure 8. Prediction results on the testing batch. Most results seem correct, e.g. (a-b). However, 

some predictions are suspicious, e.g. (d-e). (a) No tear. (b) Horizontal tear on the posterior 

meniscus. (d) P(Ant) ~ 0.45 but the anterior meniscus looks torn. (e) P(F) ~ 0 but a tear is visible 

in the anterior meniscus. (c) Distribution of P(F). (f) Distribution of P (H) for cases satisfying 

P(F) > 0.5.  

Figure 9. Cases for which P (F) (a-c) or P (H) (d-f) were close to 0.5. (a) Tear on the anterior 

meniscus but a slice where the menisci are connected was selected which does not meet the 

inclusion criteria. (b) Damaged anterior meniscus, but the presence of a tear is unclear. Yet the 

algorithm focused on the anterior meniscus: P (Ant) > 0.99. (c) Untypical lesion on the anterior 

meniscus. (d-e) Extensively damaged meniscus. (f) Several tears in one meniscus. 

 






















